
An RSA Family of Trap-door Permutations with
a Common Domain and its Applications

Ryotaro Hayashi1, Tatsuaki Okamoto2, and Keisuke Tanaka1 ?

1 Dept. of Mathematical and Computing Sciences, Tokyo Institute of Technology,
2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan

{hayashi9, keisuke}@is.titech.ac.jp
2 NTT Labs, 1-1 Hikarino-oka, Yokosuka-shi, Kanagawa 239-0847, Japan

okamoto@isl.ntt.co.jp

Abstract. Bellare, Boldyreva, Desai, and Pointcheval [1] recently pro-
posed a new security requirement of the encryption schemes called “key-
privacy.” It asks that the encryption provide (in addition to privacy of
the data being encrypted) privacy of the key under which the encryption
was performed. Incidentally, Rivest, Shamir, and Tauman [2] recently
proposed the notion of ring signature, which allows a member of an
ad hoc collection of users S to prove that a message is authenticated by
a member of S without revealing which member actually produced the
signature.
We are concerned with an underlying primitive element common to the
key-privacy encryption and the ring signature schemes, that is, families
of trap-door permutations with a common domain. For a standard RSA
family of trap-door permutations, even if all of the functions in a family
use RSA moduli of the same size (the same number of bits), it will have
domains with different sizes. In this paper, we construct an RSA fam-
ily of trap-door permutations with a common domain, and propose the
applications of our construction to the key-privacy encryption and ring
signature schemes, which have some advantage to the previous schemes.

Keywords: RSA, trap-door permutations, key-privacy, anonymity, en-
cryption, ring signature

1 Introduction

Bellare, Boldyreva, Desai, and Pointcheval [1] recently proposed a new security
requirement of the encryption schemes called “key-privacy.” It asks that the en-
cryption provide (in addition to privacy of the data being encrypted) privacy
of the key under which the encryption was performed. The standard RSA en-
cryption does not provide key-privacy. Since even if two public keys N0 and N1

(N0 < N1) are the same bits, N1 − N0 may be large. In [1], they provided the
? Supported in part by NTT Information Sharing Platform Laboratories and Grant-

in-Aid for Scientific Research, Ministry of Education, Culture, Sports, Science, and
Technology, 14780190.

key-privacy encryption scheme, RSA-RAEP, which is a variant of RSA-OAEP
(Bellare and Rogaway [3], Fujisaki, Okamoto, Pointcheval, and Stern [4]), and
solved this problem by repeating the evaluation of the RSA-OAEP permuta-
tion f(x, r) with plaintext x and random r, each time using different r until
the value is in the safe range (See section 3.2.). For deriving a value in the safe
range, the number of the repetition would be very large (the value of the security
parameter).

Incidentally, Rivest, Shamir, and Tauman [2] recently proposed the notion
of ring signature, which allows a member of an ad hoc collection of users S to
prove that a message is authenticated by a member of S without revealing which
member actually produced the signature. Unlike group signature, ring signature
has no group managers, no setup procedures, no revocation procedures, and no
coordination. The signer does not need the knowledge, consent, or assistance of
the other ring members to put them in the ring. All the signer needs is knowledge
of their regular public keys. They also proposed the efficient schemes based on
RSA and Rabin. In their RSA-based scheme, the trap-door RSA permutations
of the various ring members will have domains of different sizes. This makes it
awkward to combine the individual signatures, so one should construct some
trap-door one-way permutation which has a common domain for each user. In-
tuitively, in the ring signature scheme, Rivest, Shamir, and Tauman solved this
by encoding the message to an Ni-ary representation and applying a standard
permutation f to the low-order digits (See section 4.2.). As mentioned in [2], for
deriving a secure permutation g with a common domain, the domain of g would
be 160 bits larger than that of f .

In this paper, we will take a different approach. We use neither the repetition
of evaluation of a permutation nor an Ni-ary representation. We are concerned
with an underlying primitive element common to the key-privacy encryption and
the ring signature schemes, that is, families of trap-door permutations with a
common domain. For a standard RSA family of trap-door permutations denoted
by RSA, even if all of the functions in a family use RSA moduli of the same size
(the same number of bits), it will have domains with different sizes. We construct
an RSA family of trap-door permutations with a common domain denoted by
RSACD, and prove that the θ-partial one-wayness of RSACD is equivalent to
the one-wayness of RSACD for θ > 0.5, and that the one-wayness of RSACD
is equivalent to the one-wayness of RSA. Fujisaki, Okamoto, Pointcheval, and
Stern [4] showed that the θ-partial one-wayness of RSA is equivalent to the
one-wayness of RSA for θ > 0.5. Thus, the following relations are satisfied for
θ > 0.5.

RSA is θ-partial one-way RSACD is θ-partial one-way

?

6[4]
?

6[this paper]

RSA is one-way

[this paper]
-

¾ RSACD is one-way

We then propose the application to the key-privacy encryption scheme. Our
proposed scheme is more efficient than the previous scheme with respect to the

number of exponentiations for encryption in the worst case. When we use the
RSA moduli which is uniformly distributed in (2k−1, 2k), the expected number
of our scheme is the same as that of RSA-RAEP. In our scheme, the number of
exponentiations for encryption is at most two, while in RSA-RAEP, the upper
bound of this number is k1 (À 2, security parameter).

We also propose the application to the ring signature scheme. We consider the
case that the members of the same group use the RSA moduli of the same length.
In our scheme, the domain of trap-door one-way permutation to sign and verify a
ring signature is {0, 1}k, while that of the previous scheme is {0, 1}k+160, where
k is the length of the RSA moduli. Thus, we can reduce the size of signature in
this situation.

The organization of this paper is as follows. In Section 2, after reviewing the
definitions of families of functions and the standard RSA family, we propose the
RSA family of trap-door permutations with a common domain. We also prove
that the θ-partial one-wayness of RSACD is equivalent to the one-wayness of
RSACD for θ > 0.5, and that the one-wayness of RSACD is equivalent to the
one-wayness of RSA. In Section 3, we propose the application of our new family
to the key-privacy encryption scheme. In Section 4, we propose the application
of our new family to the ring signature scheme. We conclude in Section 5.

2 An RSA Family of Trap-door Permutations with a
Common Domain

2.1 Preliminaries

In this section, we briefly review the definitions of families of functions, and the
standard RSA family of trap-door permutations denoted by RSA.

Definition 1 (families of functions [1]). A family of functions F = (K, S, E)
is specified by three algorithms.

– The randomized key-generation algorithm K takes as input a security pa-
rameter k ∈ N and returns a pair (pk, sk) where pk is a public key and sk
is an associated secret key. (In cases where the family is not trap-door, the
secret key is simply the empty string.)

– The randomized sampling algorithm S takes input pk and returns a random
point in a set that we call the domain of pk and denote by DomF (pk).

– The deterministic evaluation algorithm E takes input pk and a point x ∈
DomF (pk) and returns an output we denote by Epk(x). We let RngF (pk) =
{Epk(x) |x ∈ DomF (pk)} denote the range of the function Epk(·).

Definition 2 (families of trap-door permutations [1]). We say that F is a
family of trap-door functions if there exists a deterministic inversion algorithm I
that takes input sk and a point y ∈ RngF (pk) and returns a point x ∈ DomF (pk)
such that Epk(x) = y. We say that F is a family of trap-door permutations if
F is a family of trap-door functions, DomF (pk) = RngF (pk), and Epk is a
permutation on this set.

We describe the definition of θ-partial one-way.

Definition 3 (θ-partial one-way [1]). Let F = (K,S, E) be a family of func-
tions. Let b ∈ {0, 1} and k ∈ N be a security parameter. Let 0 < θ ≤ 1 be a
constant. Let A be an adversary. Now, we consider the following experiments:

Experiment Expθ−pow−fnc
F,A (k)

(pk, sk) R← K(k)
x1||x2

R← DomF (pk) where |x1| = dθ · |(x1||x2)|e
y ← Epk(x1||x2)
x′1 ← A(pk, y) where |x′1| = |x1|
for any x′2 if Epk(x′1||x′2) = y then return 1
else return 0

We define the advantages of the adversary via

Advθ−pow−fnc
F,A (k) = Pr[Expθ−pow−fnc

F,A (k) = 1]

where the probability is taken over (pk, sk) R← K(k), x1||x2
R← DomF (pk), and

the coin tosses of A. We say that the family F is θ-partial one-way if the func-
tion Advθ−pow−fnc

F,A (·) is negligible for any adversary A whose time complexity is
polynomial in k. In particular, we say that the family F is one-way when F is
1-partial one-way.

We now describe the standard RSA family of trap-door permutations.

Definition 4 (the standard RSA family of trap-door permutations [1]).
The specifications of the standard RSA family of trap-door permutations RSA =
(K,S, E) are as follows. The key generation algorithm takes as input a security
parameter k and picks random, distinct primes p, q in the range 2k/2−1 < p, q <
2k/2. (If k is odd, increment it by 1 before picking the primes.) It sets N = pq.
(i.e. 2k−2 < N < 2k.) It picks e, d ∈ Z∗φ(N) such that ed = 1 (mod φ(N))
where φ(N) = (p − 1)(q − 1). The public key is N, e, k and the secret key is
N, d, k. The sets DomRSA(N, e, k) and RngRSA(N, e, k) are both equal to Z∗N .
The evaluation algorithm EN,e,k(x) = xe mod N and the inversion algorithm
IN,d,k(y) = yd mod N . The sampling algorithm returns a random point in Z∗N .

Fujisaki, Okamoto, Pointcheval, and Stern [4] showed that the θ-partial one-
wayness of RSA is equivalent to the one-wayness of RSA for θ > 0.5.

2.2 The Construction of RSACD

In this section, we propose the RSA family of trap-door permutations with a
common domain denoted by RSACD.

Definition 5 (the RSA family of trap-door permutations with a com-
mon domain). The specifications of the RSA family of trap-door permutations

Fig. 1. Function fN,e,k and gN,d,k

with a common domain RSACD= (K,S, E) are as follows. The key generation al-
gorithm is almost the same as that for RSA family. The difference is picking two
distinct primes p, q such that 2k/2−1 < p, q < 2k/2 and 2k−1 < pq < 2k. The sets
DomRSACD(N, e, k) and RngRSACD(N, e, k) are both {x |x ∈ [0, 2k) ∧ x mod N ∈
Z∗N}. The sampling algorithm returns a random point in DomRSACD(N, e, k).
The evaluation algorithm EN,e,k(x) = fN,e,k(x) and the inversion algorithm
IN,d,k(y) = gN,d,k(y) are as follows (See Figure 1.).

Function fN,e,k(x) Function gN,d,k(y)
u ← f1

N,e,k(x); v ← f2
N,e,k(u) v ← g1

N,d,k(y); u ← g2
N,d,k(v)

y ← f3
N,e,k(v) x ← g3

N,d,k(u)
return y return x

Function f1
N,e,k(x) Function g1

N,d,k(y)
if (x < N) u ← xe mod N if (y < N) v ← yd mod N
else u ← x else v ← y
return u return v

Function f2
N,e,k(u) Function g2

N,d,k(v)
if (u < 2k −N) v ← u + N if (v < 2k −N) u ← v + N
elseif (2k −N ≤ u < N) v ← u elseif (2k −N ≤ v < N) u ← v
else v ← u−N else u ← v −N
return v return u

Function f3
N,e,k(v) Function g3

N,d,k(u)
if (v < N) y ← ve mod N if (u < N) x ← ud mod N
else y ← v else x ← u
return y return x

The choice of N from (2k−1, 2k) ensures that all elements in DomRSACD(N, e, k)
are permuted by the RSA function at least once.

2.3 Properties of RSACD

In this section, we prove that the θ-partial one-wayness of RSACD is equivalent
to the one-wayness of RSACD for θ > 0.5, and that the one-wayness of RSACD
is equivalent to the one-wayness of RSA.

Theorem 1. Let A be an algorithm that outputs the k − k0 most significant
bits of the pre-image of its input y ∈ RngRSACD(N, e, k) for 2k−1 < N < 2k

with k > 2k0 (i.e. A is a ((k − k0)/k)-partial inverting algorithm for RSACD

with k > 2k0), with success probability ε = Advθ−pow−fnc
RSACD,A (k) where θ = (k −

k0)/k > 0.5, within time bound t. There exists an algorithm B that outputs a pre-
image of y (i.e. B is an inverting algorithm for RSACD) with success probability
ε′ = Adv1−pow−fnc

RSACD,B (k), within time bound t′ where

ε′ ≥ ε2

16
· (1− 22k0−k+7), t′ ≤ 2t + O(k3).

To prove this theorem, we use the following lemma proved in [4].

Lemma 1 ([4]). Consider an equation αt + u = c (mod N) which has solu-
tions t and u smaller than 2k0 . For all values of α, except a fraction 22k0+6/N
of them, (t, u) is unique and can be computed in time O((log N)3). (We say “α
is a good value” when we can solve the above equation.)

Proof (Theorem 1). We construct the algorithm B to compute a pre-image of
y ∈ RngRSACD(N, e, k), then we analyze this algorithm and evaluate the success
probability and the running time of B.

Algorithm B((N, e, k), y)
α

R← ZN ; pow R← {1, 2}; c
R← {0, 1}

y′temp ← y · αepow
mod N

if (c = 0) y′ ← y′temp

elseif (0 ≤ y′temp < 2k −N) y′ ← y′temp + N
else return fail

[step 1]
set α, pow, y′

z ← A(y); z′ ← A(y′)
}

[step 2] run A

find (r, s) s.t. αr − s = (z′ − zα) · 2k0 (mod N)
x ← z · 2k0 + r

}
[step 3]
compute gN,d,k(y)

return x

Analysis
For y ∈ RngRSACD(N, e, k) and x = gN,d,k(y), (x, y) satisfies one of the following
equations.

(1) y = xe (mod N) (2) y = xe2
(mod N)

We say type(y) = 1 (respectively type(y) = 2) if (x, y) satisfies equation 1 (resp.
equation 2).

After step 1, if B does not output fail, then y′ is uniformly distributed over
RngRSACD(N, e, k), and for y′ and x′ = gN,d,k(y′), (x′, y′) satisfies one of the
following equations.

(1′) y′ = (x′)e (mod N) (2′) y′ = (x′)e2
(mod N)

We say type(y′) = 1 (respectively type(y′) = 2) if (x′, y′) satisfies equation 1′

(resp. equation 2′).

After step 2, if A outputs correctly, namely, z is the k− k0 most significant bits
of x and z′ is the k − k0 most significant bits of x′, then x = z · 2k0 + r and
x′ = z′ · 2k0 + s for some (r, s) where 0 ≤ r, s < 2k0 . Furthermore, if type(y) =
type(y′) = pow, then y = xepow

(mod N) and y′ = (x′)epow
(mod N). Since

y′ = y · αepow
(mod N) and gcd(epow, N) = 1, we have x′ = αx (mod N).

Thus,
z′ · 2k0 + s = α · (z · 2k0 + r) (mod N)
αr − s = (z′ − zα) · 2k0 (mod N)

where 0 ≤ r, s < 2k0 . If α is a good value, algorithm B can solve this equation
in step 3 (Lemma 1), and outputs x = z · 2k0 + r.

Now, we analyze the success probability. We define the following events:

– Fail : B outputs fail in step 1,
– GV : α is a good value,
– Type1 : type(y) = type(y′) = 1,
– Type2 : type(y) = type(y′) = 2,
– SucA : A(y) and A(y′) are correct.

We have ε = Pr[A(y) is correct ∧ type(y) = 1] + Pr[A(y) is correct ∧ type(y)
= 2] where y is uniformly distributed over RngRSACD(N, e, k). Thus,

Pr[A(y) is correct ∧ type(y) = 1] >
ε

2
or Pr[A(y) is correct ∧ type(y) = 2] >

ε

2
.

If B does not output fail in step 1, then y′ is uniformly distributed over
RngRSACD(N, e, k). Therefore,

Pr[SucA ∧ Type1|¬Fail] >
ε2

4
or Pr[SucA ∧ Type2|¬Fail] >

ε2

4
.

If A(y) and A(y′) are correct, type(y) = type(y′) = pow, and α is a good value,
then B outputs correctly. Since Pr[¬Fail] > Pr[c = 1] = 1/2, Pr[pow = 1] =
Pr[pow = 2] = 1/2, and Pr[GV]> 1− 22k0−6/N > 1− 22k0−k+7, we have

ε′ ≥ Pr[SucA ∧ type(y) = type(y′) = pow ∧ α is a good value]
≥ Pr[GV] × Pr[¬Fail] × Pr[SucA ∧ type(y) = type(y′) = pow|¬Fail]

≥ 1
2
· (1− 22k0−k+7) × (Pr[SucA ∧ Type1 ∧ pow = 1|¬Fail]

+ Pr[SucA ∧ Type2 ∧ pow = 2|¬Fail])

=
1
2
· (1− 22k0−k+7) × (Pr[pow = 1] × Pr[SucA ∧ Type1|¬Fail]

+ Pr[pow = 2] × Pr[SucA ∧ Type2|¬Fail])

>
ε2

16
· (1− 22k0−k+7).

We estimate the running time of B. B runs A twice. B can solve αr − s =
(z′ − zα) · 2k0 (mod N) in time O(k3). Therefore, t′ ≤ 2t + O(k3). ut

Theorem 2. If RSA is one-way, then RSACD is one-way.

Proof. We prove that if there exists a polynomial-time inverting algorithm A for
RSACD with non-negligible probability ε = Adv1−pow−fnc

RSACD,A (k), then there exists
a polynomial-time inverting algorithm D for RSA with non-negligible probability
ε′ = Adv1−pow−fnc

RSA,D (k). We specify the algorithm D to compute a pre-image of
Y ∈ RngRSA(N, e, k).

Algorithm D((N, e, k), Y)
if (2k−2 < N ≤ 2k−1) return fail
else

c
R← {0, 1}

if (c = 0) y ← Y ; x ← A((N, e, k), y); u ← f1
N,e,k(x); v ← f2

N,e,k(u); X ← v

else u ← Y ; v ← f2
N,e,k(u); y ← f3

N,e,k(v); x ← A((N, e, k), y); X ← x

return X

Now, we analyze the advantage of D. Let Fail be the event that D outputs fail
and λ = Pr[¬Fail]. It is clear that λ is non-negligible. In the following, Pr1[·]
denotes Pr[·|¬Fail]. If D does not output fail and A outputs correctly, then D
outputs correctly (See Figure 1). Therefore,

ε′ > Pr[¬Fail] · (Pr1[c = 0 ∧ A((N, e, k), Y) is correct]
+Pr1[c = 1 ∧ A((N, e, k), Z) is correct])

≥ λ

2
· (Pr1[A((N, e, k), Y) is correct]

+Pr1[A((N, e, k), Z) is correct ∧ N ≤ Z < 2k]).

where Z = f3
N,e,k(f2

N,e,k(Y)). We have

Pr1[A((N, e, k), Y) is correct] = Pr1[A((N, e, k), y) is correct | 0 ≤ y < N]
> Pr1[A((N, e, k), y) is correct ∧ 0 ≤ y < N].

Furthermore, we have Pr1[N ≤ Z < 2k] > Pr1[N ≤ y < 2k] where Y is uniformly
distributed over Z∗N and y is uniformly distributed over RngRSACD(N, e, k), since
Pr1[N ≤ Z < 2k] = Pr1[0 ≤ Y < 2k −N] and |Z∗N | < |RngRSACD(N, e, k)|. Since
Pr1[A((N, e, k), Z) is correct |N ≤ Z < 2k] = Pr1[A((N, e, k), y) is correct |N ≤
y < 2k] , we have

Pr1[A((N, e, k), Z) is correct ∧ N ≤ Z < 2k]
> Pr1[A((N, e, k), y) is correct ∧ N ≤ y < 2k].

Therefore,

ε′ >
λ

2
· (Pr1[A((N, e, k), y) is correct ∧ 0 ≤ y < N]

+Pr1[A((N, e, k), y) is correct ∧ N ≤ y < 2k])

=
λ

2
· Pr1[A((N, e, k), y) is correct] =

λ

2
· ε ut

It is clear that if RSACD is one-way then RSA is one-way. Thus, the one-wayness
of RSACD is equivalent to the one-wayness of RSA.

3 Application to Key-Privacy Encryption

3.1 Definitions of Key-Privacy

The classical security requirements of an encryption scheme, for example indis-
tinguishability or non-malleability under the chosen-ciphertext attack, provide
privacy of the encryption data. In [1], Bellare, Boldyreva, Desai, and Pointcheval
proposed a new security requirement of encryption schemes called “key-privacy.”
It asks that the encryption provide (in addition to privacy of the data being en-
crypted) privacy of the key under which the encryption was performed.

In a heterogeneous public-key environment, encryption will probably fail to
be anonymous for trivial reasons. For example, different users might be using
different cryptosystems, or, if the same cryptosystem, have keys of different
lengths. In [1], a public-key encryption scheme with common-key generation is
described as follows.

Definition 6. A public-key encryption scheme with common-key generation PE = (G,
K, E ,D) consists of four algorithms.

– The common-key generation algorithm G takes as input some security pa-
rameter k and returns some common key I.

– The key generation algorithm K is a randomized algorithm that takes as
input the common key I and returns a pair (pk, sk) of keys, the public key
and a matching secret key.

– The encryption algorithm E is a randomized algorithm that takes the public
key pk and a plaintext x to return a ciphertext y.

– The decryption algorithm D is a deterministic algorithm that takes the secret
key sk and a ciphertext y to return the corresponding plaintext x or a special
symbol ⊥ to indicate that the ciphertext was invalid.

In [1], they formalized the property of “key-privacy.” This can be considered
under either the chosen-plaintext attack or the chosen-ciphertext attack, yielding
two notions of security, IK-CPA and IK-CCA. (IK means “indistinguishability
of keys”.)

Definition 7 (IK-CPA, IK-CCA[1]). Let PE = (G,K, E ,D) be an encryption
scheme. Let b ∈ {0, 1} and k ∈ N. Let Acpa, Acca be adversaries that run in two
stages and where Acca has access to the oracles Dsk0(·) and Dsk1(·). Note that si
is the state information. It contains pk0, pk1, and so on. Now, we consider the
following experiments:

Experiment Expik−cpa−b
PE,Acpa

(k) Experiment Expik−cca−b
PE,Acca

(k)

I
R← G(k) I

R← G(k)
(pk0, sk0)

R← K(I); (pk1, sk1)
R← K(I) (pk0, sk0)

R← K(I); (pk1, sk1)
R← K(I)

(x, si) ← Acpa(find, pk0, pk1) (x, si) ← A
Dsk0 (·),Dsk1 (·)
cca (find, pk0, pk1)

y ← Epkb
(x) y ← Epkb

(x)
d ← Acpa(guess, y, si) d ← A

Dsk0 (·),Dsk1 (·)
cca (guess, y, si)

return d return d

Above it is mandated that Acca never queries Dsk0(·) and Dsk1(·) on the challenge
ciphertext y. For atk ∈ {cpa, cca} we define the advantages via

Advik−atk
PE,Aatk

(k) =
∣∣∣Pr[Expik−atk−1

PE,Aatk
(k) = 1]− Pr[Expik−atk−0

PE,Aatk
(k) = 1]

∣∣∣.

The scheme PE is said to be IK-CPA secure (respectively IK-CCA secure) if the
function Advik−cpa

PE,Acpa
(·) (resp. Advik−cca

PE,Acca
(·)) is negligible for any adversary A

whose time complexity is polynomial in k.

The “time-complexity” is the worst-case execution time of the experiment plus
the size of the code of the adversary, in some fixed RAM model of computation.

3.2 RSA-RAEP by Bellare, Boldyreva, Desai, and Pointcheval

A simple observation that seems to be folklore is that standard RSA encryption
does not provide key-privacy, even when all moduli in the system have the same
length. Suppose an adversary knows that the ciphertext y is created under one
of two keys (N0, e0) or (N1, e1), and suppose N0 ≤ N1. If y ≥ N0 then the
adversary bets it was created under (N1, e1), else it bets it was created under
(N0, e0). It is not hard to see that this attack has non-negligible advantage.

In [1], they proposed an RSA-based encryption scheme which is secure in the
sense of IK-CCA. It is RSA-RAEP which is a variant of RSA-OAEP. Since their
variant chooses N from (2k−2, 2k), it simply repeats the ciphertext computation,
each time using new coins, until the ciphertext y satisfies y < 2k−2.

Definition 8 (RSA-RAEP [1]). RSA-RAEP = (G,K, E ,D) is as follows. The
common-key generation algorithm G takes a security parameter k and returns
parameters k, k0 and k1 such that k0(k)+k1(k) < k for all k > 1. This defines an
associated plaintext-length function n(k) = k−k0(k)−k1(k). The key generation
algorithm K takes k, k0, k1, runs the key-generation algorithm of RSA, and gets
(N, e) and (N, d). The public key pk is (N, e), k, k0, k1 and the secret key sk
is (N, d), k, k0, k1. The other algorithms are depicted below. Let G : {0, 1}k0 →
{0, 1}n+k1 and H : {0, 1}n+k1 → {0, 1}k0 . Note that [x]n denotes the n most
significant bits of x and [x]m denotes the m least significant bits of x.

Algorithm EG,H
pk (x) Algorithm DG,H

sk (y)
ctr = −1 b ← [y]1; v ← [y]k0+k1+n

repeat if (b = 1)
ctr ← ctr + 1 w ← [v]k0+k1 ; x ← [v]n
r

R← {0, 1}k0 if (w = 0k0+k1) z ← x else z ←⊥
s ← (x || 0k1)⊕G(r); t ← r ⊕H(s) else
v ← (s||t)e mod N s ← [vd]n+k1 ; t ← [vd]k0

until ((v < 2k−2) ∨ (ctr = k1)) r ← t⊕H(s)
if (ctr = k1) y ← 1||0k0+k1 ||x x ← [s⊕G(r)]n; p ← [s⊕G(r)]k1

else y ← 0||v if (p = 0k1) z ← x else z ←⊥
return y return z

They proved RSA-RAEP is secure in the sense of IND-CCA2 and IK-CCA in
the random oracle model assuming RSA is one-way. In RSA-RAEP, the expected
number of exponentiations for encryption is

k1∑

i=1

i

(
1− 2k−2

N

)i−1 2k−2

N
=

1− (1− p)k1

p
− k1(1− p)k1

where p = 2k−2/N . Suppose that N is uniformly distributed in (2k−2, 2k), the
expected number of this scheme is two. However, the upper bound of the number
of exponentiations for encryption is k1(À 2, security parameter).

3.3 Our Proposed Encryption Scheme

In this section, we propose our encryption scheme, which uses RSACD instead
of RSA.

Definition 9. The common-key generation algorithm G, and the oracles G and
H are the same as RSA-RAEP. The key generation algorithm K is almost the
same as RSA-RAEP. The difference is running the key-generation algorithm of
RSACD instead of RSA. The other algorithms are described as follows. Note that
the valid ciphertext y satisfies y ∈ [0, 2k) and y mod N ∈ Z∗N .

Algorithm EG,H
pk (x) Algorithm DG,H

sk (y)

r
R← {0, 1}k0 s ← [gN,d,k(y)]n+k1 ; t ← [gN,d,k(y)]k0

s ← (x || 0k1)⊕G(r) r ← t⊕H(s)
t ← r ⊕H(s) x ← [s⊕G(r)]n; p ← [s⊕G(r)]k1

v ← fN,e,k(s||t) if (p = 0k1) z ← x else z ←⊥
return y return z

Using Theorem 1 and 2, we can prove the following theorem.

Theorem 3. Our scheme is secure in the sense of IND-CCA2 and IK-CCA in
the random oracle model assuming RSA is one-way.

Proof (Idea). Fujisaki, Okamoto, Pointcheval, and Stern [4] proved OAEP with
partial one-way permutation is secure in the sense of IND-CCA2. Thus, OAEP
with fN,e,k is secure in the sense of IND-CCA2 assuming RSACD is partial one-
way.

Bellare, Boldyreva, Desai, and Pointcheval [1] proved RSA-RAEP is secure
in the sense of IK-CCA in the random oracle model assuming RSA is partial
one-way. Noticing that the function fN,e,k and gN,d,k, and the domain of valid
signature change, we can prove in a similar way that our scheme is secure in
the sense of IK-CCA in the random oracle model assuming RSACD is partial
one-way.

Therefore, by Theorem 1 and 2, we can prove that our scheme is secure in the
sense of IND-CCA2 and IK-CCA under the assumption that RSA is one-way. ut

In this scheme, the expected number of exponentiations in encryption is

1× 2(2k −N)
2k

+ 2×
(

1− 2(2k −N)
2k

)
=

N

2k−1
.

Suppose that N is uniformly distributed in (2k−1, 2k), the expected number
of our scheme is two, the same as RSA-RAEP. In our scheme, the number of
exponentiations for encryption is at most two, while in RSA-RAEP, the upper
bound of this number is k1 (À 2, security parameter). Notice that we use the
randomness only for an RSA-OAEP.

4 Application to Ring Signature

4.1 Definitions of Ring Signature

In [2], Rivest, Shamir, and Tauman proposed the notion of ring signature, which
allows a member of an ad hoc collection of users S to prove that a message
is authenticated by a member of S without revealing which member actually
produced the signature. Unlike group signature, ring signature has no group
managers, no setup procedures, no revocation procedures, and no coordination.

Definition 10 (Ring Signature [2]). One assumes that each user (called a
ring member) has received (via a PKI or a certificate) a public key Pk, for which
the corresponding secret key is denoted by Sk. A ring signature scheme consists
of the following algorithms.

– ring-sign(m,P1, P2, · · · , Pr, s, Ss) which produces a ring signature σ for the
message m, given the public keys P1, P2, · · · , Pr of the r ring members, to-
gether with the secret key Ss of the s-th member (who is the actual signer).

– ring-verify(m,σ) which accepts a message m and a signature σ (which in-
cludes the public key of all the possible signers), and outputs either “true”
or “false”.

The signer does not need the knowledge, consent, or assistance of the other
ring members to put them in the ring. All he needs is knowledge of their regular
public keys. Verification must satisfy the usual soundness and completeness con-
ditions, but in addition the signature scheme must satisfy “signer-ambiguous”,
which is the property that the verifier should be unable to determine the identity
of the actual signer with probability greater than 1/r + ε, where r is the size of
the ring, and ε is negligible.

4.2 RSA-based Ring Signature Scheme by Rivest, Shamir, and
Tauman

In [2], they constructed ring signature schemes in which all the ring member use
RSA as their individual signature schemes. We review their scheme.

Let `, k, and b be security parameters. Let E be a symmetric encryption
scheme over {0, 1}b using `-bit keys and h be a hash function which maps ar-
bitrary strings to `-bit strings. They use h to make a key for E. They assume
that each user has an RSA public key Pi = (Ni, ei) which specifies the trap-door
one-way permutation fi on ZNi : fi(x) = xe mod Ni.

To sign and verify a ring signature, they proposed a combining function
Ck,v based on a symmetric encryption scheme E modeled by a (keyed) random
permutation

Ck,v(y1, · · · , yr) = Ek(yr ⊕ Ek(yr−1 ⊕ · · ·Ek(y2 ⊕ Ek(y1 ⊕ v)) · · ·))

where v is an initialization value. In their scheme, the inputs yi to the combining
function are computed as gi(xi) for some xi ∈ {0, 1}b. They defined the extended
trap-door permutation gi over {0, 1}b which has a common domain for each user
as follows: for any b-bit input xi define nonnegative integers qi and ri so that
xi = qiNi + ri and 0 ≤ ri < Ni. Then

gi(xi) =
{

qiNi + fi(ri) if (qi + 1)Ni ≤ 2b

xi otherwise.

If b is sufficiently large (e.g. 160 bits larger than any of the Ni), gi is a one-way
trap-door permutation. (See also [5].)

A ring signature on a message m consists in a tuple (v, x1, · · · , xr) and the
signature is valid iff Ch(m),v(g1(x1), · · · , gr(xr)) = v. For any message m, any
fixed values v and {xi}i 6=s, one can efficiently compute the value ys such that
the combining function outputs v by using the following equation:

ys = E−1
k

(
ys+1 ⊕ · · ·E−1

k (yr ⊕ E−1
k (v)) · · ·)⊕ Ek

(
ys−1 ⊕ · · ·Ek(y1 ⊕ v) · · ·).

Now using her knowledge of the trap-door for function fs, s-th member (the
actual signer) is able to compute xs such that gs(xs) = ys. Thus, the ring member
can generate a valid signature. Rivest, Shamir, and Tauman proved this scheme
is unconditionally signer-ambiguous and provably secure in the random oracle
model assuming RSA is one-way.

4.3 Our Proposed Ring Signature Scheme

Unlike group signature, ring signature has no group managers, no setup proce-
dures, no revocation procedures, and no coordination, and each user can use a
public key whose length is different from other users.

In [2], Rivest, Shamir, and Tauman mentioned the case that a member of the
cabinet of some country wished to leak her secret to a journalist. In this kind
of situation, it was reasonable to consider that the members of the same group
use the RSA moduli of the same length. In our scheme, we assume the situation
that each user chooses her public key with the same size.

Our scheme is almost the same as the previous scheme. The difference is
using fNi,e,k(·) in Section 2.2 instead of gi(·) in Section 4.2. Then, the domain

of fN,e,k(·) is {0, 1}k, while that of the previous scheme is {0, 1}k+160, where
k is the length of the RSA moduli. Thus, we can reduce the size of signature
in this situation. In particular, the size of signature of our scheme is 160 bits
smaller than that of the previous scheme in order to archive security parameter
k = 1024. In our scheme, the number of exponentiations is one or two, while
that of the original scheme in [2] is one. Since fNi,e,k(·) is a trap-door one-way
permutation as well as gi(·), we can easily prove the following theorem in a
similar way as for the previous scheme.

Theorem 4. Our scheme is unconditionally signer-ambiguous and provably se-
cure in the random oracle model assuming RSA is one-way.

We can also apply this scheme to the Rabin-based ring signature scheme
in [2] in a similar way.

5 Conclusion

In this paper, we have constructed the RSA family of trap-door permutations
with a common domain and proposed the applications of our construction to the
key-privacy encryption and ring signature schemes, which have some advantage
to the previous schemes. It might be interesting to consider other applications of
our RSA family, and different constructions of a family of trap-door permutations
with a common domain.

References

1. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-Privacy in Public-Key
Encryption. [6] 566–582

2. Rivest, R.L., Shamir, A., Tauman, Y.: How to Leak a Secret. [6] 552–565
3. Bellare, M., Rogaway, P.: Optimal asymmetric encryption – How to encrypt with

RSA. In Santis, A.D., ed.: Advances in Cryptology – EUROCRYPT ’94. Volume
950 of Lecture Notes in Conputer Science., Perugia, Italy, Springer-Verlag (1994)
92–111

4. Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: RSA-OAEP is Secure under
the RSA Assumption. In Kilian, J., ed.: Advances in Cryptology – CRYPTO 2001.
Volume 2139 of Lecture Notes in Conputer Science., Santa Barbara, California,
USA, Springer-Verlag (2001) 260–274

5. Desmedt, Y.: Securing traceability of ciphertexts: Towards a secure software es-
crow scheme. In Guillou, L.C., Quisquater, J.J., eds.: Advances in Cryptology –
EUROCRYPT ’95. Volume 921 of Lecture Notes in Conputer Science., Saint-Malo,
France, Springer-Verlag (1995) 147–157

6. Boyd, C., ed.: Advances in Cryptology – ASIACRYPT 2001. In Boyd, C., ed.:
Advances in Cryptology – ASIACRYPT 2001. Volume 2248 of Lecture Notes in
Conputer Science., Gold Coast, Australia, Springer-Verlag (2001)

