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Abstract. In modern collaborative and distributed applications, au-
thenticated group key agreement (GKA) is one of important issues. Re-
cently identity (ID)-based authenticated GKA has been increasingly re-
searched because of the simplicity of a public key management. In this
paper, we present a formal treatment on ID-based authenticated GKA,
which extends the standard GKA model. We present two GKA proto-
cols which use a bilinear-based cryptography: one is a bilinear variant
of Burmester and Desmedt protocol [13] and the other is ID-based au-
thenticated protocol based on the former protocol. Our protocols are
scalable and 2-round protocols with forward secrecy. In particular, the
ID-based authenticated GKA protocol provides a batch verification tech-
nique, which verifies the validity of transcripts from other group players
simultaneously and improves computational efficiency. We then prove
their securities under the decisional bilinear DH and computational DH
assumptions.

1 Intoduction

BACKGROUND. In many modern collaborative and distributed applications such
as multicast communication, audio-video conference and collaborative tools, scal-
able and reliable group communication is one of the critical problems. A group
key agreement (GKA) protocol allows a group of users to share a key which may
later be used to achieve some cryptographic goals. In addition to this basic tool
an authentication mechanism provides an assurance of key-sharing with intended
users. A protocol achieving these two goals is called an authenticated group key
agreement (AGKA) protocol.

Among various authentication flavors, asymmetric techniques such as certifi-
cate based PKI (public key infrastructure) or ID-based system are commonly
used to provide authentication. In a typical PKI deployed system, a user should
obtain a certificate of a long-lived public key from the certifying authority and
this certificate be given to a partner to authenticate the user. Whereas in a ID-
based system, the partner just has to know the public identity of the user such
as e-mail address. Thus, compared to certificate-based PKI system, ID-based
authenticated systems simplify the key agreement (management) procedures.



Several papers have attempted to establish ID-based authenticated key agree-
ment protocol. But the results in [19,22,24] only present informal analysis for
the security of the proposed protocols and some of these protocols subsequently
found to be flawed [19]. Joux [15] proposed a single round tripartite key agree-
ment using Weil and Tate pairings but unauthenticated. Authenticated versions
of this protocol were presented in [1,24]. Unfortunately, Joux’s method does not
seem possible to be extended to larger groups consisting of more than three
parties since the method is based on the bilinearity itself. Recently, an ID-based
group (n-party) key agreement protocol which uses the one-way function trees
and a pairing is firstly proposed by Reddy, et al. [18] with informal security anal-
ysis. Barua, et al. [2] proposed an ID-based multi party key agreement scheme
which uses ternary trees. The two protocols above have O(lg n) communication
rounds.

CONTRIBUTION. In this paper we formally present efficient ID-based authen-
ticated group key agreement, which uses a bilinear-based cryptography. The
protocol is a contributory key agreement in which generating a group key is the
responsibility not only of the group manager, but also of every group member.
Hence it does not impose a heavy computational burden on a particular party,
which may cause bottle-neck.

To construct our ID-based AGKA protocol, we first present underlying 2-
round GKA protocol, which is a bilinear version of the Burmester and Desmedt
(BD) protocol [13]. We should be careful of the conversion since the trivial
conversion of the BD protocol into a bilinear setting by simply substituting gen-
erators does not provide security even against a passive adversary. This security
degradation stems from the gap property of a certain group where DDH problem
is easy but CDH problem hard.

We then make an ID-based authentication method by combining this method
and the former GKA protocol. In fact the presented ID-based authentication
method can be naturally transformed into a normal ID-based signature scheme.
Moreover the method provides a batch verification technique, which verifies
the validity of transcripts simultaneously, to greatly improve computational ef-
ficiency. Like the underlying GKA protocol, our ID-based AGKA protocol is
2-round. Our ID-based AGKA protocol is most efficient in computational and
communicational costs as compared to other previous known ID-based AGKA
protocols.

We prove the security of both protocols under the intractability of CDH
and DBDH (Decisional Bilinear DH) problems in the random oracle model. The
protocols achieve forward secrecy in the sense that exposure of user’s long-lived
secret keys does not compromise the security of previous session keys.

RELATED WORK. Since the original two party Diffie-Hellman key agreement
protocol has been presented in [14], authenticated key agreement problems have
been extensively researched. In particular, Bellare and Rogaway adapted so-
called provable security to a key exchange and firstly provided formal framework



in two and three party setting [5,6]. Based on that model, many subsequent
works have identified concrete cryptographic problems.

Only recently, provably secure solutions for the authenticated group key
agreement problem was presented in works of Bresson, et al. [12,10,11], which
extended the results in [5,6,4]. Despite of the initial formal step, these proto-
cols, based on the protocols of Steiner, et al. [23], require (relatively) expensive
computational cost and the number of round is linear in the number of users
participating in a session. Boyd, et al. [8] presented very efficient GKA protocol
with a security proof in the random oracle model but did not provide forward
secrecy. Katz, et al. [16] presented the constant-round and scalable AGKA pro-
tocol with forward secrecy, which is proven secure in the standard model. They
took a modular approach and used a signature-based compiler that transforms
any GKA protocol secure against a passive adversary to one secure against a
stronger active adversary.

ORGANIZATION. Our paper is organized as follows. We define our security model
in Section 2. We review cryptographic assumptions needed in Section 3. We
present our GKA and ID-based AGKA protocols and prove the security in Sec-
tion 4. We finally compare our protocol with other ID-based AGKA protocols
and conclude in Section 5.

2 The Model

The model described in this section extends one of Bresson, et al. [10] which
follows the approach of Bellare and Rogaway [5, 6].

In our protocol, we assume broadcast network in which the users can broacast
messages to others. Our broadcast network will neither provide authenticity nor
guarantee that all user receive identical messages. I.e. we allow the possibility
that a malicious adversary may read the broadcast messages and substitute some
of them.

2.1 Security Model

Participants. We assume that each user U; has a unique identity ID; from
{0,1}* and all identities are distinct. We also assume for simplicity a fixed set
of protocol users U = {Uy,...,U,} where the number of users is polynomial in
the security parameter k.

In the model we allow each user U; € U to execute the protocol many times
with different users. Instances of a user U; model distinct, but possibly concur-
rent executions of the protocol. We denote instance s of a user U;, called an
oracle, by II? for an integer s € N.

Initialization. During this phase, each user U € U gets public and private keys.
ID-based GKA protocol requires the following initialization phase.



- The master secret key msk and global parameters params are generated by
algorithm Setup : params < Setup(1*, £) where £ is the identity length.

- Each user U; gains the long term secret key S; from algorithm Ext : S;
EXtmsk(IDi).

The public parameters params and identities ZD = {IDy,...,ID,} are known
by all users (and also by adversary).

Adversarial model. Normally, the security of a protocol is related to the adver-
sary’s ability. The abilities are formally modeled by queries issued by adversaries.
We assume that a probabilistic polynomial time (PPT) adversary A controls the
communications completely and can make queries to any instance. The list of
queries that A can make is summarized below:

- Extract(IDy): This query allows the adversary to get the long-term private
key corresponding to IDy where IDy ¢ ID.

- Execute(ZD): This query models passive attacks, where the adversary eaves-
drops an executions of the protocol. A gets back the complete transcripts of
an honest execution between the users in ZD. The number of group members
are chosen by the adversary.

- Send(II¥, M): This query allows the adversary to make the user ID; run the
protocol normally. This sends message M to instance II} which returns the
reply generated by this instance.

- Reveal(II}): This query models the adversary’s ability to find session group
keys. If an oracle II? has accepted, holding a session group key K, then K
is returned to the adversary.

- Corrupt(ID;): This query models the attacks revealing the long-term secret
key S;. This does not outputs any internal data of ID;.

- Test(II?): This query models the semantic security of a session key. This
query is allowed only once by the adversary A. A random bit b is chosen; if
b = 1 then the session key is returned, otherwise a random value is returned.

In the model we consider two types of adversaries according to their attack types.
The attack types are simulated by the queries issued by adversaries. A passive
adversary is allowed to issue Execute, Reveal, Corrupt, and Test queries, while an
active adversary is additionally allowed to issue Send and Extract queries. Even
though Execute query can be simulated using Send queries repeatedly, we use
the Execute query for more exact analysis.

2.2 Security Notions

Session IDS and Partnering. Following [16], we defines session IDS and part-
nering. The session IDS (SIDS) for an oracle 17 is defined as SIDS(I17)=(SID;;),
where SID;; is the concatenation of all messages sent and received by an oracle
IT? during the execution. The partner ID for an oracle IT7, denoted by PIDS(I77),
is a set of the identities of the users with whom II; intends to establish a session
key. Instances IT and IT} are partnered if and only if PIDS(IIf)=PIDS(IT})



and SIDS(Hf)zSIDS(H]t-). The presented notion of parting is simple since all
messages are sent to all other users taking part in the protocol. We say that an
oracle I} accepts when it has enough information to compute a session key.

Freshness. An oracle I} is said fresh (or hold a fresh key K) if:

- I} has accepted a session key K # NULL and neither IT? nor one of its part-
ners has been asked for a Reveal query,

- No Corrupt query has been asked before a query of the form Send(II?,*) or
Send(I},*), where II} is one of II{’s partners.

Definitions of Security. We define the security of the protocol by following
game between the adversary A and an infinite set of oracles II? for ID; € 7D
and s € N.

1. The long-term keys are assigned to each user through the initialization phase
related to the security parameter.

2. Run adversary A who may issue some queries and get back the answers by
the corresponding oracles.

3. At some stage during the execution a Test query is issued by the adversary to
a fresh oracle. The adversary may continue to make other queries, eventually
outputs its guess b’ for the bit b involved in the Test query and terminates.

In this game, the advantage of the adversary A is measured by the ability dis-
tinguishing the session group key from a random value, i.e. its ability guessing
b. We define Succ to be the event that A correctly guesses the bit b used by
the Test oracle in the answering this query. The advantage of an adversary A in
attacking protocol P is defined as Adv4 p(k) = |2 - Pr[Succ] — 1|.

We say that a protocol P is a secure (ID-based authenticated) group key
agreement scheme if the following two properties are satisfied:

— Correctness: in the presence of a (active) passive adversary partner oracles
accept the same key.

— Indistinguishability: for every PPT (active) passive adversary A, Adv 4, p(k)
is negligible.

Forward Secrecy. In this paper, we are concerned with protocols providing
forward secrecy meaning that an adversary gets negligible knowledge informa-
tion about (greviously established session keys when making a Corrupt query. We
KA-fs . .
define Adv; (t,¢es) to be the maximal advantage of any passive adversary
attacking P, running in time ¢ and making ¢, Execute queries. Similarly, we
define Advl’iGKA'fs(t, Gez,(qs) to be the maximal advantage of any active adver-
sary attacking P, running in time ¢ and making g., Execute queries and ¢ Send

queries.

Authentication. In this paper, we focus on AGKA with implicit authentication;
a key agreement protocol is said to provide implicit key authentication if users
are assured that no other users except partners can possibly learn the value of a



particular secret key. Note that the property of implicit key authentication does
not necessarily mean that partners have actually obtained the key.

3 The Bilinear Maps and Assumptions

In this section, we review some assumptions related to our protocols. Through
the paper, we assume that G; is a cyclic additive group of prime order ¢ and
G is a cyclic multiplicative group of same order ¢, and the discrete logarithm
problem (DLP) in both G; and G, are intractable.

CDH Parameter Generator: A CDH parameter generator ZGopy is a PPT
algorithm that takes a security parameter 1¥, runs in polynomial time, and out-
puts an additive group G of prime order q.

Computational Diffie-Hellman (CDH) problem in G: Informally speak-
ing, the computational DH problem is to compute abP when given a generator
P of G and aP, bP for some a,b € Z;. More formally, the advantage of A with
respect to ZGppp is defined to be

Pr [A(G, P,aP,bP) = abP | G « TGopu(1%); P  G;a,b + Z7].

TGcopH is said to satisfy the CDH assumption if any PPT A has negligible ad-
vantage in solving CDH problem.

Admissible Bilinear Map. We call e : G; x Gy — Gy an admissible bilinear
map if it saifsfies the following properties:

1. Bilinear : e(aP,bQ) = e(P,Q)? for all P,Q € G, and a,b € Zy.
2. Non-degenerate : There exist a P € Gy such that e(P, P) # 1.
3. Computable : There exists an efficient algorithm to compute e(P, Q) for all

P,QeG.

BDH Parameter Generator: A BDH parameter generator ZGgpp is a prob-
abilistic polynomial time (PPT) algorithm that takes a security parameter 1%,
runs in polynomial time, and outputs the description of two groups G; and Go
of the same order ¢ and an admissible bilinear map e : G; X G; — Gs.

Decisional Bilinear Diffie-Hellman (DBDH) problem in [G;,Gs,e]: In-
formally speaking, the decisional BDH problem is to distinguish between tu-
ples of the form (P,aP,bP,cP,e(P, P)*°) and (P,aP,bP,cP,e(P, P)?) for ran-
dom P € Gy, and a,b,c,d € Z;. More formally, the advantage of .A with respect
to ZGpppy is defined to be

kY.
‘ Pr [A (G1,Gs, e, P,aP,bP,cP,e(P, P)™) = 1 ‘ (Gll’)Gi’ glj_a’%’chﬁHZ(; )’]

kY.
—Pr |:.A (Gl,Gg,e,P,aP,bP,cP,e(P,P)d) -1 ‘ (Glanae) (—IgBDH(l )1] ‘

P+ Gi;a,b,¢,d + 2}



ZGppm is said to satisfy the DBDH assumption if any PPT A4 has negligible
advantage in solving DBDH problem.

As noted in [7], BDH parameter generators satisfying the DBDH assumption
is believed to be constructed from Weil and Tate pairings associated with super-
singular eliptic curves or Abelian varieties.

4 Our GKA and ID-based AGKA protocol

4.1 GKA Protocol Using a Bilinear Map

We now describe a 2-round GKA protocol using bilinear maps. We denote this
protocol by B-GKA. In fact, this protocol is a bilinear variant of the protocol by
Burmester and Desmedt. In this protocol, no long-term public/private keys are
required. In the following description groups G;, Gy and a bilinear map e are
generated by a BDH generator in Section 3 and P is a random generator of Gj .
When n users Uy,..,U,, want to establish a session key, they proceed as follows :

[Round 1 ] Each user U; picks a random integer a; € Z; and computes P; =
a;P. Then each U; broadcasts P; to all others and keeps a; secret.
[Round 2 ] Upon receipt of P;_;, P11 and P9, each users U; computes

D; = €(ai(Pz'+2 - P1), Pz'+1)

and broadcasts D; to all others.
Key Computation. Each U; computes the session key as follows :
Ki = e(aiPi_l , .Pi+1)nD?_1Din+_12 st Di_2.
It is obvious that all honest users compute the same key as follows:

K = 6(137 P)ala203+"'+an—1anal+ana1a2_

We note that the trivial conversion of the BD protocol to a bilinear setting by
simply substituting generators does not provide security even against a passive
adversary. This is possible because of the gap property of G; where DDH problem
is easy but CDH problem hard.

Theorem 1. The protocol B-GKA is a secure GKA protocol providing forward
secrecy under the DBDH assumption. Concretely,

AdvSERTB(t,qep) < 4- AdvgERH (1).

We can prove Theorem 1 in two steps by using standard hybrid argument
and showing information theoretical independence of a secret key. The secu-
rity analysis is similar to that of Katz, et al.[17]. For space limitation we omit
the proof. However a tighter security reduction can be obtained using random
self-reducibility properties of the DBDH problem. The method of the reduction
in [17,21] is similarly applied to our reduction.



4.2 ID-based Authenticated Group Key Agreement Protocol

In this section we present an ID-based AGKA protocol based on the previous
protocol B-GKA. We denote this protocol by ID-GKA. The protocol involves the
trusted key generation center (KGC). In the following description H : {0,1}* —
Zgq and H; : {0,1}* — G are cryptographic hash functions. H and H; are
considered as random oracles in the security proof.

Setup. KGC runs BDH parameter generator, and chooses a random s € Zj
and a generator P of G; and computes P,y = sP. Then KGC keeps s
secret as the master secret key and publishes system parameters params
= {eaGlaG2aanaPpub;HJHl}-

Extract. When a user with identity ID wishes to obtain a key pair, KGC
computes Q;p = Hi(ID) and the private key Sip = sQrp, and returns
Stp to the user.

Let {Uy,...,U,} be a set of users who want to establish a session key and ID;
be the identity of each U;. The indices are subject to modulo n. U;’s long-term
public and private key pair is (ID;, S; = 5Q;).

[Round 1 ] Each user U; picks a random integer a; € Z; and computes P; =
a;P, h; = H(P;) and T; = a;Ppys + hiS;. Each U; broadcasts (P;,T;) to all
others and keeps a; secret.

[Round 2 | Upon the receipt of (P;_1,Ti—1), {Pi+1, Ti+1) and (P12, Tiy2), each
user U; checks if the following equation holds:

e(Zke{,m,Q} Tiyk, P) = e(zke{,l,l,z}(ﬂ'ﬁtk + hivkQitr), Ppub)

If the above equation is satisfied, then U; computes D; :e(ai(PiJrg —P;_4), H-+1)
and broadcasts D; to all others. Otherwise U; stops.
Key Computation. Each U; computes the session key,
K; = e(a;Pi_1, Piy1)"D} ' DY - Dys.
The correctness of key computation is same to that of the protocol B-GKA.
In the above protocol, we used an authentication scheme I" defined as follows;

Generation. Given a secret key Sip=sH:(ID), compute T = aPpy +hSip
where a €g Zj; and h = H(aP); (aP,T) <+ I'yen(SiD)-
Verification. Given a public Q;p and (aP,T), verify that e(T, P) = e(aP +
hQip, Ppus), where h = H(aP); True or False < [y (Qrp, (aP,T)).
(

The correctness of I is easily proved as follows; for given public Q;p and {aP,T),
e(T, P) = e(asP + hsQip, P) = e(aP + hQip, Ppyy) where h = H(aP).

In fact, in Round 2, each user uses a screening test [3] to verify the valid-
ity of authentication for computational efficiency. This test provides a weaker
notion determining if each user has at some point generated the transcript for
authentication rather than checking the given data is a valid transcript for au-
thentication. This validation notion is adequate for our goal since each user wants



to do implicit authentication for a session rather than to have an authentication
data. However we can directly adapt a batch technique providing a strong no-
tion, such like random subset test and small exponent test, etc., as in [3,9].

We note that the authentication scheme I" can be easily transformed into an
ID-based signature scheme.

For the following security analysis we define Forgerr as a PPT forger of the
authentication scheme I" under the adaptively chosen ID attack and ForgertP
a PPT forger of I under given ID attack.

Theorem 2. Suppose the hash functions H, H, are random oracles. Then the
protocol ID-GKA is a secure AGKA protocol providing forward secrecy under the
DBDH assumption and the CDH assumption. Concretely,

Advé)(_;éf&*fs (t)Gezyqs) < 2nGey - Advgﬁ&H’e (t) + Adv?orge (t).

where Advgorge(t) is the mazimum advantage of any Forgerr running in time t.

Proof. Let A be an active adversary that gets advantage in attacking ID-GKA.
The adversary A can get an advantage by forging authentication transcripts,
namely impersonating a user or ‘breaking’ the protocol without altering tran-
scripts.

First we assume that A breaks ID-GKA by using adaptive impersonation abil-
ity. Using A, we can construct a Forgerpr C that generates a valid message pair
{(ID,aP,T) with respect to I" as follows: a Forgery C honestly generates all
other public and private keys for the system. C simulates the oracle queries of
A in the natural way; this results in a perfect simulation unless A queries Cor-
rupt(ID). If this occurs, C simply aborts. Otherwise, if A generates a new and
valid message pair (ID,aP,T), this event is denoted by Forge, then C generates
the message pair (ID,aP,T). The success probability of C satisfies Pr_4[Forge]
< AdvgTE(t) < AdvioEe(t).

Next we assume that A breaks ID-GKA without altering transcripts. Before
describing the details we define the Modified DBDH(MDBDH) problem related
to our security reduction. The MDBDH problem in [Gy, Gz, €] is to distinguish
between tuples of the form (P, aP, bP, cP,sP,saP,sbP,scP,e(P, P)*°) and (P,
aPbP,cP,sP,saP,sbP,scP,e(P, P)?) for random P € Gy, and a, b, c,d,s € Zy. 1t
is easily showed that the DBDH problem and the MDBDH problem in [G; , Gz, €]
are computationally equivalent. Namely, AdvgPgl, (t) = AdvgioElr ().

We first consider the case that an adversary A makes only a single Execute
query Execute(ID;,...,ID,) and then extend this to the case that A makes mul-
tiple Execute queries. Let n be the number of users chosen by the adversary A.
The distribution of the transcript 7 and the resulting group key K is given by:

(G1,Ga,e) « IGrpu(1¥); P« Gi; s+ Z}; Ppuy = sP
Ql, ,Qn — (Gl; 51 = SQl, ,Sn = SQn : (Gl,G2,6,P, Ppub)
a1, ...,@ny by by <~ Z3; Py =a1P, .., P, = anP;
T = aleub + hlSl, 7Tn = aanub +hnsn;

_ _ e(a1Py,P3) _ e(aaP3,Py) _ _e(anPq,P3) |
Real = | D1 = G5, Py)» D2 = caabiiPy)r 9 Pn = San oy, P

T ={(P1,..., Pp,T1,...., Ty, D1,..., Dy);
K =e(a1Pn, P)"D?™ ' .. Dp_1 : (T, K)

params =
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Consider the distributions Fake; defined as follows:

Tn,1,2, @1y ooy @y, P1y ooy B 4= Zgy Py = a1 P, .., Pn = anP;
T = alppub + hlsl, aeey T, = aanub + hnSn;

Py,P3) e(as P3,Py) e(rn,1,2P,P)
= | D= fwfly) p, = P4 Dy = STl
Fakes L= elrn,1,2P,P) 72 = e(azPy,P3)" 7" T e(anPr_1,P1)’

T ={P1,..c, Pu,T1,...; Ty, D1, ..., Dp);
K =e(rn1,2P,P)"D? ... D, 1 :(T,K)

Continuing in this way, we obtain the distribution:

Tn,1,2y---y'n—1,n,1,01, ...,an,hl,...,hn — Z;, P = alP,..,Pn = anP;
T = alppub + hISI; ceey T, = aanub + hnSn,

e(r1,2,3P,P) D __ e(r2,3,4P,P) D, — e(rn,1,2P,P) |
e(rn.1,2P,P)? 72 e(r1,2,3P,P)? """ e(rn—1,n,1P,P)’

T = (Pl, ooy Pn,Tl, ey Tn, D1, FTT) Dn);
K =e(rn,12P,P)"D?" ' .- Dy : (T, K)

Fake,, = D =

A can compute all a;Ppyy = T; — hS; from the transcripts since 4 can obtain
all secret keys S; and hash values h; (i = 1,...,n) by using multiple Corrupt
and H queries, respectively. Therefore the distribution of previous transcripts is
changed by the distribution related to the modified DBDH problem. Let £(t) =
AdvgPEP: (t). A standard argument shows that for any algorithm A running in
time t we have:

| Pr[T+Real; K<Real: A(T, K)=1] — Pr[T<Fake:; K«Fake1: A(T, K)=1]|< (t)
|Pr[7'<—Fak:61; K<+ Fakey: A(T,K)=1] — Pr[T+Fakes; K< Fake: A(’]:K)=1]|§ e(t)

| Pr[T+Faken:; K<Fakeni:A(T, K)=1}-Pr[T«Faken; K« Faken, A(T, K)=1]|< &(t).

Let e(P,P)=g in Gy. In experiment Fake,, the values ri23,...,75,1,2 are
constrained by 7 according to the following n equations log, D1 = 1123 —
Tn,1,2, logg Dy =ry34— r1,2,3,...,logg D, =rp1,2—"n_1,n,1 of which only n — 1
of these are linearly independent. Furthermore, K may be expressed as K =
e(P, P)na102t+an-1an01, gquivalently, we have

log) K =r123+ 71234+ +7rn12.

Since this final equation is linearly independent from the set of equations above,

the value of K is independent of 7. This implies that, for any adversary .A:

| Pr[T<Faken; K«Faken:A(T, K)=1] = Pr[T+Fake,; K< Random:A(T, K)=1]|.
Similarly, a standard argument shows that for any algorithm .4 running in

time t we have:

| Pr[T«F aken; K< Fake,:A(T, K)=1]— Pr[T«Fake,1;K<+Random:A(T, K)=1]|< &(t)

| Pr[T«—Fake1; K«Random: A(T, K)=1]— Pr[T¢Real; K+Random: A(T, K)=1]|< &(t)
Eventually, we obtain the equation as follow:
|Pr[T(—Real; K< Real: A(T, K)=1] — Pr[T<+Real; K< Random: A(TK)=1]|§ 2ne(t)

Since €(t) = AdvgiPEP(t) = AdvgPRl(t), we have the result that the
advantage of A conditioned on the event ~Forge is bounded by 2n-Adv@PgH, ().

Hence we have
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Adv ;SBGCI;(’& fs (t ]_ ) S 2n - Advgﬁg;{’e( ) + AdVFOrge( )
Finally we have the desired result by adapting a standard hybrid argument that
Adv;})Gg& fs (t, Qew» @s) < 2NGeq - Advng,&}{e( )+ A dVForge ®).

We next show that the authentication scheme I' is secure against existential
forgery on adaptively chosen ID attack.

Lemma 1. Let the hash function Hy be random oracle. Suppose there exists a
Forgerr A for an adaptively chosen ID with running time ty and advantage gg.
Suppose A makes at most qr, queries to the hash function Hy. Then a ForgertP
B for a given ID with running time t; < to has advantage g1 < eo(1 — E)/qu

Lemma 2. Let the hash function H,H; be random oracles. Suppose there ex-
ists a Forgert? A for a given ID with running time t; and advantage €1 >
10(gs + 1)(gs + qrr)/q- Suppose A makes at most qm,qH,,qs and ey queries to
the H, Hq,Send and Extract respectively. Then there exists an attacker B that
can solve the CDH problem within expected time ta < 120686¢ut1/e1.

The proofs of the above two lemmas are given in Appendix. Combining the
Lemma 1 and 2, we obtain that Advy.°"8¢(¢) is negligible in the following theorem.
Therefore we can show that our ID-GKA is a secure AGKA providing forward
secrecy.

Theorem 3. Let the hash functions H, Hy be random oracles. Suppose there
exrists a Forgerr A for an adaptively chosen ID with running time to and
advantage €0 > 10qm,(gs + 1)(gs + qr)/(q¢ — 1). Suppose A makes at most
gH,qH,,q9s ond e, queries to the H,H;,Send and Extract respectively. Then
there exists an attacker B that can solve the CDH problem within expected time
to S 120686th0/50.

5 Comparison and Conclusion

We now compare our protocol ID-GKA with other previously known ID-based
GKA protocols, the binary tree based 2T-IDAGKA [18] and the ternary tree
based 3T-IDAGKA [2] in Table 1. We use notations as follows:

- Round: The total number of rounds.

Message: The total number of messages sent by users.
Computation: The total number of scalar multiplications.
- Pairing: The total number of pairing-computations.

Because the number of users is relatively small in practice, we can assume that,
in our ID-GKA, the key computation step requires just one scalar multiplication.

| Protocol | Round | Message | Computation | Pairing |
2T-IDAGKA [1§] O(lgn) | O(nlgn) O(nlgn) O(nlgn)
3T-IDAGKA [2] O(lgn) O(n) O(n) O(nlgn)
Our ID-GKA protocol | O(1) O(n) O(n) O(n)

Table 1. Comparison of ID-based AGKA protocols
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As we shown in Table 1, our protocol is the most efficient one as compared
to other protocols. In particular, our protocol require O(1) round and only O(n)
pairing-computations.

In this paper, we have presented a 2-round and scalable ID-based AGKA
protocol based on a bilinear variant of the BD protocol [13]. Moreover, we have
adapted batch verification technique verifying the validity of transcripts simul-
taneously, which greatly improves the computational efficiency. We have proved
the security of both protocols under the intractability of CDH and DBDH.
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A  Proof of Lemma 1

B is given ID*. Without any loss of generality, we assume that for any ID, A
makes Hy, Send and Extract queries at most once, and Send and Extract queries
for public key are preceded by H; hash query.

To respond to these queries B maintains a list Ly, of (ID;, Q;). The list is
initially empty. First, B chooses a € {1,...,qm, } randomly. B interacts with A
as follows:

- When A4 makes the a-th H; query on ID, B issues a H; query for ID*
and returns the result @* to A. Then B adds (ID,Q*) to Ly, . Otherwise, B
issues a Hy query for ID and returns the result to A. Then B inserts (ID, Q)
into LH1 .

- When A issues an Extract query on Q;, if @Q; = Q*, then B outputs FAIL and
aborts. Otherwise, B issues an Extract query for @); and returns the result
Si to A.

- When A issues a H query on a;P, B issues a H query for aP and returns
the result H(a;P) to A.

- When A issues a Send query on ID;, B issues a Send query for ID; and
returns the result (ID;,a; P, T;) to A.

Eventually, A outputs (ID',a'P,T"). Then B finds the tuple of the form
{(ID',@")in Lg,.If Q' = Q* then B outputs (ID*,a’' P,T'). Otherwise, B outputs
FAIL and aborts.

To complete the proof of Lemma 1 it remains to calculate the probability
that algorithm B aborts during the simulation. Notice that, if @' # @Q* and a
pair (ID',@') is not found in Ly, , then the output (ID’, o' P,T') is independent
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of the knowledge A accumulated from its various queries. This means that 4
succeeds in this case with probability 1/q. Therefore, the probability that B does
not abort during the simulation is --—(1 - 1).

1

B Proof of Lemma 2

First, a BDH parameter generator is run and (e, G;,Gz) is outputted. Then B
receives a CDH instance (P, zP,yP) for randomly chosen z,y € Z; and P € Gy .
Its goal is to compute zyP.

B runs a Forgerf? A as a subroutine and simulates its attack environment.
B sets the public system parameters params=(e, G;, Gz, P, Ppyp, ID*, H, H1) by
letting Ppy = P where z is the master secret key, which is unknown to B
and selecting an identity ID* for given ID attack of A. B gives params to A.
Note that, for given ID, the corresponding private key associated to params is
S[D = JIQID = .’L'Hl(ID).

Without loss of generality, we assume that for any 1D, A queries Hy, Send and
Extract at most once, and Send and Extract queries for public keys are preceded
by an H; hash query. To avoid collision and consistently respond to these queries
B maintains two lists Ly, and Ly of (ID;,r;,Q;) and (IDj,a;P), respectively.
The lists are initially empty. Algorithm B interacts with A as follows:

- When A issues H(ID*) query, B returns Q* = yP. For all other H; queries,
B picks a random r; € Z; and adds (I D;,7;, Q;) to Ly, , and returns Q; = r; P
to A.

- When A issues Extract query on Q;, if Q; = @*, then B outputs FAIL and
aborts. Otherwise, B finds the tuple of the form (ID;,r;,Q;) in Ly, , and
returns private keys 7; Ppyp = 1i2P = 2r; P = 2Q); to A.

- When A issues an H query for a;P, then B picks a random h; € Z; and
returns h; to A.

- When A issues a Send query on ID;, BB picks a random a; € Zj and computes
a;P, and adds the tuple (ID;,a;P) to L. B finds the tuple of the form
<IDi,Ti,Qi> in Lg,. Then B computes T; = a;zP + hiTi.Z'P:aiPpub + h;S;
and returns (ID;,a; P, T;) to A.

Eventually, A outputs a valid tuple(ID*,aP, h,T) such that (ID* aP) ¢ Lr,
which is expected to be valid for the fixed I D*, without accessing any oracles
expect H. By replays of B with the same random tape but different choices of
H, as done in the forking lemma(theorem 3)[20], A outputs two valid tuples
(ID*,aP,h,T) and (ID*,aP,h',T') such that h # h'. If both outputs are ex-
pected ones, then B computes (T'—T")/(h—h') = 2y P and outputs it. Otherwise,
B outputs FAIL and aborts.

The total running time ¢, of B is equal to the running time of the forking
lemma(theorem 3)[20] which is bounded by 120686¢xt1 /c1, as desired.



