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Abstract. We revisit the following open problem in information-theoretic
cryptography: Does the communication complexity of unconditionally
secure computation depend on the computational complexity of the func-
tion being computed? For instance, can computationally unbounded play-
ers compute an arbitrary function of their inputs with polynomial com-
munication complexity and a linear threshold of unconditional privacy?
Can this be done using a constant number of communication rounds?
We provide an explanation for the difficulty of resolving these questions
by showing that they are closely related to the problem of obtaining ef-
ficient protocols for (information-theoretic) private information retrieval
and hence also to the problem of constructing short locally-decodable
error-correcting codes. The latter is currently considered to be among
the most intriguing open problems in complexity theory.

Keywords. Information-theoretic cryptography, secure multiparty computa-
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1 Introduction

In STOC 1990, Beaver, Micali, and Rogaway [5] posed the following question:

Is there a constant-round protocol that allows k computationally un-
bounded players to defeat a computationally unbounded adversary, while
using only a polynomial amount of communication in the total length of
their inputs?

This question is still wide open today: it is not known whether all functions
admit such a protocol, even in the simple case that the adversary can passively
corrupt only a single player, and even without any restriction on the number of
rounds.

A partial answer to the above question was given by Beaver, Feigenbaum,
Kilian and Rogaway [4]. They showed that such a round- and communication-
efficient protocol exists when the number of players is roughly as large as the
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total input size. More precisely, every function f of n input bits can be t-securely
computed by k = O(tn/ log n) computationally unbounded players using poly(n)
communication complexity and a constant round complexity. Note that this
result is meaningless when the number of players is fixed (even when t = 1),
since it requires the number of players to grow with the input size . This should
be contrasted with the fact that, ignoring complexity issues, the optimal security
threshold is a constant fraction of the number of players, regardless of the input
size. Again, the problem of resolving these difficulties was posed as an open
question in [4].1

As noted above, if there is no limit on the resources used by the players,
then any function f can be computed by k players with a linear threshold of
information-theoretic security. This can also be done in a constant number of
rounds. However, all general-purpose protocols achieving this have a somewhat
unexpected common feature: their communication complexity depends on the
computational complexity of f (either its circuit complexity if there is no re-
striction on the number of rounds [7, 10, 12], or its formula- or branching pro-
gram complexity in the constant-round case [2, 19]). It seems quite unlikely that a
purely information-theoretic complexity measure would be so closely linked with
computational measures. However, so far there has been no significant negative
evidence against this link nor a positive evidence to support it.

The main goal of this work is to establish a close connection between the
above questions and other well-known open problems. These problems are dis-
cussed below.

Private information retrieval (PIR). A private information retrieval (PIR)
protocol allows a user to retrieve an item i from a database of size N while
hiding i from the servers storing the database. The main cost-measure of such
protocols is the communication complexity of retrieving one out of N bits of data.
There are two main settings for PIR. In the information-theoretic setting [11,
1, 6], there are k ≥ 2 servers holding copies of the database and the default
privacy requirement is that each individual server learn absolutely no information
about i. In the computational setting for PIR [8, 22, 9] there is typically only
a single server holding the database, and the privacy requirement is relaxed to
computational privacy. While the complexity of PIR in the computational setting
is pretty well understood (an “essentially optimal” protocol with polylogarithmic
communication can be based on a reasonable cryptographic assumption [9]), the
situation is very different in the information-theoretic setting. For any constant
k, the best upper bound on the communication complexity of k-server PIR is
some fixed polynomial in N , i.e., O(N1/ck) where ck is a constant depending
on k. (The current best bound on ck is Ω(k log k/ log log k) [6].) On the other
hand, the best known general lower bound on the communication complexity of

1 These questions should not be confused with another major open problem in
information-theoretic MPC: does every polynomial-time computable function ad-
mit a constant-round protocol which is computationally efficient? Our results do not
have direct relevance to this question. However, our results do have relevance to the
variant of this question which allows the protocols to be computationally inefficient.



k-server PIR is logarithmic in N [23]. Hence, there is an exponential gap between
known upper and lower bounds. From now on, the term PIR will refer by default
to information-theoretic PIR.

Symmetrically Private Information Retrieval (SPIR). The original PIR
model is not concerned with protecting the privacy of the data, and allows the
user to learn arbitrary additional information (in addition to the selected bit).
The stronger SPIR primitive [15] requires, on top of the PIR requirement, that
the user learn no additional information about the database other than the
selected bit. This may be viewed as an information-theoretic analogue of

(
N
1

)
-

Oblivious Transfer. We use SPIR as an intermediate primitive for establishing
the connection between PIR and multi-party computation. In doing so, we need
to establish a tighter reduction from SPIR to PIR than the one shown in [15].

Locally-decodable codes (LDC). Standard error-correcting codes can pro-
vide high fault tolerance while only moderately expanding the encoded message.
However, their decoding procedure requires to read the entire encoded message
even if one is only interested in decoding a single bit of this message. LDC si-
multaneously provide high fault tolerance and a sublinear-time “local” decoding
procedure. To make this possible, the decoding procedure must use randomness
for selecting which bits to probe, and some error probability must be tolerated.
More formally, a code C : {0, 1}N → ΣM is said to be (k, δ, ε)-locally decodable if
every bit xi of x can be decoded from y = C(x) with success probability≥ 1/2+ε
by reading k (randomly chosen) symbols of y, even if up to a δ-fraction of the
symbols in y were adversarially corrupted. The main complexity question re-
lated to LDC is the following: Given a constant number of queries k, what is
the minimal length M(N) of a (k, δ, ε)-LDC? In studying this question, one typ-
ically requires δ, ε to be bounded by some fixed constants (independently of N).
However, the problem appears to be as difficult even if δ, ε are sub-constant (say,
δ, ε = 2− logc n) as long as they are not exponentially small.

Katz and Trevisan [20] have shown an intimate connection between this ques-
tion and information-theoretic PIR. In particular, a k-server PIR protocol in
which the user sends α(N) bits to each server and receives β(N) bits in return
can be used to construct a k-query LDC of length O(k2α(N)) over Σ = {0, 1}β(N).
Accordingly, the best upper bound on the length of a k-query LDC is exponen-
tial in N and the best general lower bound is polynomial in N [20]. The question
of obtaining stronger lower bounds for LDC has recently received a significant
amount of attention [20, 17, 13, 27, 21], and progress on this question appears to
be very difficult.

1.1 Our Results

We prove that the problem of obtaining communication-efficient constant-round
protocols for arbitrary functions is closely related to the problem of obtaining
communication-efficient PIR protocols. Relying on known connections between
PIR and locally decodable codes [20], we obtain a similar connection between
the communication complexity of unconditionally secure multiparty computation



and the length of locally decodable codes. In particular, strong negative results
for the former problem would imply strong negative results for the latter, which
so far seem elusive.

The above high-level statements hide some subtleties. By default, we will view
the number of players as constant, and measure the complexity of protocols in
terms of their input size. Hence, by referring to the existence of communication-
efficient protocols with a linear security threshold we mean the following: there
exists a constant c < 1/2 such that for all k there exists a polynomial p(·) (pos-
sibly depending on k) such that for all functions f : {0, 1}n → {0, 1} there exists
a k-player bckc-private protocol that computes f with p(n) communication.2

Also, the term “security” refers here to security against honest-but-curious,
computationally unbounded players (or equivalently a passive, unbounded ex-
ternal adversary).

With the above terminology in hand, we can now informally state our main
results (which are actually special cases of more general theorems). The first of
these results connect between the existence of very efficient PIR protocols and
the existence of communication-efficient multiparty computation (MPC):

– (from PIR to MPC) If there exists a 1-round, polylog communication, PIR
with a constant number of servers then there exist communication-efficient,
statistically private, constant-round, multiparty protocols with a linear pri-
vacy threshold.
Moreover, if the PIR protocol that we start with is so-called linear then this
transformation yields perfect multiparty protocols.

– (from MPC to PIR) If there exist communication-efficient multiparty proto-
cols with a linear privacy threshold then there exists polylog communication
PIR with a constant number of servers. Moreover, this transformation main-
tains the number of rounds.

Using the above results, combined with the connections between PIR and locally
decodable codes mentioned above, we get the following additional corollaries:

– (from LDC to MPC) If there exist constant-query LDCs of quasi-polynomial
length and alphabet of quasi-polynomial size then there exist communication-
efficient, statistically private, constant-round, multiparty protocols with a
linear security threshold.

– (from MPC to LDC) If there exist communication-efficient multiparty proto-
cols with a linear privacy threshold then there exists a constant-query LDC
of quasi-polynomial length, quasi-polynomial size alphabet and parameters
ε, δ which are 1/quasipoly(N). (It should be noted that all currently known
LDC with these parameters are of exponential size (i.e., 2NΩ(1)

); therefore,
codes with quasi-polynomial parameters, as those mentioned here, are con-
sidered non-trivial.)

2 Here and in the following, the n input bits of f may be arbitrarily partitioned between
the k players.



To conclude, strong (upper or lower) bounds on the communication complex-
ity of MPC should be roughly as difficult as strong bounds on LDCs, up to some
loss in the achieved parameters.

1.2 Related Work

There is a vast literature on secure computation in the information-theoretic
setting and on private information retrieval. However, most related to the current
work are [4] and [24].

As noted above, [4] obtain communication-efficient protocols for arbitrary
functions, whose security threshold decreases almost linearly with the input size.
Their protocol was related to constructions of locally-random reductions [3],
which in turn are related to PIR. However, the protocol of [4] made a heavy use
of special “easiness” properties of the underlying locally-random reductions, and
thus did not provide an indication that a more general relation exists.

Naor and Nissim [24] study the question of turning a communication-efficient
two-party protocol into a secure one without incurring a significant communica-
tion overhead. In doing so, they make use of an idealized
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)
-OT, which in turn

(using reductions from [25, 14]) can be based on single-server PIR with polyloga-
rithmic communication. However, in the two-party setting considered in [24] our
main result becomes trivial, as the secure computation of an arbitrary function
reduces to a single table lookup.

Organization: In Section 2 we provide some necessary definitions and nota-
tion. Section 3 deals with transforming PIR protocols into SPIR protocols and
Section 4 with transforming the latter into MPC protocols. Section 5 describes
a construction of PIR protocols from multiparty protocols. Finally, in Section 6
we discuss the relation between LDC and PIR.

2 Preliminaries

In this section we sketch the definitions of the main primitives considered in this
work. Since these are very basic and well known primitives, the purpose of this
section is mainly to set up the notation and terminology used in this paper. For
more detailed definitions the reader is referred to the relevant literature.

2.1 MPC

A secure multiparty computation (MPC) protocol allows a set of k players
P1, . . . ,Pk to compute some function f of their local inputs while hiding the
inputs from each other. By default, we consider functions f : ({0, 1}n)k →
{0, 1}. When computing such a function, each player Pi holds an n-bit input
ai ∈ {0, 1}n, and all players output f(a1, . . . , ak). Our results easily extend to
more general types of functionalities (e.g., allowing non-boolean outputs and
different outputs to different players).



In this work we consider MPC in the pure information-theoretic setting, where
both the legitimate players running the protocol and the adversary attacking it
have unlimited computational resources. We restrict our attention to security
against a passive adversary (or honest-but-curious players), also referred to as
privacy. In this setting, a k-party protocol is said to t-privately compute f (where
1 ≤ t ≤ k) if the following requirements are met:

– Correctness. The players always output the correct output f(a1, . . . , ak).
– t-privacy. The view of any set B of at most t players depends only on the

inputs of the players in B and the output of the function. That is, on any two
input vectors a,a′ such that aB , a′B and f(a) = f(a′), the view of players
in B is identically distributed.

The above perfect correctness requirement can be naturally relaxed to ε-
correctness, allowing the output to be incorrect with probability ε. Similarly, the
perfect privacy requirement can be relaxed to (t, ε)-privacy, requiring that for
any set B of at most t players the distributions of its view on any two inputs
vectors a,a′ as above are in statistical distance of at most ε. Moreover, it is
convenient to assume that the above ε-privacy requirement hold given every
choice of the random inputs of players in B.3

While the case of perfect MPC is the more interesting one and is the one
usually considered in the literature, some of our transformations will only yield
non-perfect protocols. In all such cases, ε can be made negligible in n.

2.2 PIR

Private Information Retrieval (PIR) schemes are protocols for k + 1 parties:
servers S1, . . . ,Sk, which are given an N -bit string x ∈ {0, 1}N as input (some-
times referred to as a database), and a user U , which is given as input an index
i ∈ [N ]. A PIR protocol allows communication between the user and the servers;
we assume, without loss of generality, that the servers do not communicate with
each other directly.4 The goal of the protocol is for the user to learn the value
xi while, at the same time, keeping i private. This is captured by the following
requirement.

User-privacy: Denote by Vj [x, i] the random variable containing the view of
server Sj in the protocol when the database is x and the user wishes to retrieve
xi. User-privacy requires that, for any server Sj , the view Vj is independent of i
(i.e., for all x, i, i′ the views Vj [x, i] and Vj [x, i′] are identically distributed). We
will also consider a relaxed variant, termed ε-PIR, in which we only require that
3 This assumption is without loss of generality, since there is at most an

√
ε-fraction

of the random input choices given which the distance is larger than
√

ε. For suffi-
ciently small ε, these bad choices can be eliminated without significantly altering the
protocol’s behavior.

4 Since we are interested in the honest-but-curious setting, and since there is no privacy
requirement with respect to the user, communication between the servers can always
be done with the help of the user.



the statistical distance between Vj [x, i] and Vj [x, i′] be bounded by ε. The latter
requirement will be referred to as ε-user-privacy.

The complexity of PIR schemes is measured mainly by their communication
complexity. We denote by α(N) the total number of bits sent in the protocol
from the user to the servers, by β(N) the total number of bits sent from the
servers to the user, and by m(N) the total communication (in either direction).

2.3 SPIR

Symmetrically Private Information Retrieval (SPIR) schemes are PIR schemes
that satisfy an additional data-privacy requirement, guaranteeing that the only
information obtained by the user in the protocol is the intended output xi:

Data-privacy: Denote by VU [x, i] the random variable which is the view of
the user in the protocol where the servers hold database x the and user’s input
is i. We require that, for all i and for all strings x, x′ such that xi = x′i, the
views VU [x, i] and VU [x′, i] are identically distributed. We will also consider a
relaxed variant, termed ε-SPIR, in which we require that the statistical distance
between these two views be bounded by ε and, as in the case of PIR, also allow
ε-user-privacy.

It should be noted that in the literature (see [15]) information-theoretic SPIR
is discussed in a setting where all servers share a common random string (CRS)
which is unknown to the user. This assumption is necessary if no direct com-
munication between the servers is allowed. In contrast, the use of SPIR in this
paper cannot allow the servers to share a CRS. We therefore allow servers in a
SPIR protocol to directly communicate with each other.

Note that SPIR in this setting can also be viewed as a special case of MPC:
the MPC consists of k + 1 players, the user and the k servers, whose inputs are
restricted to so that all servers hold an identical input x, and whose privacy
constraints are those obtained by setting t = 1 in the formal definitions of MPC.
A similar view can be taken with respect to PIR, except that here the privacy
constraint for the user is removed.

3 From PIR to SPIR

In this section we show how to transform a (perfect or non-perfect) PIR scheme
with communication complexity m(N) into an ε-SPIR scheme with communi-
cation complexity poly(m(N)) (in the model where no CRS is available). This
transformation maintains the number of rounds5 but has a small penalty of
increasing the number of servers from k to k + 1.

A good starting point for presenting our transformation is to recall the trans-
formation of [15], obtaining SPIR with perfect data-privacy in the case where a
5 In the context of PIR, a round is an exchange of messages from the user to the

servers and back. In the context of SPIR we also allow, in parallel, a communication
between the servers.



CRS is available. Its main disadvantage from our point of view is that the CRS
in use is very long, and so modifying it to the setting with no CRS does not
seem obvious. We will show, however, that such a modification can still be done.
We therefore start with the solution from [15]; it assumes a CRS denoted r of
length N that is available to k + 1 servers S1, . . . ,Sk,Sk+1.

1. The user U picks a random shift ∆ ∈ [N ] and sends it to the servers
S1, . . . ,Sk.
The user also sends the shifted index i+∆ to Sk+1 (here and below, whenever
an index is larger than N it should be understood that N is subtracted from
it).

2. U ,S1, . . . ,Sk execute the assumed PIR scheme where U uses i as its input
and the servers use y = x ⊕ (r ¿ ∆) as their input. This scheme allows U
to compute yi = xi⊕ ri+∆ (but may potentially leak additional information
about y).
U also receives from Sk+1 the bit ri+∆. It xors this bit with yi to obtain xi.

Intuitively, user-privacy follows from the fact that the view of each of S1, . . . ,Sk

is exactly as in the PIR protocol and the view of Sk+1 consists of a random in-
dex (independent of i). Data-privacy follows from the fact that y is uniformly
distributed in {0, 1}N and that the only bit of r which is available for U is ri+∆.
This intuition is formally proved in [15]. The communication complexity of the
above SPIR protocol is dominated by the communication complexity of the PIR.
The round complexity also remains unchanged (note that Step 1 can be executed
in parallel to the first message of Step 2).

Next, we wish to modify the transformation to work in the setting where no
CRS is available. A natural approach is to let the server Sk+1 choose the string
r ∈R {0, 1}N , distribute it among all other servers (but not the user) and then
run the protocol above. While this modification still respects both user-privacy
and data-privacy, the communication complexity grows by k ·N (since the length
of r is N) and hence it makes the whole protocol useless for our purposes.

To overcome this, we will show the existence of a “small” set of strings
R ⊂ {0, 1}N that “fools” the protocol; namely, the user’s views obtained in the
modified protocol in which Sk+1 picks r ∈R R are statistically close to those
obtained in the protocol above. The overhead of this transformation will only
be k · log |R| (rather than k · N), which will be small enough. However, the
transformation will no longer obtain perfect data-privacy. The theorem that we
prove is as follows:

Theorem 1. Fix k ≥ 2 and ε > 0. Assume that there exists a k-server PIR
protocol P with communication complexity m(N) and round complexity d(N)
that satisfies ε1-user-privacy, for some ε1 ≥ 0. Then, there exists a (k + 1)-
server SPIR protocol P ′ with communication complexity O(m(N) + log(1/ε))
and round complexity d(N) that satisfies ε1-user-privacy and ε-data-privacy.

The rest of this section is organized as follows. We first formalize a technical
lemma about the existence of a set R as needed. Then, based on this lemma, we



present and analyze the modified transformation from PIR to SPIR. Finally, we
prove the lemma (this is a fairly standard proof, in complexity theory contexts,
that uses a probabilistic argument and is given here for the sake of completeness).

Let R ⊆ {0, 1}N and let C : {0, 1}N → [M ] be a function. Denote by C(R)
the random variable obtained by applying C to a random element of R and by
C(U) the random variable obtained by applying C to a uniformly random N -bit
string. We say that R ε-fools the function C if the statistical distance between
C(R) and C(U) is bounded by ε. Let C be a family of functions. We say that R
ε-fools C if it ε-fools every function C ∈ C.

Lemma 1. Let C be a family of functions from {0, 1}N to [M ] and let ε > 0.
Then, there exists a set RC ⊂ {0, 1}N of size poly(1/ε, M, log |C|) that ε-fools C.

It should be noted that we will apply the above claim with C which is signifi-
cantly smaller than the set of all M2N

functions. Also note that RC may depend
on C; obviously, there can be no single R that is good for all families C, even if
C can only contain a single function.

We defer the proof of the lemma and now describe the modified transforma-
tion. We are given a PIR protocol P, and assume for now that P is a perfect,
one-round protocol (which is the case for all known PIR protocols; the multi-
round case will be discussed in Remark 1 below and the non-perfect case in
Remark 2 below). The protocol starts by server Sk+1 picking r ∈R R, from a
carefully chosen R (specified below) and sending its index (log |R| bits) to all
other servers. The SPIR protocol then proceeds as the SPIR protocol described
above.

User-privacy is easy to argue, independently of the choice of R; indeed, user-
privacy in the original transformation holds for any choice of r, in particular
for all r ∈ R. To argue the data-privacy, we first have to define the set R. For
this, we define a family of functions C that our set R will be able to fool. Fix
some database x ∈ {0, 1}N and a sequence of queries q = (q1, . . . , qk, qk+1) that
may be sent in our protocol from the user to the k + 1 servers. Let Cx,q(r) be
the function that returns the sequence of all answers that the user gets from the
servers, as a function of r, when the database is x and its queries were q. Let C be
the family of all functions Cx,q(r), parameterized by the choice of x and q. Note
that the length of the queries is bounded by α(N) and the length of the answers
is bounded by β(N) (it is therefore convenient to set M

def= 2β(N)). Also note
that the size of C is 2N · 2α(N). For this family C, we pick R = RC as promised
by Lemma 1. This choice of R guarantees that the view seen by the user (which
is determined by Cx,q(r)) is ε-close if r is truly random or if r ∈R R. Hence, by
the perfect data-privacy of the original transformation, we get ε-privacy of the
modified transformation.

Finally the communication complexity consists of the communication com-
plexity of the original PIR (which is m(N) = α(N)+β(N)), the communication
between the user and Sk+1 (which is log N+1 bits) and the cost of sending r from
Sk+1 to all other servers (which is k · log |RC | = O(log 1/ε+log M +log log |C|) =



O(log 1/ε + β(N) + α(N) + log N) = O(m(N) + log 1/ε)). This implies that the
communication overhead of the transformation is fairly small.

Proof of Lemma 1: We prove the lemma by picking at random a set R ⊂
{0, 1}N of w strings (each is chosen uniformly and they are all independent).
To prove the lemma, it suffices to show that for all C ∈ C no (statistical) dis-
tinguisher can distinguish between the random variables C(R) and C(U) with
more than an ε-advantage, where a (statistical) distinguisher is just a subset
T ⊂ [M ] of all possible outputs. For this, we first fix some C and T and bound
from above the probability that, for a random R, the distinguisher can tell apart
C(R) from C(U). Namely, for some “small” δ we wish to prove that

Pr
R

[|Pr(C(U) ∈ T )− Pr(C(R) ∈ T )| > ε] ≤ δ.

Let p
def= Pr(C(U) ∈ T ). Therefore, we need to prove that when sampling w

times a binomial distribution that gives 1 with probability p, the probability
that the average will deviate from p by more than ε is bounded by δ. This kind
of bounds is given by Chernoff bounds. Specifically, it can be shown that if
w = poly(1/ε, log(1/δ)) then this probability is indeed bounded by δ. Now, if we
set δ < 1/(|C| · 2|M |) it follows by a union bound argument that there exists a
choice of R such that for all 2M distinguishers, and for each of the |C| functions
C ∈ C, we have |Pr(C(U) ∈ T )−Pr(C(R) ∈ T )| ≤ ε, as needed. The size of this
R is w = poly(1/ε,M, log |C|), as needed.

Remark 1. We dealt above with the case that the PIR scheme P is a one-round
scheme. We outline here how a similar construction can be applied in the case
where P is a multi-round PIR. Essentially, we apply the same transformation as
above; we just need to re-define the set of functions C and as a result the set RC
that fools these functions. The set C is defined by the collection of all functions
Cx,q as before, except that this time q includes all the communication sent by
the user in all rounds and Cx,q(r) returns all the answers sent by the servers
over all rounds. RC is now defined by applying the lemma to this C and with
ε′ = ε/2α(N). We claim that the resulting SPIR protocol, P ′, is indeed ε-private.
Suppose to the contrary that there is a distinguisher T that participates in P ′
and can tell, with advantage more than ε, whether r is chosen from U or from R.
We argue that this allows us to construct a distinguisher T ′ that can tell C(R)
from C(U), for some C, with advantage better than ε′, contradicting the choice
of R. The distinguisher T ′ works by guessing q, i.e. guessing all the messages
sent by the user over all rounds of the protocol (a total of α(N) bits), randomly
picking the user’s random input, and asking to see the value of Cx,q(r). (In
case where the servers in P are randomized, the latter should also depend on
their uniformly chosen random inputs.) If the answers are consistent with the
queries guessed by T ′, it applies T to guess whether r comes from U or from
R; otherwise, it just guesses at random. The advantage of T ′ in this guess is
1/2α(N) (the probability of guessing q correctly) times the advantage of T . Note



that even though ε′ ¿ ε, since the communication grows by log |R| the effect of
using ε′ rather than the original ε is just an additive factor of α(N).

Remark 2. The same transformation, as described above, can be applied to an
ε1-PIR. The user-privacy of the SPIR that we obtain remains as in the PIR (i.e.,
ε1) and the data-privacy has a parameter ε.

Remark 3. It is important to note that our transformation is inherently non-
perfect. However, we point out that there is an important special case in which
an alternative perfect transformation can be presented; this is the case of linear
PIR (or LPIR, for short). LPIR is a variant of PIR discussed in the literature;
it is a one-round protocol where the servers’ answers are viewed as vectors in a
space F β , and the user computes its output xi by taking a linear combination
of the k answers, whose coefficients may depend on i and on the user’s random
input. All information-theoretic PIR schemes from the literature are linear in
this sense. The perfect transformation is now obtained as a combination of two
facts: The first is that any k-server LPIR protocol with m(N) communication
can be transformed into a linear 2k-server protocol with query length m(N) in
which the user outputs the sum of the 2k answers [16] (see [6] for details). The
second is the existence of a simple MPC protocol to privately compute the sum of
k elements in F with O(k) communication and two rounds. Our transformation
for this case will therefore work as follows: given the LPIR protocol, we construct
the protocol with short answers but instead of the servers sending their answers
to U they will invoke the private protocol for computing xj in a way that only
U will learn the result. In fact, it is possible to avoid doubling the number of
servers by replacing the second step above with a private multiparty protocol
for the following function. The input of each server is its answer to the user’s
query in the LPIR protocol. The user’s input is a vector u representing the linear
combination of the servers’ answers which is needed to reconstruct xi (note that
u should remain private, as it may depend on i). The function should return
the value of xi, which is a degree-2 polynomial in the inputs. Note that, due to
the easiness of the above function, it can be efficiently computed using standard
MPC protocols (e.g., [7]).

4 From SPIR to MPC

In this section we show how to construct, based on a one-round k-server SPIR,
constant-round, 1-private multiparty protocols for k′ = k2 + 2 players that
can compute any function f . If the communication complexity of the SPIR is
m(N) then the communication complexity of the multiparty protocols will be
poly(m(N)). If the SPIR protocol is only ε-private then the MPC protocol is
O(ε)-private (where as usual, k is viewed as a constant).

Let P be the given SPIR protocol. Denote the k2+2 players of the multiparty
protocol by Si,j , i, j ∈ [k] and P1,P2. Also assume, without loss of generality,



that in the given function f only P1,P2 have inputs 6. We therefore denote
the input of these two players by a1, a2 and the desired output by f(a1, a2).
Intuitively, the protocol views the function as a table F of size N × N where
N

def= 2n. The goal is for, say, P1 to retrieve the (a1, a2) index of this table,
which is just the desired f(a1, a2). The MPC protocol proceeds as follows:

1. Player P1 applies the SPIR protocol with index a1 ∈ [N ] to generate queries
q1, . . . , qk. It sends each query qi to all players Si,j , j ∈ [k] (i.e., each query
is sent to k players; intuitively, this is done to create the replication needed
in the next step of the protocol).7

Each player Si,j , upon receiving the query qi, computes (but does not send)
the answer in the SPIR protocol to the query qi if the database was Fa2 ,
the a2-th column of the table F ; since the actual value of a2 is not known
to Si,j it does so for all possible values a2 ∈ [N ] hence obtaining a vector Ai

consisting of all N answers to qi (each is a β(N)-bit string). In particular,
note that each Ai is therefore replicated among k players.

2. Player P2 applies the SPIR protocol with index a2 ∈ [N ] to generate queries
q′1, . . . , q

′
k. It sends each query q′j to all players Si,j , i ∈ [k].

Each player Si,j , upon receiving the query q′j , computes the answer it would
give in the SPIR protocol, when its database is Ai (as computed in the
previous step).8 It sends this answer, bi,j to P2.

3. Upon receiving the answers bi,j , the player P2 does the following: It uses, for
each i, the k answers bi,j , j ∈ [k] to obtain the a2-th block of Ai (for this it
applies the reconstruction procedure as in the SPIR protocol). By definition
of Ai, this block contains the answer given in the SPIR protocol to the query
qi on database Fa2 . Denote this answer by bi.
P2 sends the reconstructed information b1, . . . , bk (total of β(N) bits) to P1

who can now also apply the reconstruction procedure of the SPIR protocol
to construct the a1-th entry of Fa2 ; P1 sends this value to all other players.
This, by definition, is exactly f(a1, a2), as needed.

The communication complexity of the above protocol is bounded by the
communication complexity of applying the SPIR protocol k + 1 times. Once,
initiated by P1, on databases of length N = 2n but repeated k times (hence its
6 In the general case where all players have inputs we simply add a preliminary step

where each player Si,j shares its input between P1,P2. Then, we proceed as in the
case where only these two players have an input, where the input for each of P1,P2

consists of its original input together with the shares received from other players
7 If the SPIR protocol requires also communication among the servers then this is

done in parallel to the described step.
8 SPIR (as well as PIR) is defined above to allow the retrieval of a single bit. However,

both primitives have a standard extension that deals with the retrieval of “blocks”
[11]: the user sends one set of queries and the servers answer them by considering the
blocks in a bitwise manner. If the blocks are of length ` then the query complexity
of this solution, α(N), remains unchanged and the answer complexity, β(N) grows
by a factor of `. Since Ai consists of blocks of ` = β(N) bits then this extension is
needed here.



cost is O(m(N))) and the others, initiated by P2, for k retrievals of β(N)-bit
blocks (hence its cost is O(m(N) ·β(N))).9 The total communication complexity
is therefore poly(m(N)), as needed.

We turn to the 1-privacy of the protocol. Informally, we make the following
observations: (1) player P1 has the same view as the user has in the first in-
vocation of the SPIR protocol and hence from the ε-data-privacy of the SPIR
follows the ε-privacy of the protocol for computing f , with respect to player P1.
(2) for each i ∈ [k], player P2 has the same view as the user has in a SPIR pro-
tocol for constructing the block bi from Ai. Also note that b1, . . . , bk may give
information on f(a1, a2) (and may even determine it completely); however, this
information is legal since this is the output of the protocol (and nothing more).
By the ε-data-privacy of the SPIR it follows that the protocol for computing f
is (k · ε)-private with respect to player P2 (which, again, is O(ε) as k is viewed as
a constant). (3) each player Si,j receives one query in each of two (independent)
SPIR invocations; By the ε-user-privacy of the SPIR protocol the view of such
player in the multiparty protocol satisfies ε-privacy.
To conclude, we have established the following:

Theorem 2. Let k ≥ 2 be a constant. Assume that there exist a k-server one-
round SPIR protocol which satisfies ε-privacy, for some ε ≥ 0, and has commu-
nication complexity m(N). Then, for every function f : ({0, 1}n)k′ → {0, 1}, for
k′ = k2 + 2, there exists a multiparty (1, O(ε))-private protocol with communica-
tion complexity poly(m(2n)) and round complexity O(1).

Remark 4. Similar results can also be proved for t-private MPC with t > 1 by
applying the player simulation technique of Hirt and Maurer [18]. More specif-
ically, k-party 1-private protocols can be composed with each other to obtain
k′-party bk′−1

k c-private protocols, for any k′ > k. However, this approach can
be efficiently applied in our setting only for a constant number of players k′.
It follows that the existence of communication-efficient 1-private protocols for
a constant number of players implies the existence of communication-efficient
protocols with a linear privacy threshold, in the sense defined in Section 1.1.
It is interesting to note that in all other contexts we are aware of, the case of
t-privacy can be handled directly without going through intermediate protocols
for non-threshold structures as in [18]. We are not aware of a more direct way to
obtain t-private protocols in our case, and leave open the question of obtaining
protocols with a linear privacy threshold whose communication complexity is
polynomial in both the number of players and the input length.

5 From MPC to PIR

In this section we show that if every k-argument function f admits a 1-private,
k-party MPC protocol with communication complexity c(n), then there exists a
9 In fact, a more careful examination of block retrieval shows that only the answer

complexity grows to O(β2(N)) while the query complexity remains at 2 · α(N).
Similarly, the analysis of the other invocations of the SPIR can also be optimized to
take into account repeated messages etc.



k-server PIR protocol with communication complexity c(log N) + O(log N). 10

This transformation is perfect in the sense that if the MPC protocols are perfect
then so is the PIR. The PIR protocol works as follows:

1. U picks at random a, b subject to a + b = i mod N (in other words a, b form
an additive secret-sharing of i). It also picks random bits r1, r2. It sends a, r1

to server S1 and b, r2 to server S2.
2. The k servers execute the guaranteed MPC protocol for the function

fx((a, r1), (b, r2))
def= xa+b ⊕ r1 ⊕ r2.

The output is sent to U who then masks it with r1 ⊕ r2 to recover xi.

Clearly, the communication complexity is as promised. To argue the the user-
privacy, observe that the input to the MPC protocol provides 1-privacy (since
it is a 1-private secret sharing of i), the output of the MPC also maintains the
privacy since it is masked by random bits (and each server knows at most one
of the two masking bits), and the last part in the view of each server is its view
in the MPC protocol, which also maintains 1-privacy. It follows:

Theorem 3. Let k ≥ 3 be a constant. Assume that there exists a k-player (1, ε)-
private multiparty protocol for every function f : ({0, 1}n)k → {0, 1} with com-
munication complexity c(n) and round complexity d(n). Then, there exists ε-
PIR with communication complexity c(log N) + O(log N) and round complexity
d(log N) + 1.

We note that any family of multiparty protocols with a linear privacy thresh-
old can be easily turned into a 1-private protocol with a constant number of
players by using a standard player partitioning argument.

6 Locally Decodable Codes vs. PIR

Locally decodable codes (LDCs) were introduced in [20] where their close con-
nection with PIR was pointed out. In this section we rely on this connection;
most of the material in this section can be derived from explicit and implicit
statements in [20].

Recall the relevant parameters for a LDC. We are given a string x ∈ {0, 1}N

and encode it into a codeword y of length M(N) over an alphabet Σ. The
code is a (k, δ, ε)-LDC if after suffering an adversarial corruption of δ fraction
of the symbols in the codeword y, it is still possible to reconstruct each bit xi

10 Note that if the complexity of every function f can be bounded by some polynomial
cf (n), then there must be a uniform polynomial bound c(n) that is good for all
functions f . Otherwise, for every n let fn : ({0, 1}n)k → {0, 1} be the “worst”
function on n-bit inputs; the family of functions f = {fn}n has superpolynomial
complexity.



with probability at least 0.5 + ε by reading only k symbols of the (corrupted)
codeword.11

The first transformation (that follows from implicit statements in [20]) shows
that given a (k, δ, ε)-LDC of length M(N) over alphabet Σ it is possible to
construct 1-round k-server PIR with perfect privacy; its query complexity is
α(N) = O(log M(N)), its answer complexity is β(N) = log |Σ| and its probabil-
ity of success (i.e., the probability for correct reconstruction) is 0.5 + ε2δ/(2q).
This probability of success can be amplified to 1−2−σ by repeating the protocol
O(σ) times.

In the opposite direction (again, using implicit statements in [20]) there
is a transformation that takes a 1-round, k-server PIR protocol with success
probability 0.5 + ε and, for all δ > 0, constructs (k, δ, ε/2 − kδ)-LDC of length
M(N) = O(k · 2α(N)/ε) and alphabet Σ = {0, 1}β(N). This already implies that
a “standard” one-round PIR with polylog(N) communication yields LDC with
constant ε, δ and length and alphabet size which are both quasi-polynomial in
N .

We observe that a transformation similar to the one used to handle multi-
round PIR protocols in Section 3 can be used to show that any multi-round PIR
with query complexity α(N), answer complexity β(N) and success probability
0.5 + ε can be transformed into a one-round PIR with similar communication
complexity and success probability of 0.5+ ε/2α(N). Combining this observation
with the transformation from one-round PIR to LDC, we get that if there exists
a multi-round k-server PIR protocol with polylog(N) communication then there
exist LDC with length and alphabet size which are both quasi-polynomial in N
and δ, ε which are both 1/quasi-poly(N).

Remark 5. The above transformation from multi-round PIR to 1-round PIR
applies also in the case where the servers in the multi-round PIR are randomized.
However, the servers in the resulting 1-round PIR will also be randomized, in
which case the transformation from PIR to LDC does not directly apply. It
is possible to get around this difficulty by letting the user pick the servers’
randomness and send it as part of its queries. Using Lemma 1, the amount of
servers’ randomness can be guaranteed to be of the same order of magnitude as
the communication. Hence, this derandomization does not significantly increase
the communication complexity of the original protocol.

7 Conclusions and Open Problems

Our results show close connections among several open problems in information-
theoretic cryptography. Some of the techniques used in proving these connections
may be of independent interest. In particular, the technique used in transform-
ing PIR to SPIR can be used to reduce the amount of randomness used by more
general information-theoretic protocols. Moreover, our transformation from PIR
11 This is a non-adaptive version of the definition. An adaptive version can also be

considered.



to MPC can be applied to get an information-theoretic analogue of the commu-
nication preserving secure protocol compiler from [24].

An interesting problem is to find an explicit construction of a set R, whose
existence is proved in Lemma 1, assuming that the functions it tries to fool are
efficient. This requires an extension of the Nisan-Wigderson type pseudo-random
generators [26] to ones that fool non-Boolean circuits. Good explicit generators
of this type seem necessary for randomness reduction in computationally-efficient
information-theoretic protocols.
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