Positive Results and Techniques for Obfuscation

Benjamin Lynrt*, Manoj Prabhakarari*, and Amit Sahai* * *

1 Stanford University, USA
2 Princeton University, USA

Abstract. Informally, anobfuscatorO is an efficient, probabilistic “compiler”

that transforms a prograi into a new progran®(P) with the same functional-

ity as P, but such tha®(P) protects any secrets that may be built into and used
by P. Program obfuscation, if possible, would have numerous important cryp-
tographic applications, including: (1) “Intellectual property” protection of secret
algorithms and keys in software, (2) Solving the long-standing open problem of
homomorphic public-key encryption, (3) Controlled delegation of authority and
access, (4) Transforming Private-Key Encryption into Public-Key Encryption,
and (5) Access Control Systems. Unfortunately however, program obfuscators
that work on arbitrary progranmsannotexist [1]. No positive results for program
obfuscation were known prior to this work.

In this paper, we provide the firglositiveresults in program obfuscation. We
focus on the goal of access control, and give several provable obfuscations for
complex access control functionalities, in the random oracle model. Our results
are obtained through non-trivial compositions of obfuscations; we note that gen-
eral composition of obfuscations is impossible, and so developing techniques for
composing obfuscations is an important goal. Our work can also be seen as mak-
ing initial progress toward the goal of obfuscating finite automata or regular ex-
pressions, an important general class of machines which are not ruled out by the
impossibility results of [1]. We also note that our work providesfirst formal

proof techniques for obfuscation, which we expect to be useful in future work in
this area.

1 Introduction

Software Obfuscation is an important cryptographic concept with wide applications.
However until recently there was little theoretical investigation of obfuscation, despite
the great success theoretical cryptography has had in tackling other challenging notions
of security.

Roughly speaking, the goal of (program) obfuscation is to hide the secrets inside
a program while preserving its functionality. Ideally, an obfuscated program should
be a “virtual black box,” in the sense that anything one can compute from it could
also be computed from the input-output behavior of the program. To be clear (but still
informal), anobfuscatorQO is an efficient, probabilistic “compiler” that transforms a
programP into a new progran®(P) such that:

* Email: blynn@theory.stanford.edu
** Email: mp@cs.princeton.edu
*** Email: sahai@cs.princeton.edu

— (Functionality Preservation.) The input/output behavior aP(P) is the same as
P.

— (Secrecy) “Anything that can be efficiently computed frof(P) can be efficiently
computed given oracle accessid

This second property seeks to formalize the notion that all aspedtsaniich are not
obvious from its input/output behavior should be hidderthyP). By considering the
problem of obfuscation restricted to specific classes of interesting programs, one can
further specify exactly what needs to be hidden by the obfuscation, and what doesn't
need to b&

Program obfuscation, if possible, would have numerous important cryptographic
applications, including: (1) “Intellectual property” protection of secret algorithms and
keys in software, (2) Solving the long-standing open problem of homomorphic public-
key encryption, (3) Controlled delegation of authority and access, and (4) Transforming
Private-Key Encryption into Public-Key Encryption. (See [1] for more discussion.) We
discuss another important application, access control, in more detail below.

Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan, and Yang [1] initiated the
formal cryptographic study of obfuscation, and established several important impos-
sibility results (which we discuss further below). There have been many ad-hoc ap-
proaches to program obfuscation (geg[3]); Many of these have been broken (e.qg. [4]
broken by [7]), and none of these have proofs of their security properties. Proven results
are known only in models where the adversary has only partial access to the obfuscated
program or circuit [5, 6].

In this paper, we provide the firgiositiveresults in program obfuscation. We fo-
cus on the goal of access control, and give several provable obfuscations for complex
access control functionalities, in the random oracle model. Our results are obtained
through non-trivial compositions of obfuscations; we note that general composition of
obfuscations is impossible, and so developing techniques for composing obfuscations
is an important goal. Our work can also be seen as making initial progress toward the
goal of obfuscating finite automata or regular expressions, an important general class of
machines which are not ruled out by the impossibility results of [1]. We also note that
our work provides théirst formal proof techniques for obfuscation, which we expect to
be useful in future work in this area.

Context for our work. In order to understand the challenge of program obfuscation, we
first recall the impossibility results of [1]. Their central construction demonstrates the
existence of a particular family of programs, for which no obfuscator can exist. More
precisely, every function it#7 has an associated secret key such that: (1) no efficient
algorithm can extract the secret key given the input/output functionality of a random
function from.%; (2) however, there exists an adversary which alwvaysextract the

% In general, one can define a class of programs parametrized by the secrets which are meant
to be protected by the obfuscation. For instance, for a progfawhich sorts the input and
then signs it using a secret signature kéy one can define a program clags = {P, :
P using keysk}. An obfuscator for# would then only be required to protect the secret key;
it would not be required, for example, to protect the exact nature of the sorting algorithm, since
this is the same for all programs .

secret key giverany program which implements a function i%. There are several
important observations to be made:

— The program family.# consists of programs which have inputs and outputs of
bounded length. Under a widely believed complexity assumption (factoring Blum
integers is hard)# can implemented by constant-depth polynomial-size threshold
circuits (.e..# c TCY). Furthermore,Z can be embedded into specific construc-
tions of most cryptographic primitives, thus ruling out obfuscators that work on,
say, any signature scheme.

— If the obfuscated program runs in tinlg the adversary which extracts the secret
key runs in time roughly onI@(Tz). Note also that the adversary’s probability of
success ig.

— The impossibility result (with all the properties above) extends to the random oracle
model.

The above properties highlight the difficulty of obtaining ayjgneralmethods for ob-
fuscation: Because the adversary runs quickly and always succeeds in extracting the
secret key (and the impossibility result holds in the random oracle model), there seems
little hope to relax our security requirement: General purpose obfuscation under any
meaningful relaxed secrecy definittowould seem to find a counterexampledn

This has consequences for the techniques we can hope to develop to build and prove
obfuscations. One of the most useful techniques we could hope for is composition.
However, note that any single logic gate is trivially obfuscatable; indeed even a depth 1
threshold circuit TC?) is trivially obfuscatable since it is learnable with oracle queries.
Obviously, an arbitrary circuit can be built from a composition of logic gates; and any
TC, circuit can be built from just @onstantnumber of compositions oT'C? cir-
cuits. Thus, no general theorem showing how to compose even a constant number of
obfuscations is possible (under reasonable complexity assumptions).
Our Results. We now describe our results in more detail. The starting point for our
work is the simple observation that a commonly used practice for hiding passwords
can be viewed as a provably secure obfuscation of a “point function” under the random
oracle model. That is, consider the family of functionf, } wheref,(z) = 1if z =
a, and f,(x) = 0 otherwise. IfR is a random oracke(with a large enough range),
then the program which storgs = R(«), and on inputz outputs 1 iff R(z) = p

4 There is one intriguing, if limited, possibility that we can imagine: There is nothing known
to rule out a general purpose obfuscator that takes circuits ofssiard outputs circuits of
size, say,0(sk), such that no adversary running in tinfé(sk?) could obtain meaningful
information. If & were large enough, this could conceivably provide enough of a slowdown to
be useful in some cases. No such transformation is known to exist.

5 The work of [2] on “perfectly one-way hash functions” can be seen as a way to implement the
random oracle within this obfuscation in certain models. By considering an extension of such
models, it is possible to apply the techniques of [2] to remove the random oracles from all
our constructions. However, these models are not satisfactory, because in general [2] cannot
deal with partial information being available to the adversary, which is an important part of the
obfuscation model we consider. Extending [2] to deal with partial information is an important
open problem. Progress there would lead to progress toward removing the random oracle in our
constructions. However, since we seek to giveftte positive results regarding obfuscation,

is an obfuscation of, with high probability overR. Starting with this most basic of
access control functionalities, we give a number of novel reduction and composition
techniques for obfuscation, and use these to build obfuscations of much more complex
access control functionalities.

We show how to obfuscate a functionality we call &tcess AutomatorConsider
a large organization (such as a government) that wishes to implement a complex hier-
archical access control system for a large collection of private information. In such a
system, a single piece of information may need to accessible by persons with a variety
of different credentialsg.g.the co-chair of one subcommittee and the secretary of an
unrelated working group may need access to the same piece of secret information). In
our setting, we allow for aexponentiahumber of sets of credentials to give access to a
common piece of information. We model this framework as an arbitrary directed graph,
where each edge is labeled with a password/credential, and each node is attached to a
secret. At the start, the structure of the graph is completely unknown to a user, but by
supplying passwords/credentials, the user can explore and learn as much of the graph
as she has access to, given the set of passwords/credentials she has. We show how to
provably obfuscate this functionality in the random oracle model. We also show that
our obfuscation can be dynamically updated, such that secrecy is preserved even if the
adversary observes the entire history of obfuscated programs.

A potential drawback of the above functionality concenesmkpasswords. Suppose
there is a document which is accessible by giving a sequence of 5 passwords, but the
adversary has partial information allowing him to narrow each password to a (different)
set of10* possibilities. The adversary could efficiently “break” each password one by
one, and access the document, even though the document itsetfgiaoP’) “bits”
of security. We show how to address this problem: Suppose we have a public regular
expression over hidden strings.g.the expressiondy (z1|z4)* (z2|z3)x324)”, Where
x1, 9,23, x4 are unknown strings). Then we show how to essentially obfuscate this
expression in a way that preserves the natural security inherent in the expression. In the
example above, the adversary would not gain any partial information even if he knew
thatz3 was one of only two possibilities — without knowing andzx,, he cannot re-
solve his uncertainty about;. The main difference between this case and the Access
Automaton is that the overall structure of the regular expression is not hidden by the ob-
fuscation. We also give another obfuscation for public regular expressions over “black
boxes” — this does not have the security property above, but can be seen as providing a
nontrivial obfuscation of a composition of individually obfuscatable functions. We also
show how to go beyond just “equality checking” by giving an obfuscatiopfoximity
checkingn tree metrics.

We believe that the proof techniques we introduce are as important as the results we
obtain. In particular, we give a new notion of reduction between classes of functions
which implies that if one is obfuscatable, then so is the other. The significance of this
is that this allows obfuscations of complex functions to be built using obfuscations of
simpler functions. The latter may be implemented in anyway, possibly in the hardware.
From a theoretical perspective, this is important because obfuscations built this way

we do not concern ourselves with removing the random oracle in this work. We stress that it is
indeed an important problem to address in the future.

need not be based on the random-oracle model, but can be in a model where the simpler
obfuscations are available as primitives. We also make many observations about the
possibility of putting together multiple obfuscations. We believe our techniques and
observations will be of further use in the nascent field of program obfuscation.

2 Preliminaries

Following Barak et al. [1] we define obfuscation of a family of functichsas follows.

Definition 1. A family of functions% is obfuscatabléf there exists an algorithn®
which takes a Turing Machine (or circuit) that computBsc .%# and outputs a Tur-

ing Machine (circuit, respectively) such that the following conditions hold (the TM or
circuit is also denoted by").

1. (Functionality) For allFF € % and all inputsz € {0,1}* we haveO(F)(z) =

2. (Polynomial Slowdown) There exists a polynomialuch that for allF’ € .% we
have|O(F)| < p(|F|) and (in the case of Turing Machines)Aftakest time steps
on an inputz € {0,1}*, O(F) takes at mosp(¢) time steps.

3. (Virtual Blackbox) For all PPTA, there exists a PPE and a negligible functiom
such that for allF” € .# we have

| Pr[A(O(F))) = 1] - Pr[s"(11F) = 1]| < v(|M]).

Here the probabilities are taken over the randomnesd @hdS (and O and F' if they
are randomized).

O is called anobfuscatorfor ., and O(F') an obfuscation of’. O is said to be
efficientif it runs in polynomial time, in which case we s&yis efficiently obfuscatable

Now we extend this definition so that random oracles are taken into account.

We consider a parametkrassociated with the family;,, of functions being obfus-
cated. The size of" € %, is polynomial ink, and the random oracle that can be used
in the obfuscation will be a random member%f, the set of all functions fronj0, 1}*
to {0, 1}*(*) for some polynomial. We shall refer td: as thefeasibility parameter

Definition 2. (Obfuscation in the Random Oracle Model)An oracle algorithm®O
which takes as input a Turing Machine (or circuit) and produces an oracle Turing Ma-
chine (or oracle circuit) is said to be an obfuscator of the fanily= U;.%}, if we have
that

1’. (Approximate Functionality) There exists a negligible functiosuch that, for all
k, for all F € 7, we havePr [3x € {0,1}* : OR(F)(x) # F(x)] < v(k).b

2’. (Polynomial Slowdown) There exists a polynomiaduch that for allk, for all
F € 7, we havd O(F)| < p(k) and (in the case of Turing Machines)Aftakest
time steps on an input € {0, 1}*, O(F') takes at mosp(t) time steps.

® A weaker requirement would be that for al € %, andx € {0,1}*, we have
Pr[O%(F)(z) # F(x)] < v(k).

3’. (Virtual Blackbox) For all PPTA, there exists a PPF and a negligible functiow
such that for allk, for all F' € .%;, we have

| Pr [AR(OR(F))) = 1] = Pr[S7(1%) = 1]| < w(k)

Here the probabilities are taken ov&® € %), as well as the randomness dfand S
(and O if it is randomized).

O is called anobfuscatorfor .#, and O(F') an obfuscation of’. O is said to be
efficientif it runs in polynomial time, in which case we sé&yis efficiently obfuscatable

In the sequel, all our results will apply to the definition presented here (in the random
oracle model). For notational convenience we shall often abbre@&teA” etc. to
simply O, A etc.

3 Reductions and Composition

3.1 Reductions

Definition 3. A class of Turing Machines (or circuits¥ is said to bepolynomial-time
black-box implementable relative # (denoted# < ¥) if there exist polynomial time
TMs (circuits) M and N such that for every” € .Z there is aG € ¢, such thatM ¢
computes the same function Asand N computes the same function@s

So, if ¥ <« ¥, for everyF' € %, ¢ contains a functior which is “equivalent” to
F in some extended sense. Now we give the main tool which lets us reuse results on
obfuscatability.

Lemma 1. If # <« ¢ and¥ is obfuscatable (when evefy € ¥ is given asN for
anF € .%)," then so isZ. Further if ¢ is efficiently obfuscatable, thef is efficiently
obfuscatable too.

Proof: GivenF ¢ .7, letG € ¢ be such that/® = F andG = NF. Since¥ is
obfuscatable, let)’ be an obfuscator fa. We claim thatO(F) = M©'(©) (i.e., the
code of M and the cod®’(G)) is an obfuscation of".

Clearly, conditiond’ and2’ of Definition 2 are satisfied. To prove conditif con-
sider any adversaryl which accepts the cod@(F) = MO (@), We need to demon-
strate a PPT as required by conditiof. First, we build an adversany’ which accepts
the coded’(G), adds the code af/ to it to getO(F'), passes it on to an internally sim-
ulated copy ofA, and outputs whatevet outputs. Now, sinc€’(G) is an obfuscation
of G, there exists a simulatd’ such that

| Pr[S(|0"(G)]) = 1] = Pr[A(0'(G)) = 1]| < e (1)

for some negligible function(

O'(@G)))-

"If G € ¥ is obfuscatable only when represented in some other format, still this Lemma holds,
but now the obfuscator fo? takesF asM @ with G specified in that obfuscatable format.

We useS’ to build S, as follows. Note thaf gets oracle access #0 and receives
|O(F)| as input.S¥ can implement an oracle equivalent@as N, using its oracle
access taF. It runs S’ with oracle access t6' implemented in this way, and input
|O'(G)| calculated fromO(F)| (by subtracting the size df/). S outputs whateves’
outputs.

Clearly, by construction,

Pr[A(O(F)) = 1] = Pr[A(0'(Q)) = 1]
Pr[S"(|O(F)|) = 1] = Pr[S'“(|0'(G)|) = 1]

and so by Equation (1),Pr [S¥(|O(F)|) = 1] — Pr[A(O(F)) = 1]| < e. Finally
|O(F)| > |O'(G)], so thate is still negligible when considered a function 6f F'),
completing the proof.

Note that in buildingd(F) = M (%), the obfuscato® needs to obtaild’ (G),
given F. SinceG can be specified a§ ' to O, if O’ is efficient so i0. O

3.2 Extending Lemma 1

We extend Definition 3, and Lemma 1 to allow reductions to probabilistic families of
functions. We do this for proving Theorem 3. In fact, somewhat more general extensions
are possible. But for the sake of simplicity we restrict ourselves more or less to the
minimum extensions we will need. The reader may skip this section, and return to it
while reading Section 5. The other results in this paper do not need these extensions.

Definition 4. Suppose?is a family of probabilistic Turing Machines (or circuits), and
- a family of deterministic TMs (circuits). We s& <« ¢ if there exist probabilistic
polynomial time TMs (circuits)/ and N such that for every’ € .# thereis aG € ¥,
such that the distributions of outputs &f¢ and F' are computationally indistinguish-
able, and those oV and GG’ are computationally indistinguishable.

Note that unlike Definition 3, the above definitionrist information theoretic. It
involves the notion of computational indistinguishability, and hence inherently all the
results which use the following lemma requires the adversdrarid S) to be PPT
machines or circuits. The proof of the lemma closely follows that of Lemma 1. It is
given in the extended version [8].

Lemma 2. Suppose¥ <« 9. Let¥ be the family of deterministic TMs (circuits) ob-
tained by fixing in all possible ways the random-tapes of the TMs (circuit€) iFhen,
if 4 is obfuscatable, so is?.

3.3 Composition of Obfuscations

An obfuscated program can be idealized as oracle access to the corresponding function.
We ask if obfuscations compose: can we put together different obfuscations and expect
them to behave ideally as the corresponding collection of oracles. Note that here we

use the terntomposen the same way as one refers to composition of cryptographic
protocols- to ask whether having multiple instances in the system breaks the security or
not. It does not necessarily refer to composition of functions in the usual mathematical
sense, something which we will address later in this section. We make the following
definition to define a simple composition of obfuscations, where there is no interaction
between the different instances.

Definition 5. Anarrayoft functionsFy, ..., F; is defined as follows:
[F1,. .., Fe](i,z) = Fi(x) ifie{l,...,t};elsel

Let [O(F), O(G)], by abuse of notation stands for the code which consists of the
codesO(F) andO(G) as modules, and a small driving unit which directs the calls to
one of the modules as appropriate.

Definition 6. (Simply Composing Obfuscations)An obfuscatoiO for a family .7 is
said to producesimply ¢-self-composing obfuscatiorifs

O ([Fy, ..., Fi]) = [O(Fy), ..., O(F)]

is an obfuscation of the famil§[F1, . .., F}]|F; € #}.8
This can be extended to multiple families of obfuscatable functions to define a set of
simply composing obfuscations

In fact, in the random oracle model we have the following claim (which we conjecture
to extend to the plain model too):

Claim 1. There exists a class of functiofs, and an obfuscato® for .% in the random
oracle model, such that obfuscations producedbare not simply 2-self-composing.

Proof: We consider the class of point function8 (defined later, in Section 4). By
Lemma 4, this class is obfuscatable in the random oracle model. Note that Avhen
andG are identical (randomly chosen) functions, oracle access to the furfdfiar

does not reveal the fact that they are identical, to a PPT machine. On the other hand
the obfuscation given in Lemma 4 does reveal this. (Of course, it is easy to modify
the obfuscation, in order to avoid this problem.) Thus no simulator can simulate the
behaviour of an adversary (which has access to these obfuscations) which outputs 1

if ' =G and 0 otherwise. O

Conjecture 1. If there are non-trivial obfuscations in the plain model, Claim 1 holds in
the plain model too. Indeed, in that case, we conjecture that there exists an obfuscatable
family .#, such thate = {[F, G] : F, G € %} is unobfuscatable

The difficulty in attempting to prove this conjecture is that it requires a non-trivial obfus-
catable family%, and we have virtually nothing known beyond what is being presented
in this work (which is in the random oracle model).

On the other hand, an obfuscatable function composes witlriaslly obfuscat-
ablefunction (defined below).

8 We can have constant, or polynomial in the feasibility parameter

Definition 7. A family of functions% is learnable as polynomial time circuitsthere
exists an oracle circuit? such that for allFF € .%, P outputs a polynomial sized
circuit Cr which computeg'.

If .7 is learnable it is obfuscatable: the obfuscafbtakes a circuit for and runs
P with oracle access to that circuit; it outpuf§ produced byP as O(F). This is
clearly an obfuscation, because for every adverséra simulatorS simply runsP
with the oracle forF’, obtainsC'r and runsA4 on it.

Definition 8. A family of learnable functions is calledfamily of trivially obfuscat-
able functionsThe obfuscation obtained via learning the function is calledttivéal
obfuscation of the functian

Simple as the following lemma is, it is interesting that its intuitive extension from
trivially obfuscatable family tanyobfuscatable family is an open problem.

Lemma 3. Let.% be a trivially obfuscatable family of functions. Théhjs obfuscat-
able, if and only if the family of functions/ = {[F,G] : F € #,G € 4} is
obfuscatable.

Proof: First, we show tha¥ < .o7. Then it follows from Lemma 1 tha¥ is obfuscat-
able if </ is.

To see that? <« 7, for eachG € ¢ we choosed = [F,G] € &/, whereF € .
is a fixed function for allG. Then a machiné/ which internally implementd" can
implementA with access to onlyr. On the other hand a machi®é which has access
to A can clearly implement:.

Now we show that is obfuscatable i/ is. Intuitively, an obfuscation of/ does
not “hide” the.# component (which is easily learnable). So it is sufficient if we are able
to obfuscate th& part. Formally, we show that fot = [F, G] € </, the following is a
valid obfuscation®(A4) = [O'(F), O'(G)], whereO'(F)) is the trivial obfuscation of
F andQ'(G) is the obfuscation off given by the assumption th@tis obfuscatable. As
earlier the notatioffO’(F), O'(G)] refers to the code which h&?' (F) andO’(G) as
internal modules, plus a small control module to activate the appropriate one depending
on the input.

To show thatO(A) is a valid obfuscation, for every adversadywhich accepts
O(A), we show a simulato$ such thaf Pr [SA(|O(A)|) = 1] — Pr[A(O(4)) = 1]|
is negligible. The structure of the argument is similar to that in the proof of Lemma 1.

From.A, we first build an adversaryl’ which takes as inpud’(G), uses it to build
the code?D(A) =[O'(F), O'(G)], passes it on to an internally simulated copy/fand
outputs whateverd’ outputs. Using the fact th&’(G) is an obfuscation of7, there
exists a simulato§’ such that

| Pr[S(0"(G)]) = 1] = Pr[A(0'(G)) = 1]| < e ()

for some negligible functiona(|O’(G))).
We useS’ to build a simulatorS as follows. Note thafS gets oracle access tb
and receive$O(A)| as input. Oracle access tin particular gives oracle accesskb

SinceF is trivially obfuscatable, it is possible to obtain the trivial obfuscat@iF’)
just using this oracle access It So S first computesD’(F'). Next, note that given
oracle access tdl, oracle access t&/ can also be implemented. $brunsS’ with
oracle access t@ implemented in this way, and inp{®’(G)| calculated fromO(A)|
(by subtracting the size @’(F)). S outputs whateve$’ outputs.

By construction,

and so by Equation (2)Pr [ST(|O(F)|) = 1] — Pr[A(O(F)) = 1]| < . Finally to
complete the proof, we note thi®(A)| > |O'(G)| and soe is still negligible when
considered a function dp(A). O

Now we consider the question of more complex composition of obfuscations. We
ask if obfuscations of composed functions can be obtained by using obfuscations of
the component functions. In particular we look at function compositions (in the usual
mathematical sense, of one function invoking another).

Conjecture 2. Conjecture on Obfuscatability of Function Compositions: Given two
classes# and ¢ of obfuscatable programs, the family = {A(z) = F(G(z)) :
F € 7,G € ¢4} is obfuscatable.

Theorem 1. The Conjecture on Obfuscatability of Function Compositions is false, if
factoring Blum integers is hard or the DDH assumption is true.

Proof Sketch: The Conjecture on Obfuscatability of Function Compositions, if true,
could be applied any constant number of timesZifis obfuscatable, then,{ A(x) =
Fy(Fa(--- (Fe(x))--+))|F; € Z} is obfuscatable. However, it is known that if the
assumptions of the theorem hold, then there exists a family of functions TC°

that is unobfuscatable. On the other hand it is not hard to seehat TCY, the
family of depth 1 threshold circuits, is trivially obfuscatable, because they can be easily
learned from input/output queries. Noting th&tis obtained by a constant number of
compositions of functions fron# completes the contradiction, and the proof. O

4 Point Functions and Extensions

In this section we define a few basic functions which can be obfuscated under the ran-
dom oracle model. The proofs are easy and we include a couple of them.

Definition 9. (Class of Point Functions)A point functionP, : {0,1}* — {0,1} is
defined byP,,(z) = 1if z = « and 0 otherwise. Defing?, = {P, : a € {0,1}*}
and & = U Z,,.

We observe that the following simple obfuscation heuristic is indeed an obfuscation
in the random oracle model (Definition 2).

Lemma 4. For random oraclesR : {0,1}* — {0,1}2*, let O%(P,) be a program
which stores" = R(«), and on inputr € {0, 1}*, checks ifR(z) = r; if so it outputs
1, else 0.

Then,O is an obfuscator of” as defined in Definition 2.

Proof: Polynomial Slowdown is evident (by convention oracle queries are answered in
one time step). The Approximate Functionality condition is true since
Prr[3z € {0,1}*\{a} : R(z) = R(«)]

S PralR) = Ra)] = (2" — 1)/2%
z€{0,1}*\{a}

IN

which is negligible ink.

To show the Virtual Black-Box propert§8’), for any adversary, define the sim-
ulator § (with oracle access t@, which does the following. Pick a random string
r « {0, 1}2*, prepare a purported obfuscation/f with this and hand it to an inter-
nally simulated copy ofd. Recall that4 can make queries to a random oracle, which
in this case will be simulated b§. W.l.0.g we assumel’s queries to the oracle are
distinct, since oracle replies can be cached. WHemakes a query to the random
oracle,S queries theP, oracle withq. If P, answers 1, it answerd’s query withr.
Else it picks a random string if0, 1}2* and sends it tod. Finally S outputs whatever
A outputs. It is easy to see that the view of this internally simulated identicalto
that of anA which receives the obfuscation and access to the random oracle. Thus the
Virtual Black-box requirement is satisfied (witl{k) = 0). O

Though we defined the point function & : {0, 1}* — {0,1} with a € {0, 1}*,
it is easy to see that it can be modified By : UY_ {0,1}* — {0,1} with o €
U?:O{Ov]-}l

4.1 Composable Obfuscations of Point Functions with General Output

Definition 10. (Class of Point Functions with General Output)A point function with
general output)) : {0, 1}* — {0,1}*®) is defined by, s(z) = Bif 2 = cand
1 otherwise. Defing2, = {P, : a€{0,1}*}and2 = U, 2.

We omit the proof of the following theorem, as it is similar to the proof of Lemma 4.

Theorem 2. For random oraclesR : {0, 1}* — {0, 1}2+5(®) let O® (P, 3) be a pro-
gram as follows: LeR (-) denote the firs2k bits of R (), andR(-) denote the remain-
ing bits. Choose) at random from{0, 1}*. Leta = Ry (3,) andb = Ra (1, o). The
program stores), a andc = 3 @ b. On inputz € {0,1}%, it computes)’ = Ry (¢, z)
andd’ = Ry (v, z); if ' = a it outputst’ ¢ c; else it outputsl..

Then,O is an obfuscator of” as defined in Definition 2.

We further observe that the above obfuscation self-composes according to Defini-
tion 6. As long as there only polynomially many (polynomiakinobfuscations in the
system, the probability that two of the obfuscations will have the same valyeiof

negligible. Conditioned on this (negligible probability) event not happening, a simula-
tor with black-box access to all the (polynomially mary) s functions can perfectly
simulate the behavior of an adversary with access to the obfuscations. Note that here
the obfuscator is a randomized algorithm.

4.2 Multi-Point Functions with General Output
Finally, we define a multi-point functiowith general outpuas follows.

Definition 11. (Class of Multi-Point Functions with General Output) A multi-point
function Qa, 6,)....(ar.6,) : 10,1} — ({0, 1}5("’))t is defined as follows: On input

x, outputd € ({0, 1}S(k))t whereb; = 3; if = a;, and elseh; = L. Define 2! =
{Qar,.any) = @i €{0,1}F} and 2" = U, 2;.. Define2* = Upolynomials:2"-

Since from last section we have a self-composable obfuscation for the single point
function with general output, we simply put together therogramsO(Qa, 3,), ¢ =
1,...,tto obtain an obfuscation @, 3,)...,(a..3,)-

Lemma 5. The family of functions2* is efficiently obfuscatable in the random oracle
model, in a self-composable manner.

Proof Sketch:lt is easy to see tha?! < {[F1,..., Fi] : F; € 2}. Since the obfusca-
tion in Theorem 2 is self-composabldF1, ..., Fy] : F; € 2} is obfuscatable, and by
Lemma 1, so is2! (and hence2*). To see that this composition is self-composable,
note that the obfuscation of an array of functions frgthis identical to the obfuscation
of a (much larger) array of functions fro. (|

5 Obfuscating a Complex Access Control Mechanism

Consider the following (interactive) access control task. There are multiple access points
to various functions or secrets. There is an underlying directed multi-graph (possibly
with multiple edges between nodes, and self-loops), with each node representing an
access point. The user starts at a predefined access point, or “start node” and proceeds
to establish her access privileges which allows her to move from one access point to
another, through the edges of the graph. The access control task is the following:

— The user can reach an access point only by presenting credentials that can take her
from the start node to that point.

— The user gains complete access to a function or secret available at an access point
if and only if the user has reached that access point.

— The user does not learn anything about the structure of the graph, except what is
revealed by the secrets at the access points she reached and the edges she traversed.

We specify this task as access to a black-box with which the user interacts, giv-
ing her credentials at various points and receiving the secrets; the black-box internally
maintains the current access point of the user. But we would like to implement this task

as a program which we then hand over to the user. To maintain the security of the task,
we need to obfuscate this program.

In this section we explore this obfuscation problem. We show that in the random
oracle model this access control mechanism can indeed be obfuscated. We model the
interactive task as a non-interactive function (formulated below) which takes the “his-
tory” of interaction and gives a response to the last query.

Definition 12. A graph-based access control problefi; with parameters: andd is
defined by the following:

1. Directed multi-graphGG on & vertices. Each node € k has at most ordered
neighborsu', ..., i . LetE = {(u,v,i) : v = p” for somei € [d] } be the set
of all edges{is used to differentiate between the multiple edges possible between
the same pair of nodes).

2. A set of passwords on the eddes|e € E}, and

3. A set of secrets at the nodgs, |v € [k]}.

Then,
(Un,04,) if Jvg,...,v,, € [k] @andeg,...,ep_1 € E
.) such thatyy = 1,¢; = (v;,v,41,%,), and
X (i1, 21) - - (imr20)) = 0 =1 = (i1, s)
Tj = 7T€j
1 otherwise.

We define the family of functiod®” as the set of alX; with parametergk, d) over
all multi-graphsG, sets of edge-passwords and sets of node-secrets.

Above, (4, z) is a query in which the user provides a purported passwdad thei-th
edge going out of the “current” node. For later notational convenience we shall assume
that there is no secret available at node 1: kg.= L.

We are interested in cases where the inputs toare of size polynomial itk andd.
We point out that there may be exponentially maaiid inputs for whichX outputs a
secret (though the number of distinct secrets is @)lyso it is not possible to obfuscate
X directly using Lemma 5.

Instead we proceed in the following manner: each node is represented by the tuple
(V,0p,€1,. .., €d,Tey s - - -, Te,) Wheree; € E (if there are less thaid outgoing edges
pick dummy values for the remaining edges). For each rodeu < & pick a random
“key” k, from {0,1}%; letx; = 0° (recall that 1 is the start node). Define the function
WE as follows:

(U7UU7 KU) if 2= Ko, and
WE(u, z,i,x) = Jv € [k] such thatr, ., ; = =
L otherwise.

The obfuscation consists of an obfuscatioigf (which is a multi-point function with
at mostkd input points where the output is ndt, and hence can be obfuscated).

Intuitively, this is a good obfuscation because the adversary cannot find the ran-
domly chosen key of a node,, unless it was given out by the (obfuscated) function
WE. But the only way to obtain that is to give. for an edge leading to from a node
u to which the adversary already has the key. Since, to start with, the only key the ad-
versary knows i, it must indeed traverse a path from lutdy providing the all the
edge-passwords in order to getito

Formally, we first define a probabilistic progrd?ﬁg which picks the random keys
above to get a particular deterministic functiti:. Then we show that the family

X <& WN where¥ is the family of aIIWG as above.

Definition 13. Define the randomized algorithbir; as follows: forv € [k], pick ran-
dom keys:, < {0,1}*. Oninput(u, 2, i, z) return W& (u, z, i,).

We define the family of function€ as the set of aIWG (with parametergk, d))
over all multi-graphg, sets of edge-passwords and sets of node-secrets.

Lemma 6. 2 <& V.

Proof: For X € 2" we pickWG € # and demonstratd/ andN as required by the
definition of the relations.

M such thatMgV = X¢ :Oninput(iy, 1), ..., (in, Zn) queryWG with (1,0%,41, 21);
if Wq returns(vs, o4,), query it with(ve, o, , i2, x2) @and so on, until it either returns
or we reach the end of the input and recelivg, o,). In either case output this value.

N such thatNX¢ = WG : N internally maintains two tables: one table is for keys
k4, and one fopathsto each node from node 1, with edge passwords for each edge
appearing on the edge. Initially it sets = 0* and all other keys as., and does not
have any paths recorded for any node. On irput, i, z) N checks ifz = x,, # L. If

not it returns L. Else it will have recorded a path, = 1,v2,i1, 1), ..., (v, Vt41 =

u, iy, 7¢) such thate; = 7y, 4,4, It makes a queryiy, 1), ..., (i,), (i,) to
Xg. If X responds withL, N outputs.L. Else, it receivesv, o,,) from X. It checks

if a key has been already assigned{df not it picks a random key and assigns that to
v. Then it returngv, o, ks).

It is not hard to see that for any PR interacting withWG or NX¢, the output
distribution of NX¢ is the same as that GTVC;, but both distributions conditioned on the
event thatS’ never makes a query with a valid key which it did not receive as answer to
a previous query. But that event is of negligible probability, andvsty ~ We. O

Note that¥ is a family of probabilistic machines, such that if we consider the
family obtained by fixing the random-tapes of machine#inn all possible ways, we
get a sub-family of2* (Definition 11). This sub-family is obfuscatable (beca®eis
obfuscatable, by Lemma 5). Then, from the above lemma and Lemma 2, we conclude
the following.

Theorem 3. The family.2" is efficiently obfuscatable in the random oracle model.

6 Regular Expressions and Obfuscations

Let X be an alphabet (of constant size). We consider regular expressions’aver
{¢Er ... ¢t} where¢E: are formal symbols corresponding to languageswe de-
fine whether or not a stringe X* matchesuch a regular expressipfiLy, ..., L;) as
follows: s matches a symbal”: if s € L;. The rest of the rules are the usual ones: a
single charactes € X matches itselfs € X* matches |p2 if it matches eithep; or

p2; s Matches, - ps if s = s1 - s5 such thats; matches; andss matchesp,; finally

s matchesp™* if s is the null-string, ors = s; - s5 - - - s, where eachs; matches. If

s matches a regular expressipnwe write s ~ p. Below £, ... 1) stands for the
language defined as the set of all strings matchidg, ..., L;).

6.1 Obfuscatingl,(p,,....,P.,)

Consider the case when the languafieabove are the point functiorid,, . In this sec-
tion we consider a family of function®, = U, %, where for allk and allU g €
%,, there is a single fixed regular expressjarHowever, for eaclt, the point func-
tions P,, belong to the%?;, the family of point functions om?zo{o, 1}7. For brevity
we denotecp(pav__.’pat) by ﬁp(a17___7at).

Definition 14. Define the functio/ 1+~ as follows: on input: € {0, 1}*, check if
T € Loyay,....a)- IfSOTEWIMNAQY, ..., 04; ElSE TEtUNL. LEtZ,, = {U,g“vw»at Doy €

Ur_0{0,1}7}, and %, = Uy,

Unless a string in the languag®, ., ,....«,) IS given as input/;-~< reveals noth-
ing beyond the fact that the string is not in the language. We show that this function can
be completely obfuscated.

Theorem 4. For any regular expressiop, the family%, is efficiently obfuscatable in
the random oracle model.

To prove this, we introduce another family of functioffs and show tha¥/, <« 7,,.
Then, we show that/, can be obfuscated (in the random oracle model).

Recall thatp is a regular expression over the symbals) {¢*,...,¢*}. We can
convert this to a deterministic finite-state automaton (DFA), with some of the edges
labeled with¢:. Define a set2, C 2! of subsets oft] as follows. If there is a path
in the above DFA from the start state to some accept state, in which the set &f non-
symbols appearing afg : i € Z C [t]}, thenZ € Z,. In other words Z,, is the set
of all subsets ofy;’s, such that knowingy;’s in any of these subsets will enable one to
construct a string i€ (4, ,....«,)- Note thatZ, can be constructed from independent
ofay, ..., q.

Definition 15. Define the functiorV/;*1--¢ as follows: on input(3i,...,), 8; €
{0,1}*, check if3Z € Z, such thatvi € Z, §;, = «;. If so returnay, ..., oy; else
return L. Let”,, = {Vor2 o a; € UF_{0,1}}, and ¥, = Up 7,

Lemma 7. %, < ¥, for all regular expressiong.

Proof: Corresponding t&/ '~ € %, we pick V¥~ € ¥,

ConstructingM such thatM/Vs'" = Uoo Asinput MY receives a
stringz € {0,1}*. It needs to checkif € £,a,)- M chooses substrings of: as
guesses foty, . . ., ay. If || = n there areD(n?* such choices. But by our convention,
sincep is fixed,t is a constant and?® is still polynomial inn, the size of input ta\/.
For each such guesg, ..., 5:), M queriesV1»% on (By,...,B). If Vi
returns_L for all choices,M also outputsL. If | returns(ay, . .., oy) for any
choice of(f1,...,0:), thenM constructs the complete DFA (replacing the variables
¢ with «;) and checks ifc is accepted by the DFA. If sdy/ outputsay, ..., ay; if
not it outputs..

If v € L,(a,,....ar), then there is some path in the DFA fomwhich accepts:. Let
Z be the set of alf such that{®: appears on this accepting path. By the wgywas
constructedZ € Z,. Further all thes€: appear as part of. Thus, for some guess
B, - -, Bt it will be the case that for all of € Z 8; = ;. Thusifx € L,(a,... a,)
M will obtain all of a4, ..., a; from V¥ and will be able to verify that €
Loar,....ar)- Onthe otherhand it & £,q,) €itheray, ..., a; are not revealed to
M, or they are and/ will discover thatr ¢ £ . In either casé\/ will output
1, as required.

plat,e o)

R P W S § L5 REP ag

ConstructingN such thatNVs" = Voo As input NV receivest
strings(f1, . . ., B). It needs to check if there is a§y € Z, such thav/i € Z o; = 3;.
Associated with eacly is a path from the start state to an accept state in which the
variable(** appear for exactly thosee Z. N chooses for eacly such a path, and
constructs a string» corresponding to that path, substitutifigfor ¢%+. It then submits

zz to Uyt (to which it has oracle access) .Uy responds withL for all zz,

Z € Z,thenN outputs L. If U1~ responds withy, ..., a; for anyz z, then v

then checks iiZ € Z, Vi € Z «; = (3;, and responds accordingly. It can be easily
verified thatN'Ue" """ = Vorar, O

Next we observe that, < 2%, where2* is the class of multi-point functions with
general output (Definition 11).

Lemma8. 7, < 2*

Proof: Let Z, = {Z1,...,Z,}, and for eacl¥; € Z,, let the stringy; be (v},...,~})
where ifj € Z;, v/ = a; and elsey} = 0.

For everyV -2t € ¥, considerQ = Q(y,,a),..(y,a) € 2" whereA =
(a1,...,04) (i.e., if Q is given one of the strings,, . . ., ve, it outputsA. It is easy to
verify that the following machines/ and N are as required by Definition 4.

M@, on input(34,...,3) does the following: for eaclt; € Z, it constructs a
strings; = (6,...,6!) where ifj € Z;, 5{ = B3; and eIsaS{ = 0; then it queries)
with §;; if for any 4 it receivesA from @ it outputs that and elsé.

NV oninputs = (61, 6%), queriesV et with 6. I it receives L as
an answer, it also outputs. Else it receivesgi, and can then can compufg), which
it outputs. O

By Lemma 5,2* is obfuscatable, thereby completing the proof/gfbeing ob-
fuscatable. To complete the proof of Theorem 4, we appeal to Lemma 1, along with
Lemma 7 and the above fact thgs is obfuscatable.

We remark that the construction above can easily be extended to also produce an
arbitrary secret output if the input matches the regular expression.

6.2 Obfuscating a function related top(L1, ..., L¢)

In this section we allow to be part of the function (and therefore can have size polyno-
mial in k). We are interested in matching a given string agaist, . . ., L;) without
compromising the black-box nature Pk, ..., L;]. The family of functions we are
interested in is%. below.

Definition 16. DefineGFElv“-’Lt andeLl»-“th as follows:

p ifa=1
GIL)l"“"Lt(a,x) =¢ L, 1(z) fae{2,...;t+1}

1 otherwise

1 if a = 0 andz matches(Lq, ..., L)
Frooli(a,z) =40 if a = 0 anda does not matcp(L, ..., L;)

GLvobi(a,) otherwise
Yo ={GL "+ paregular expression anfl; € C}
Fo = {Flev"'vLt : p aregular expression andl; € C}

In other words, botld* "+ and /7 provide access to the languagesand to
(the description of) the regular expressjarin addition,Fleth gives access to the
language defined by the regular expressgiohy, . . ., L:).

Theorem 5. % is obfuscatable if and only §[Ly,...,L:] : L; € C}is. Further
this statement holds restricted to efficient obfuscations too.

First we prove the following lemma, which is the heart of the proof. It shows how
to evaluate the regular expressions involvings just with access t&.

Lemma 9. % <« 9 and¥, < %¢, for all familiesC.

Proof: Itis easy to see th&, <« Z¢. For the other direction, we have to demonstrate
the polynomial time oracle machindg and N as in Definition 3. ButV is trivial, and
so0 isM's behaviour when on inpufz, z), it seesa # 0. The non-trivial case is when
a = 0: M should match the input with the regular expression with only black-
box access td.;. We give a fairly efficient algorithm using dynamic programming to
achieve this.

First M obtains the regular expressignfrom G (by giving input(1,¢). It con-
structs a tree corresponding gowith leaf nodes corresponding to symbols frdimu
{¢Er, ..., ¢E}. Each internal node corresponds to one of the three operatoasid

*; in the first two cases the node will have two children and in the last case a sin-
gle child. The root node corresponds to the whole regular expregsidime algo-
rithm will consider the sef of all substrings of the input string = x;...z,; ie.,
S ={z] : 1<i<j<n}U{e}. Foreachnode itwill try to find out all the strings in
S which match the regular expression at that node. This is done bottom-up in the tree.
To obtain this information at the leaf nodéd, makesO(n?) queries to eacl;.

Given this information for the children of a node, the information for that node itself
can be obtained. In the case of/grfode (denoted b = 9]Q,) this is simple: for
each strings € S check ifs ~ Q; or s ~ Q. If either case holds record that~ Q.
For (-)-nodeQ = 9, - Q5 we do the following:

for each s € S do
for i = 0to |s| do
if ¢ ~ Q1 AND sL‘jr'I ~ Q5 then
record s ~ Q

The checkss! ~ Q; and s'll'l ~ Q, are done by checking if those matchings have
already been recorded. Thg-+hodes require a little more work. At a node= Q3 we
do the following:

Let O} denote O,
for k=2tondo
for each s € S\{e} do
for ¢ = 0to |s| do
if si ~ Q¥1 aND s, ~ Qi then
record s ~ QF
record e ~ Q
for each s € S\{¢} do
if s ~ Qf forsome k € {1,...,n} then
record s ~ Q

Itis not hard to see that at each node the algorithm correctly records &l which
match the node. Finally, it checksiif~ p by checking if it is recorded at the root node.
O

Proof: (of Theorem 5)By the above Lemma and Lemma 1, we can obfuscaieif
and only if we can obfuscaté.. We can viewG € ¥ as[{p), [L1, ..., Lx]], where
{(p) stands for the constant (and hence trivially obfuscatable) function which oytputs
Then by Lemma 3% is obfuscatable if and only if[L1,...,L,] : L; € C}is
obfuscatable. O

7 Obfuscating Neighborhoods in Tree Metrics

Point functions are identity checks- they check if the input is identical to a particu-
lar value. A natural relaxation thereof is a neighborhood check. Consider some metric
space from which the inputs are drawn. We would like to have a program which checks
if the input is “near” a hidden point.

We work in a restricted metric space- the space of “tree metrics,” where the the
points are nodes in a (rooted, undirected) tree, and the distance between two points is
the length of the (unique) path between them. (We can allow a metric space that can be
decomposed as a collection o€anstantnumber of tree metrics, but for simplicity we
stick to a single tree-metric.)

Let M stand for the metric space as well as (by abuse of notation) the tree defining
it. Let dpq(+, -) be the distance function iM.

Definition 17. Define the functiod™ : M — M U {L} as follows:

_Ja dm(a,x) <0
TM(x>_{J_ dm(a,z) >0

T = {TM . M atree-metric, |M| =2°%) o € M} and.7 = U, F.

Obfuscatingi-neighborhoods in general metric spaces (beyond what can be achieved
by exhaustively searching the entiraneighborhood of a point) is a challenging prob-
lem. But we show that for tree metrics this problem can be satisfactorily solved using a
simple technique. To obfuscai&"!, traverse the tre¢/, starting at the node, towards
the root of the tree, for a distanéeand pick the node at which we finish. (If we reach
the root beforeS steps pick the root.) Call this noge We show that obfuscatinig’**
is essentially the same as obfuscating the point functiofi with outputa (which as
we have shown, can be efficiently obfuscated in the random oracle model).

Lemma 10. 7 <« 2 (whereZ2 is the point function with general output, as in Defini-
tion 10).

Proof: ForT™ € .7 we pickQp.o € 2. Q. is the function which outputs on
input 5 and_L everywhere else.

NT2" works as follows: On inputz € M queryT with . If were indeed equal to
3 thenT would respond withv. So if T gives L return L. If it gives «, locate3
by traversingM, and check if ther is indeeds or not and answer accordingly.

M@s.« works as follows: on inputz € M, check the firsR§ ancestors of: for being
identical to 3 (using Qgs,q). If Q.. returnsa on some query, checlt(x, o) and
answer appropriately. If it returng in all 26 queries, then it is easy to see that the
distanced v (z, @) > 4. In this case, output.. O

By Lemma 1 and Theorem 2, we get:

Theorem 6. .7 is obfuscatable in the random oracle model.

8 Conclusions and Open Problems

We have given the first positive results and techniques for program obfuscation, but
many important open problems remain. We are hopeful our reduction and composition

techniques will aid in resolving these problems. The most pressing open problem is to
extend our positive results beyond what we have. In particular, can regular languages
be obfuscated? Is theemy example of a keyed cryptographic primitive (even a con-
trived one) other than password checking which can be obfuscated? Another important
problem to be resolved is to firghy non-trivial obfuscation result without using the
random oracle model. Our approach, of reducing obfuscation of one family to obfus-
cating another, could then be used to produce more obfuscations in the plain model.
Also, such techniques are useful in a model where some basic functions may be obfus-
cated in hardware; so one direction to pursue is to explore developing these techniques
further.

Acknowledgments

We thank Dan Boneh for many useful discussions, and collaboration in early parts of
this work. We also thank the anonymous referees for detailed comments on the presen-
tation.

References

1. Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil Vadhan,
and Ke Yang. On the (im)possibility of obfuscating programs.Pioceedings of CRYPTO
2001

2. Ran Canetti, Daniele Micciancio, and Omer Reingold. Perfectly one-way probabilistic hash
functions. InProceedings of the Thirtieth Annual ACM Symposium on Theory of Computing
1998

3. Christian Collberg and Clark Thomborson. Watermarking, tamper-proofing, and obfuscation
—tools for software protection. Technical Report TR00-03, The Department of Computer Sci-
ence, University of Arizona, February 2000.

4. S. Chow, H. Johnson, P. C. van Oorschot, and P. Eisen. A White-Box DES Implementation
for DRM Applications. InProceedings of ACM CCS-9 Workshop DRM 2002

5. Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious
RAMs. Preliminary versions appeared @RYPTO 198%nd STOC 1990 Journal of the
ACM, 43(3):431-473, 1996.

6. Yuval Ishai, Amit Sahai, and David Wagner. Private Circuits: Securing Hardware against
Probing Attacks. IrfProceedings of CRYPTO 2003

7. Matthias Jacob, Dan Boneh, and Edward Felten. Attacking an obfuscated cipher by injecting
faults InProceedings of ACM CCS-9 Workshop DRM 2002

8. Benjamin Lynn, Manoj Prabhakaran, Amit Sahai. Positive Results and Techniques in Obfus-
cation. In the Cryptology ePrint Archive (http://eprint.iacr.org), 2004.

