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Abstract. In this paper, we provide the first committed signature prov-
ably secure in the standard complexity model based on the strong RSA
assumption. The idea behind the construction is that given any valid par-
tial signature of message m, if a co-signer with its auxiliary input is able
to generate variables called the resolution of message m such that the
distribution of the variables is indistinguishable from those generated by
the primary signer alone from the point views of the verifier/arbitrator,
then from which a committed signature can be derived.
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1 Introduction

In PODC 2003, Park, Chong, Siegel and Ray [15] provided a novel method of
constructing fair exchange protocol by distributing the computation of RSA
signature. This approach avoids the design of verifiable encryption scheme at
the expense of having co-signer store a piece of prime signer’s secret key (please
refer to [1], [4], [2], [3] for more details). Based on Park et.al’s study, Dodis and
Reyzin [10] presented a unified model for non-interactive fair exchange protocols
which results in a new primitive called committed signatures later. Committed
signatures are the following thing: Alice can produce a partial signature to Bob;
upon receiving what she needs from Bob, she can convert it to a full signature.
If she refuses, the trusted third party Charlie can do it for her upon receipt
of partial signature and proper verification that Bob fulfilled his obligation to
Alice.

Park, Chong, Siegel and Ray’s fair exchange protocol is actually a committed
signature scheme since the mechanism of the non-interactive fair exchange is the
same thing as a committed signature. Unfortunately this committed signature
is totally breakable in the registration phase [10]. Dodis and Reyzin [10] then
presented a remedy scheme by utilizing Boldyreva’s non-interactive two-party
multi-signature scheme [5]. Therefore Dodis and Reyzin’s committed signature
is the first committed signature provably secure under the Gap Diffie-Hellman
assumption in the random oracle paradigm.



Security in the random oracle model does not imply security in the real
world. The existence of committed signature is obvious in the standard com-
plexity model provided the underlying signature schemes are provably secure in
the standard complexity model as two signatures with keys (pk1, sk1), (pk2, sk2),
and let PK = (pk1, pk2), SK = (sk1, sk2) and σ = (σ1, σ2) are sufficient to build
a secure committed signature. Therefore the challenge problem is to construct a
committed signature consistent with a stand-alone signature scheme in the stan-
dard complexity model. In this paper, we are able to provide the first committed
signature based on the strong RSA assumption. The idea behind the construc-
tion is that given any valid partial signature of message m, if a co-signer with its
auxiliary input is able to generate variables called the resolution of message m
such that the distribution of the variables is indistinguishable from those gener-
ated by the primary signer alone from the point views of the verifier/arbitrator,
then from which a committed signature can be derived.

The rest of paper is organized as follows: in Section 2, we formalize the
security definition of committed signatures, and a committed signature is fully
described in the Subsection 3.1, the proof of its security is presented in Subsection
3.2. In Section 4, we construct committed signatures from the point views of real
world by providing two efficient schemes with random strings reusing. Finally
the conclusion is presented in Section 5.

2 Notions and definitions

The following definition of committed signatures is formalized the SAME thing
as non-interactive fair exchanges introduced by Park, Chong, Siegel and Ray [15]
and [10]. Therefore, the committed schemes presented in this report should be
viewed as the actual fair exchange protocols working in the real world.

Definition 1 A committed signature involves a primary signer Alice, a verifier
Bob and a co-signer (or arbitrator) Charlie, and is given by the following efficient
procedures:

-Key generator KG: This is an interactive protocol between a primary signer
and a co-signer, by the end of which either one of the parties aborts, or
the primary signer learns her secret signing key SK, the co-signer learns his
secret key ASK, and both parties agree on the primary signer’s public key
PK and partial verification key APK;

-Fully signing algorithm Sig and its correspondent verification algorithm V er:
These are conventional signing and verification algorithms. Sig(m,SK) run
by the primary signer, outputs a full signature σ on m, while V er(m,σ, PK)
run by any verifier, outputs 1 (accept) or 0 (reject);

-Partially signing algorithm PSig and the correspondent verification algorithm
PV er: These are partial signing and verification algorithms, which are sim-
ilar to ordinary signing and verification algorithms, except they can depend
on the public arbitration key APK. PSig(m,SK, PK,APK), run by the
primary signer, outputs a partial signature σ′, while PV er(m,σ′PK, APK),
run by any verifier, outputs 1 (accept) or 0 (reject);



-Resolution algorithm Res: This is a resolution algorithm run by the co-signer
(arbitrator) in case the primary signer refuses to open her signature σ to
the verifier, who in turn possesses a valid partial signature σ′ on m and
a proof that he fulfilled his obligation to the primary signer. In this case,
Res(m,σ′, ASK, PK) should output a valid full signature of m.

Correctness of committed signatures states that: (1) V er(m,Sig(m,SK), PK)=1;
(2)PV er(m,PSig(m,SK, PK,APK), PK, APK)=1;and(3)Ver( m, Res(PSig(m,
SK, PK, APK ), ASK, APK, PK), PK)=1.

2.1 Security of committed signatures

Recall that a committed signature is formalized the same thing as a non-interactive
fair exchange. The security of committed signature scheme should consist of en-
suring three aspects: security against a primary signer Alice, security against a
verifier Bob, and security against a co-signer/abitrator Charlie.

Security against a primary signer Intuitively, a primary signer Alice
should not provide a partial signature which is valid both from the point views
of a verifier and a co-signer but which will not be opened into the primary
signer’s full signature by the honest co-signer. More formally:

Let P be an oracle simulating the partial signing procedure PSig, and R
be an oracle simulating the resolution procedure Res. Let k be system security
parameter. We require that any probabilistic polynomial time Adv succeeds with
at most negligible probability in the following experiment.

Experiment 1 (security against primary signer):
1.1: Key generation: (SK∗, PK,ASK,APK) ← KG∗(1k), where KG∗ de-

notes the run of key generator KG with the dishonest primary signer by the
adversary, and SK∗ denotes the adversary’s states.

1.2: Res oracle query: In this phase, for each adaptively chosen message mj ,
the adversary computes its partial signature σj

′ for mj . Finally the adversary
forward σj

′ to the oracle R to obtain the full signature σj of message mj , where
1 ≤ j ≤ p(k), and p(·) is a polynomial. At the end of R oracle query, the
adversary produces a message and its full signature pair (m,σ), i.e., (m,σ′) ←
AdvR(SK∗, PK,APK), σ ← Adv(m,σ′, SK∗, APK, PK), where m 6= mj , 1 ≤
j ≤ p(k).

1.3. Success of Adv : = [PV er(m,σ′, APK,PK) = 1 ∧ V er(m,σ, PK) = 0].
Definition 2 A committed signature scheme is secure against primary signer

attack, if any probabilistic polynomial time adversary Adv associated with Reso-
lution oracle, succeeds with at most negligible probability, where the probability
takes over coin tosses in KG(·), PSig(·) and R(·).

Security against verifier We consider the following scenario: suppose a
primary signer Alice and a verifier Bob are trying to exchange signature in a
fair way. Alice wants to commit to the transaction by providing her partial
signature. Of course, it should be computationally infeasible for Bob to compute
the full signature from the partial signature. More formally, we require that any



probabilistic polynomial time adversary Adv succeeds with at most negligible
probability in the following experiment:

Experiment 2 (security against verifier):
2.1 Key generation: (SK, PK,ASK, APK)← KG(1k), where KG is run by

the honest primary signer and honest co-signer. Adversary Adv are admitted to
make queries to the two orales P and R.

2.2 P and R oracle query: For each adaptively chosen message mj , the ad-
versary obtains the partial signature σj

′ of message mj by querying the partial
signing oracle P . Then the adversary forward σj

′ to the resolution oracle R to
obtain the full signature σj of message mj , where 1 ≤ j ≤ p(k), and p(·) is a
polynomial. At the end of oracle both P and R queries, the adversary produces
a message-full signature pair (m,σ) ← AdvP,R(PK, APK).

2.3 Success of adversary Adv : = [V er(m,σ, PK) = 1∧m /∈ Query(Adv,R)],
where Query(Adv,R) is the set of valid queries the adversary Adv asked to the
resolution oracle R, i.e., (m,σ′) such that PV er(m,σ′) = 1.

Definition 3 A committed signature scheme is secure against verifier attack, if
any probabilistic polynomial time adversary Adv associated with partial signing
oracle P and the resolution oracle R, succeeds with at most negligible probability,
where the probability takes over coin tosses in KG(·), P (·) and R(·).

Security against co-signer/arbitrator This property is crucial. Even
though the co-signer (arbitrator) is semi-trusted, the primary signer does not
want this co-signer to produce a valid signature which the primary signer did
not intend on producing. To achieve this goal, we require that any probabilistic
polynomial time adversary Adv associated with partial signing oracle P , succeeds
with at most negligible probability in the following experiment:

Experiment 3 (security against co-signer/arbitrator):
3.1 Key generation: (SK,PK,ASK∗, APK) ← KG∗(1k), where KG∗(1k)

is run by the dishonest co-signer or arbitrator. Adversary Adv are admitted to
make queries to the partial signing orale P .

3.2 P oracle query: For each adaptively chosen message mj , the adversary
obtains the partial signature σj

′ for mj from the oracle P , where 1 ≤ j ≤
p(k), and p(·) is a polynomial. At the end of the partial partial signing oracle
query, the adversary produces a message-full signature pair (m,σ), i.e., (m,σ)←
AdvP (ASK∗, PK,APK).

3.3 Success of adversary Adv : = [V er(m,σ, PK) = 1∧m /∈ Query(Adv, P )],
where Query(Adv, P ) is the set of valid queries Adv asked to the partial oracle
P , i.e., (m,σ′) such that PV er(m,σ′) = 1.

Definition 4 A committed signature scheme is secure against co-signer attack,
if any probabilistic polynomial time adversary Adv associated with partial sign-
ing oracle P , succeeds with at most negligible probability, where the probability
takes over coin tosses in KG(·), P (·).

Definition 5 A committed signature scheme is secure if it is secure against
primary signer attack, verifier attack and co-signer attack.



3 Constructing committed signatures from strong RSA
assumption

3.1 Our committed signature scheme

We utilize Zhu’s signature as primary building block to construct committed
signature scheme [16]. We remark that the use of Zhu’s signature is not essential.
The Cramer-Shoup’s signature including trapdoor hash signature [9], Camenisch
and Lysyanskaya [7] and Fischlin’s signature scheme [11] are all suitable for our
purposes. Nevertheless, among the signatures mentioned above, Zhu’s signature
is the most efficient.

Zhu’s signature scheme Zhu’s signature scheme is defined as follows [16]:

– Key generation algorithm: Let p, q be two large safe primes (i.e., p − 1 =
2p′ and q − 1 = 2q′, where p′, q′ are two primes with length (l′ + 1)). Let
n = pq and QRn be the quadratic residue of Z∗

n. Let X, g, h ∈ QRn be three
generators chosen uniformly at random. The public key is (n, g, h,X,H),
where H is a collision free hash function with output length l. The private
key is (p, q).

– Signature algorithm: To sign a message m, a (l +1)-bit prime e and a string
t ∈ {0, 1}l are chosen at random. The equation ye = XgthH(m)modn is
solved for y. The corresponding signature of the message m is (e, t, y).

– Verification algorithm: Given a putative triple (e, t, y), the verifier checks
that e is an (l + 1)-bit odd number. Then it checks the validity of X =
yeg−th−H(m)modn. If the equation is valid, then the signature is valid. Oth-
erwise, it is rejected.

Strong RSA assumption: Strong RSA assumption was introduced by
Baric and Pfitzmann [6] and Fujisaki and Okamoto [12]: The strong RSA as-
sumption is that it is hard, on input an RSA modulus n and an element z ∈ Z∗

n,
to compute values e > 1 and y such that ye = zmodn. More formally, we assume
that for all polynomial time circuit families Ak, there exists a negligible function
ν(k) such that:

Pr[n← G(1k), z ← Z∗
n, (e, y)← Ak(n, z) : e > 1 ∧ ye = zmodn] = ν(k)

The following lemma, due to Guillou-Quisquater [14], is useful to prove the
security of the committed signature scheme.

Guillou-Quisquater lemma Suppose we = zb and d = gcd(e, b). Then
there exists an efficient algorithm computing the (e/d)-th root of z.

Zhu’s signature scheme is immune to adaptive chosen-message attack in the
sense of Goldwasser, Micali and Rivest [13], under joint assumptions of the strong
RSA problem as well as the existence of collision free hash function. Please refer
to the appendix for details. Based on Zhu’s signature scheme, we are ready to
describe the new committed signature below.

Key generation algorithm: We choose two safe primes p = 2p′ + 1, q =
2q′ + 1 and compute N = pq. Denote the quadratic residue of Z∗

N by QRN . Let



x, h1, h2 be elements chosen uniformly at random from the cyclic group QRN .
Let PriG be a prime generator. On input 1k, it generates 2s+1 primes, each with
bit length (l+1). The prime pair {ei,1, ei,2} is indexed by some i ∈ I (1 ≤ i ≤ s).
The public key (X, g1, g2) is computed from x, h1, h2 and (e1,2, e2,2, · · · es,2) as
follows:

X ← xe1,2e2,2···es−1,2es,2modN

g1 ← h1
e1,2e2,2···es−1,2es,2modN

g2 ← h2
e1,2e2,2···es−1,2es,2modN

Denote a subset of index set in which each index i has been used to sign
some message by Iused. We then build a public accessible prime list table PriT
as follows. On input i ∈ Iused, PriT outputs {ei,1, ei,2}.

The primary signer’s public key PK is (N,X, g1, g2,H, PriT, Iused). The
private key SK is {x, h1, h2, p, q, (ei,1, ei,2), 1 ≤ i ≤ s)}, where H is a publicly
known collision-free hash function.

The APK of the co-signer is (N,X, g1, g2,H, PriT, Iused). The secret key of
the co-signer ASK is {x, h1, h2, (e1,2, e2,2, · · · , es,2)}.

Partial signing algorithm PSig and correspondent verification al-
gorithm PV er: To sing a message m, we choose i ∈ I \ Iused and a random
string ti,1 ∈ {0, 1}l. The equation:

y
ei,1
i,1 = Xg

ti,1
1 g

H(m)
2 modN

is solved for yi,1.
We then update the index Iused by accumulating

Iused ← Iused

⋃
{i}

The partial signature of message m is σ′ = (i, ei,1, ti,1, yi,1).
On upon receiving a putative partial signature σ′ = (i, ei,1, ti,1, yi,1), the

verification algorithm checks whether i ∈ Iused or not, if i /∈ Iused, then it
outputs 0, otherwise, it runs PriT , on input i to obtain a prime pair (ei,1, ei,2),
and it outputs 1, i.e., PV er(m,σ′) = 1 if σ′(m) satisfies the equation:

X = y
ei,1
i,1 g

−ti,1
1 g

−H(m)
2 modN

Full signing algorithm Sig and correspondent verification algorithm
V er: To fully sign the message m, for the given i, we obtain the prime pair
{ei,1, ei,2} by running PriT on input i ∈ Iused. Then we choose a random string
ti,2 ∈ {0, 1}l uniformly at random and compute yi,2 from the equation:

y
ei,2
i,2 = Xg

ti,2
1 g

H(ti,1||m)
2 modN

The corresponding full signature σ of the message m is defined below:



σ := (i, ei,1, ei,2, ti,1, ti,2, yi,1, yi,2)

To verify the correctness of full signature scheme σ, the verification algorithm
checks whether i ∈ Iused or not, if i /∈ Iused, then it outputs 0, otherwise, it runs
PriT , on input i to obtain a prime pair (ei,1, ei,2). Finally it tests whether the
following equations are valid:

X = y
ei,1
i,1 g

−ti,1
1 g

−H(m)
2 modN

and

X = y
ei,2
i,2 g

−ti,2
1 g

−H(ti,1||m)
2 modN

If both equations are valid, then the verification function outputs V er(m,σ) =
1, otherwise, it outputs 0;

Resolution algorithm Res: Given a partial signature σ′ = (i, ei,1, ti,1, yi,1)
of message m, the co-signer runs the prime list table PriT on input i ∈ Iused to
obtain the pair of primes (ei,1, ei,2), and checks whether ei,1 is a component of
partial signature σ′ (such a prime ei,1 is called a valid prime). If it is valid then
the co-signer checks the valid of the following equation:

y
ei,1
i,1 = Xg

ti,1
1 g

H(m)
2 modN

If it is valid, the co-signer then computes:

Xi ← xe1,2···ei−1,2ei+1,2···es,2

gi,1 ← h1
e1,2···ei−1,2ei+1,2···es,2

and
gi,2 ← h2

e1,2···ei−1,2ei+1,2···es,2

Finally, the co-signer chooses a random string t′i,2 ∈ {0, 1}l and computes
yi,2 from the following equation:

yi,2 = Xigi,1
t′i,2gi,2

H(ti,1||m)modN

The output of the resolution algorithm is (i, ei,1, ei,2, ti,1, t
′
i,2, yi,1, yi,2)

Obviously,
X = y

ei,2
i,2 g

−t′i,2
1 g

−H(ti,1||m)
2 modN

-We remark that the choice of random string t′i,2 ∈ {0, 1}l in the resolution
phase does not dependent on the random string ti,2 in the full signature algo-
rithm. If we insist on the same string used in the resolution algorithm Res, then
the random pair (ti,1, ti,2) can be listed as public known random string set which
is also indexed by the set I.

-We remark that the number of signature is bounded by s, where s(·) is a
polynomial of security parameter k. This is an interesting property as a primary



signer can specify the number of signatures for each certificate during its validity
duration.

-We also remark that the scheme requires both the signer and co-signer to be
stateful to keep count i ∈ Iused and so never reuse primes. And the used index
set Iused updated after each signature generation is apparently assumed to be
accessible to the verifier and co-signer.

3.2 The proof of security

Theorem 6: The committed signature is secure under the strong RSA assump-
tion and the assumption that H is collision resistant in the standard complexity
model.

Proof: Security against the primary signer Alice is trivial since the co-signer
holds ASK in the protocol.

Security against the verifier Bob: Assume that protocol is not secure against
the verifier attack. That is, there is an adversary playing the role of verifier in the
actually protocol, who is able to forge a full signature σ of a message m (m 6= mi,
1 ≤ i ≤ f) with non-negligible probability after it has queried partial signing
oracle and resolution oracle of messages m1, · · · ,mf , each is chosen adaptively
by the adversary. Let (i, ei,1, ei,2, ti,1, t

′
i,2, yi,1, yi,2) be the full signature provided

by the partial signing oracle and the resolution oracle corresponding to a set of
messages mi (1 ≤ i ≤ f). We consider three types of forgeries as that in [9]:
1) for some 1 ≤ j ≤ f , ek,2 = ej,2 and t′k,2 = t′j,2, where k /∈ {1, · · · , f}; 2) for
some 1 ≤ j ≤ f , ek,2 = ej,2 and t′k,2 6= t′j,2, where k /∈ {1, · · · , f}; 3) for all
1 ≤ j ≤ f , ek,2 6= ej,2, where k /∈ {1, · · · , f}. We should show that any forgery
scheme of the three types will lead to a contradiction to the assumptions of the
theorem. This renders any forgery impossible. By the security definition, the
adversary can query the types of oracles: partial signing oracle and resolution
oracle. Therefore we should describe the two oracles in the following simulation
according to the forgery types defined above.

Type 1 forgery: On input (z, e), where z ∈ Z∗
N , e is a (l + 1)-bit prime, we

choose (2f − 1) primes (ei,1, ei,2) for 1 ≤ i 6= j ≤ f , each with length (l + 1)-
bit. The j-th prime pair is defined by (ej,1, e). We compute PK and APK by
choosing z1, z2 ∈ Z∗

N uniformly at random and computing

g1 ← z1
2e1,1e1,2···ef,1ef,2z2e1,1e1,2···ej−1,1ej−1,2ej,1ej+1,1ej+1,2···ef,1ef,2

g2 ← z2e1,1e1,2···ej−1,1ej−1,2ej,1ej+1,1ej+1,2···ef,1ef,2

X ← z2
2βe1,1e1,2···ef,1ef,2z2e1,1e1,2···ej−1,1ej−1,2ej,1ej+1,1ej+1,2···ef,1ef,2(−α)

where α ∈ {0, 1}l+1 and β ∈ ZN are chosen uniformly at random.
Since the simulator knows each ei,1 (1 ≤ i ≤ f), therefore it is easy to

compute the partial signing oracle of message mi (1 ≤ i ≤ f). And it is also
easy to compute the resolution of i-th message i 6= j queried to resolution oracle
query Res. What we need to show is how to simulate the j-th resolution oracle
query. This can be done as follows:

yj,2
ej,2 = Xg1

t′j,2g2
H(tj,1||mj)



= z2
2β

∏
1,···f (ei,1ei,2)z1

2t′j,2
∏

1,···f (ei,1ei,2)×

z2e1,1e1,2···ej−1,1ej−1,2ej,1ej+1,1ej+1,2···ef,1ef,2(−α+t′j,2+H(tj,1||mj))

Now we set −α + t′j,2 + H(tj,1||mj) = 0, i.e., t′j,2 = α−H(tj,1||mj). To show
that the simulation is not trivial, we should show that t′j,2 is uniformly distributed
over {0, 1}l with non-negligible amount. Since α ∈ {0, 1}l+1 is chosen uniformly
at random, the probability that t′j,2 belongs to the correct interval and it does
so with the correct uniform distribution can be computed as follows:

(2l+1 − 1−H(tj,1||mj)− 2l + 1) + H(tj,1||mj)
(2l+1 − 1−H(tj,1||mj))− (−H(tj,1||mj)) + 1

= 1/2

Suppose the adversary is able to forge a faking signature of message mk,
denoted by (k, ek,1, ek,2, t

′
k,1, t

′
k,2, yk,1, yk,2), where ek,2 = ej,2 and t′k,2 = t′j,2,

k /∈ {1, · · · , f}. We can not assume that ek,2 = ej,2, t′k,2 = t′j,2 and yk,2 = yj,2 as
H is a collision free hash function. Now we have two equations:

yk,2
ek,2 = Xg1

t′k,2g2
H(tk,1||mk)

And
yj,2

ej,2 = Xg1
t′j,2g2

H(tj,1||mj)

It follows that
(
yj,2

yk,2
)ej,2 = g2

H(tj,1||mj)−H(tk,1||mk)

= z2e1,1e1,2···ej−1,1ej−1,2ej,1ej+1,1ej+1,2···ef,1ef,2(H(tj,1||mj)−H(tk,1||mk))

where ej,2 = e. Consequently, one is able to extract the e-th root of z with
non-negligible probability. It contradicts the standard RSA assumption.

Type 2 forgery: On input z and e, where z ∈ Z∗
N , e is a (l+1)-bit prime, we

choose (2f−1) primes (ei,1, ei,2) for 1 ≤ i 6= j ≤ f . The j-th prime pair is defined
by (ej,1, e). We compute PK and APK by choosign z1, z2 ∈ Z∗

N uniformly at
random and computing

g1 ← z2e1,1e1,2···ej−1,1ej−1,2ej,1ej+1,1ej+1,2···ef,1ef,2

g2 ← z1
2e1,1e1,2···ej−1,1ej−1,2ej,1ej,2ej+1,1ej+1,2···ef,1ef,2

X ← g−α
1 z2

2e1,1e1,2···ej−1,1ej−1,2ej,1ej,2ej+1,1ej+1,2···ef,1ef,2

where z1, z2 ∈ ZN and α ∈ {0, 1}l are chosen uniformly at random. Since QRN

is a cyclic group, we can assume that g1, g2 are generators of QRN with over-
whelming probability.

Since ei,1 for 1 ≤ i ≤ f are known therefore, the partial signing oracle is
perfect from the point views of the adversary. To simulate the i-th message mi

(i 6= j) to the resolution oracle, we select a random string t′i,2 ∈ {0, 1}l and
computes:

y
ei,2
i,2 = Xg1

t′i,2g2
H(ti,1||mi)



= ((z1
H(ti,1||mi)z2)2e1,1e1,2···ei−1,1ei−1,2ei,1ei+1,1ei+1,2···ef,1ef,2z2ei,1(t

′
i,2−α)

∏
s 6=i,j es,1es,2)ei,2

The output of resolution oracle is (i, ei,2, yi,2, t
′
i,2).

To sign the j-th message mj , the signing oracle sets t′j,2 ← α and computes:

yj,2
ej,2 = ((z1

H(tj,1||mi)z2)2ej,1
∏

s 6=j es,1es,2)ej,2

where ej,2 = e.
Let Res(mk) = (k, ek,2, yk,2, t

′
k,2) be a legal signature generated by the ad-

versary of message mk 6= mi for all 1 ≤ i ≤ f . By the assumption, we know
that

yk,2
ek,2 = Xg1

t′k,2g2
H(t′k,1||mk)

and
yj,2

ej,2 = Xg1
t′j,2g2

H(t′j,1||mj)

Consequently, we have the following equation:

(
yk,2

yj,2
)ej,2 = g1

t′k,2−t′j,2g2
H(t′k,1||mk)−H(t′j,1||mj)

Equivalently,

z2(α−t′k,2)ej,1
∏

i6=j ei,1ei,2 = (z1
2ej,1(H(t′j,1||mj)−H(t′k,1||mk))

∏
i6=j ei,1ei,2)ej,2

Since t′j,2 = α and tk,2 6= t′j,2, it follows that α − t′k,2 6= 0. We then apply
Guillou-Quisquater lemma to extract the e-th root of z. This contradicts the
standard RSA assumption.

Type 3 forgery: On input z, where z ∈ Z∗
N , we choose 2f primes (ei,1, ei,2)

for 1 ≤ i ≤ f and compute the PK and ASK as follows:

g1 ← z2e1,1e1,2···ef,1ef,2

and
g2 ← ga

1 , X ← gb
1

where a, b ∈ {1, n2}.
Since the simulator knows all prime pairs, it follows it can simulate both

partial signing and resolution queries. Let Res(mk) = (k, ek,2, yk,2, t
′
k,2) be a

legal signature generated by the adversary of message mk 6= mi for all 1 ≤ i ≤ f .
It yields the equation

yk,2
ek,2 = Xg

t′k,2
1 g2

H(tk,1||mk) = zE

where E = 2(b + t′k,2 + aH(tk,1||mk))e1,1e1,2 · · · ef,1ef,2

Since we are able to compute the e
E -th root of z provided e is a not a divisor

of E according to the lemma of Guillou and Qusiquater [14], it is sufficient to
show that e is not a divisor of E with non-negligible probability. Due to the the
fact that gcd(e, e1,1e1,2 · · · ef,1ef,2) = 1, it is sufficient to show that e is not a
divisor of b+ t+aH(tk,1||mk)) with non-negligible probability. Since b ∈ (1, n2),



it follows that one can write b = b′p′q′ + b′′. Therefore, the probability that
b + t + aH(m) ≡ 0mode is about 1/e.

Security against the co-signer/arbitrator Charlie: Even though the co-signer
(arbitrator) is semi-trusted, the primary signer does not want this co-signer to
produce valid signature which the primary signer did not intend on producing.
In other words, if the co-signer is able to forge a partial signature of a message m,
then we make use of Charlie as a subroutine to break the strong RSA assumption.
Since Bob holds the correspondent ASK, therefore we can assume that Bob
succeeds in forging a valid partial signature with non-negligible probability. The
simulation is the same as the proof of Zhu’s signature, therefore omitted.

4 Conclusion

In this report, we provide the first committed signature from the strong RSA
assumption based on Zhu’s signature scheme. As the committed signature for-
malized the same thing as the fair exchange protocol, our scheme is actually
a fair exchange protocol which is provably secure in the standard complexity
model. We should admit that the scheme does not quite achieve the consistency
with Zhu’s signature scheme with a stand-alone signature fully. How to construct
a compactly specified one is our further research.
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Appendix: A Formal Proof of Zhu’s Signature Scheme

Claim: Zhu’s signature scheme is immune to adaptive chosen-message attack
under the strong RSA assumption and the assumption that H is a collision
resistant.

Proof: Assume that the signature scheme is NOT secure against adaptive
chosen message attack. That is, there is an adversary, who is able to forge the
signature (e, t, y) of a message m(m 6= mi, 1 ≤ i ≤ f) with non-negligible prob-
ability after it has queried correspondent signature of each message m1, · · · ,mf ,
which is chosen adaptively by the adversary. Let (e1, t1, y1), · · · , (ef , tf , yf ) be
signatures provided by the signing oracle corresponding to a set of messages
m1, · · · ,mf . We consider three types of forgeries: 1) for some 1 ≤ j ≤ f , e = ej

and t = tj ; 2) for some 1 ≤ j ≤ f , e = ej and t 6= tj ; 3) for all 1 ≤ j ≤ f ,
e 6= ej . We should show that any forgery scheme of the three types will lead
to a contradiction to the assumptions of the theorem. This renders any forgery
impossible.

Type 1-Forger : We consider an adversary who chooses a forgery signature
such that e = ej for a fixed j: 1 ≤ j ≤ f , where f is the total number of the
queries to the signing oracle. If the adversary succeeds in a signature forgery
as type1 with non-negligible probability then given n, we are able to compute
z1/r with non-negligible probability, where r is a (l + 1)-bit prime. This con-
tradicts to the assumed hardness of the standard RSA problem. We state the
attack in details as follows: given z ∈ Z∗

n and r, we choose a set of total f − 1
primes with length (l + 1)-bit e1, ...ej−1, ej+1, ..., ef uniformly at random. We
then create the correspondent public key (X, g, h) of the simulator as follows:
given z ∈ Z∗

n and r, we choose a set of total f − 1 primes with length (l + 1)-bit



e1, ...ej−1, ej+1, ..., ef uniformly at random. We choose w, v ∈ Zn uniformly at
random, and compute h = z2e1...ej−1ej+1...ef , g = v2e1···ef z2e1...ej−1ej+1...ef and
X = w2βe1···ef z2e1...ej−1ej+1...ef (−α), where α ∈ {0, 1}l+1 and β ∈ Zn are chosen
uniformly at random.

Since the simulator knows each ei, therefore it is easy to compute the i-th
signing query. What we need to show is how to simulate the j-th signing query.
This can be done as follows:

y
ej

j = Xgtj hH(mj) = (wβvtj )2e1···ef z2e1...ej−1ej+1...ef (−α+tj+H(mj))

Now we set −α + tj + H(mj) = 0, i.e, tj = α−H(mj).
To show the simulation above is non-trivial, we should show ti is uniformly

distributed over {0, 1}l with non-negligible amount. Since α ∈ {0, 1}l+1 is chosen
uniformly at random, i.e., 0 ≤ α ≤ 2l+1 − 1, the probability tj belongs to the
correct interval and it does so with the correct uniform distribution can be
computed as follows:

(2l+1 − 1−H(mj)− 2l + 1) + H(mj)
(2l+1 − 1−H(mj))− (−H(mj)) + 1

= 1/2

Suppose the adversary is able to forge a faking signature of message m,
denoted by (e, y, t), such that ej = e(= r), tj = t. Notice that one can not
assume that ej = e, tj = t and yj = y, since H is a collision free hash function.
Now we have two equations: ye

j = XgthH(mj) and ye = XgthH(m). Consequently,
we obtain the equation:

(
yj

y
)e = hH(mj)−H(m) = z2e1,...ej−1,ej+1,...,ef (H(mj)−H(m))

It follows that one can extract the e-th root of z with non-negligible probabil-
ity. Therefore, we arrive at the contradiction of the standard hardness of RSA
assumption.

Type 2-Forger: We consider an adversary who succeed in forging a valid
signature such that e = ej , t 6= ej for a fixed j: 1 ≤ j ≤ f , where f is the
total number of the queries to the signing oracle. If the adversary succeeds in
a signature forgery as type1 with non-negligible probability then given n, we
are able to compute z1/r with non-negligible probability for a given z and r,
where r is a (l + 1)-bit prime. This contradicts to the assumed hardness of
the standard RSA problem. We state the attack in details as follows: given
z ∈ Z∗

n and r, we choose a set of total f − 1 primes with length (l + 1)-bit
e1, ...ej−1, ej+1, ..., ef at random. We then create the correspondent public key
(X, g, h) of the simulated signature scheme as follows: g = z2e1...ej−1ej+1...ef ,
h = v2e1...ef and X = g−αw2e1...ef , where w, v ∈ Zn and α is a l-bit random
string. Since QRn is a cyclic group, we can assume that g, h are generators of
QRn with overwhelming probability. To sign the i-th message mi(i 6= j), the
signing oracle selects a random string ti ∈ {0, 1}l, and computes:

yi
ei = ((wvH(mi))2e1...ei−1ei+1...ef z2(ti−α)Πs 6=i,s 6=jes)ei



The output of the signing oracle is a signature of message mi, denoted by
σ(mi) = (ei, yi, ti).

To sign the j-th message mj , the signing oracle, sets tj ← α and computes:

yj
ej = ((wvH(mj))2Πs 6=jes)ej

The output of the signing oracle is a signature of message mj , denoted by
σ(mj) = (ej , yj , tj).

Let σ(m) = (e, y, t) be a valid signature forged by the adversary of message
m. By assumption, we know that ye = XgthH(m). Consequently, we have the
following equation:

gtj hH(mj)yj
ej = gthH(m)ye

Equivalently
z2(α−t)Πi6=jei = (v2(H(m)−H(mj))Πi6=jei

y

yj
)ej

Since tj = α and t 6= tj by assumption, it follows that t 6= α. We then apply
Guillou-Quisquater lemma to extract the r-th root of z, where r = ej .

Type 3-Forger: We consider the third type of the attack: the adversary
forgery is that for all 1 ≤ j ≤ f , e 6= ej . If the adversary succeeds in forgery
with non-negligible probability, then given n, a random z ∈ Z∗

n, we are able to
compute z1/d (d > 1 ) with non-negligible probability, which contradicts to the
assumed hardness of strong RSA assumption. We state our attack in details as
follows: we generate g and h with the help of z. We define g = z2e1...ef and
h = ga, where a ∈ (1, n2), is a random element. We can assume that g is a
generator of QRn with overwhelming probability. Finally, we define X = gb,
where b ∈ (1, n2). Since the simulator knows the all ej , the signature oracle
can be perfectly simulated. Let (e, t, y) be a forgery signature of message m. It
yields the equation ye = XgthH(m) = zE , where E = (b + t + aH(m))2e1...ef .
Since we are able to compute (e/E)-th root of z provided e is a not a divisor
of E according to the lemma of Guillou and Qusiquater, it is sufficient to show
that e is not a divisor of E with non-negligible probability. Due to the the
fact that gcd(e, e1e2 · · · ef ) = 1, it is sufficient to show that e is not a divisor of
b+t+aH(m) with non-negligible probability. Since b ∈ (1, n2), it follows that one
can write b = b′p′q′ + b′′. Therefore, the probability that b+ t+aH(m) ≡ 0mode
is about 1/e.


