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Abstract. In the bounded-storage model (BSM) for information-theo-
retically secure encryption and key-agreement one uses a random string
R whose length t is greater than the assumed bound s on the adversary
Eve’s storage capacity. The legitimate parties Alice and Bob share a short
initial secret key K which they use to select and combine certain bits
of R to obtain a derived key X which is much longer than K. Eve can
be proved to obtain essentially no information about X even if she has
infinite computing power and even if she learns K after having performed
the storage operation and lost access to R.

This paper addresses the problem of generating the initial key K and
makes two contributions. First, we prove that without such a key, se-
cret key agreement in the BSM is impossible unless Alice and Bob have
themselves very high storage capacity, thus proving the optimality of
a scheme proposed by Cachin and Maurer. Second, we investigate the
hybrid model where K is generated by a computationally secure key
agreement protocol. The motivation for the hybrid model is to achieve
provable security under the sole assumption that Eve cannot break the
key agreement scheme during the storage phase, even if afterwards she
may gain infinite computing power (or at least be able to break the key
agreement scheme). In earlier work on the BSM, it was suggested that
such a hybrid scheme is secure because if Eve has no information about
K during the storage phase, then she has missed any opportunity to
know anything about X, even when later learning K. We show that this
very intuitive and apparently correct reasoning is false by giving an ex-
ample of a secure (according to the standard definition) computational
key-agreement scheme for which the BSM-scheme is nevertheless com-
pletely insecure. One of the surprising consequences of this example is
that existing definitions for the computational security of key-agreement
and encryption are still too weak and therefore new, stronger definitions
are needed.
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2002-00283), and by the Foundation for Polish Science (FNP).



1 Introduction

In the bounded-storage model (BSM) for information-theoretically secure en-
cryption and key-agreement one can prove the security of a scheme based on the
sole assumption that the adversary’s storage capacity is bounded, say by s bits,
even if her computing power is unlimited. Assume that a random t-bit string R
is either temporarily available to the public (e.g. the signal of a deep space radio
source) or broadcast by one of the legitimate parties. If s < t, then the adver-
sary can store only partial information about R. The legitimate parties Alice and
Bob, sharing a short secret key K initially, can therefore potentially generate a
very long n-bit one-time pad X with n � |K| about which the adversary has
essentially no information.

1.1 Definition of the Bounded-Storage Model

We define the bounded-storage model for key-expansion (and encryption) more
formally. Alice and Bob share a short secret initial key K, selected uniformly
at random from a key space K, and they wish to generate a much longer n-bit
expanded key X = (X1, . . . , Xn) (i.e. n � log2 |K|).

In a first phase, a t-bit random string R is available to all parties, i.e., the
randomizer space is R = {0, 1}t. For instance, R is sent from Alice to Bob or
broadcast by a satellite. In fact, R need not be uniformly random, it suffices to
know a lower bound on the min-entropy H∞(R) of R. Alice and Bob apply a
known key-expansion function

f : R×K → {0, 1}n

to compute the expanded (or derived) key as X = f(R,K). Of course, the
function f must be efficiently computable and based on only a very small portion
of the bits of R such that Alice and Bob need not read the entire string R.

Eve can store arbitrary s bits of information about R, i.e., she can apply an
arbitrary storage function

h : R → U

for some U with the only restriction that |U| ≤ 2s.1 The memory size during
the evaluation of h need not be bounded. The value stored by Eve is U = h(R).
After storing U , Eve loses the ability to access R. (This is also referred to as the
second phase.) All she knows about R is U . In order to prove as strong a result
as possible, one assumes that Eve can now even learn K, although in a practical
system one would of course keep K secret. This strong security property will be
of special importance in this paper.

A key-expansion function f is secure in the bounded-storage model if, with
overwhelming probability, Eve, knowing U and K, has essentially no information
about X. More precisely, the conditional probability distribution PX|U=u,K=k is

1 Since for every probabilistic strategy there is a best choice of the randomness, we
can without loss of generality consider only deterministic adversary strategies.



very close to the uniform distribution over the n-bit strings, with overwhelming
probability over values u and k. Hence X can be used as a secure one-time pad.
Of course the security of f depends on Eve’s memory size s.

1.2 The Subject of this Paper and Previous Results

The bounded-storage model was proposed initially in 1992 [15], but the really
strong (and essentially optimal) security results were proved only recently in a
sequence of papers [2, 1, 10, 11, 14, 17]. The first security proof for general storage
functions h was obtained by Aumann and Rabin [2], but only for n = 1 (i.e.,
for a scheme in which the derived key X is much shorter than the initial key)
or for s � t (i.e., when the size of the memory of the adversary is much smaller
than the length of the randomizer). The first fully general security proof was
given in [11]. Lu [14] and Vadhan [17] showed that a special type of randomness
extractor can be used to construct secure schemes, also improving on the size of
the initial key K.

In all these papers one assumes that Alice and Bob initially share a secret key
K, usually without considering how such a key K is obtained by Alice and Bob.
In this paper we address the problem of generating this key K and investigate
how this key generation process relates to the security proof of the BSM. We
discuss the two most natural approaches to generating K, in a setting where
Alice and Bob are connected only by an authenticated communication channel,
without a trusted third party that initially distributes the key K.

The first approach is to generate K within the context of the BSM itself or,
equivalently, to perform key agreement in the BSM without sharing any secret
key K initially. This approach was discussed by Cachin and Maurer in [3] where
a scheme was proposed in which both Alice and Bob need storage on the order of√

t. More precisely, they each store a random subset (with pairwise independent
indices) of the bits of R and, after R has disappeared for all parties, publicly
agree on which bits they have both stored. With very high probability, Eve has
only partial information about these bits, and therefore Alice and Bob can apply
privacy amplification (i.e., randomness extraction using a strong extractor with
a public extractor parameter) to distill an essentially perfect key X, which they
can then use as a one-time pad. We show (Section 3) that the protocol of [3] is
essentially optimal (in terms of the ratio between the storage size of the honest
parties and the adversary) if s is on the order of t. Since the storage requirement
of
√

t (which is also on the order of
√

s) bits for Alice and Bob may be too high
for a reasonable storage bound s for Eve, the practicality of this approach is
questionable.

The second approach is to generate K by a computationally secure key-
agreement protocol, for instance based on the Diffie-Hellman protocol [7]. At
first, this approach may appear to be completely useless since the provable
information-theoretic security of the BSM-scheme would be lost: A computation-
ally unbounded adversary could break the computational key-agreement proto-
col and then play the role of either Alice or Bob, with the same (small) storage
requirements. However, at second sight, this approach is quite attractive as it



allows to preserve the security of the key agreement protocol, which is only com-
putational, even if the adversary can later break it and even if she gains infinite
computing power.

It was claimed in [1] (Section IV B) (also, less formally in [10] (p. 5), [9]
(p. 11) and [14] (p. 2)) that this implies the security of the hybrid scheme, for
the following reason. Let T be the transcript of the key agreement protocol.
The adversary has (computationally) no information about K, given T , when
performing the storage operation. More precisely, she could not distinguish K
from a truly random and independently generated key (as in the pure BSM).
Therefore she could just as well forget T and generate a random key K himself,
in which case she obviously has no advantage over the pure BSM setting. Since
in this setting Eve learns K anyway after finishing the storage operation, it does
not hurt in the computational setting if Eve can now break the key-agreement
scheme and compute K (from T ). Note that all the remaining aspects of the
security proof are entirely information-theoretic.

It may come as a surprise that this reasoning is false, as is proved in Section 4.
More specifically, we give an example of a computationally secure (according to
the standard definition) key-agreement scheme which, when used to generate
K in the BSM context, renders the latter completely insecure. This shows that
security arguments in a mixed computational/information-theoretic context can
be very subtle. More interestingly, it demonstrates that existing definitions for
the computational security of key-agreement and encryption are still too weak.
Therefore new, stronger definitions are needed.

2 Preliminaries

The treatment in this paper is intentionally quite informal, but it is obvious how
all aspects could be formalized in the traditional manner used in cryptography.
The computation of a party (or algorithm) can be modelled by a probabilistic
Turing machine, a protocol for two parties can be modelled as two interactive
Turing machines, cryptographic primitives (such as key agreement) can be mod-
elled as an asymptotic family with a security parameter, efficient can be defined
as polynomial time, and negligible can also be defined in the traditional manner.

2.1 Secure Key-Agreement

A key-agreement scheme is a protocol between two parties Alice and Bob, at
the end of which each party computes the same key K ∈ K (with overwhelming
probability), for some key space K. Let T be the transcript of the protocol, i.e.,
the entire list of exchanged messages. Throughout the paper, we consider security
against passive attacks, i.e., we assume that Alice and Bob can communicate over
an authenticated channel. This is sufficient to illustrate our point, but note that
security definitions for key-agreement are much more subtle in a setting with an
active adversary who can tamper with messages exchanged between Alice and
Bob.



A key-agreement scheme is computationally secure if no efficient distin-
guisher, when given T , can distinguish K from a key K ′ chosen independently
and uniformly at random from the key space K, with non-negligible advantage.
For example, the computational security of the Diffie-Hellman key-agreement
protocol [7] is equivalent to the so-called Decision-Diffie-Hellman assumption.

A computationally secure key-agreement scheme can also be obtained from
any semantically secure public-key encryption scheme: Alice selects a random
key K ∈ K and sends it to Bob, encrypted with Bob’s public key.

2.2 Private Information Retrieval

The idea of private information retrieval (PIR) was introduced in [4]. A PIR
scheme is a protocol for two parties, a user U and a database D, allowing the
user to access database entries in a way that D cannot learn which information
U requested. More precisely, the database content can be modelled as a string
x = (x1, . . . , xl) ∈ {0, 1}l, and U wants to access the ith bit xi of x, for some
i ∈ {1, . . . , l}, such that D does not learn i. It is not relevant whether U learns
more than xi.

A trivial solution to this problem is that D sends all bits x1, . . . , xl to U ,
allowing U to pick the bits he wants. The purpose of PIR protocols is to reduce
the required communication. Depending on the protocol, the secrecy of i can be
computational or information-theoretic. In this paper we consider computation-
ally secure PIR protocols [13].

A typical PIR protocol proceeds in three stages. First, U sends a query,
depending on i. Let Q(i) denote the query for index i. Second, D computes the
reply R(Q(i), x) and sends it to U . Third, U extracts xi from R(Q(i), x). The
scheme is computationally private if no efficient distinguisher can distinguish
Q(i) from Q(i′), for any i, i′ ∈ {1, . . . , l}.

In this paper we need an additional property of the PIR scheme, namely
that xi is determined by i, Q(i), and R(Q(i), x) (even if it cannot be efficiently
computed). Note that in a PIR scheme, U typically holds a secret key which
allows to extract xi efficiently from i and R(Q(i), x).

A well-known PIR scheme proposed in [13] makes use of the homomor-
phic property of the quadratic residues and the computational difficulty of the
quadratic residuosity problem. More precisely, U generates an RSA modulus
n = pq. The string (x1, . . . , xl) is divided into v = dl/te blocks of length t, for
some t. Let 1 ≤ j ≤ t be the index of xi within its block. The query Q(i) con-
sists of a list (y1, . . . , yt) of t elements of Z∗

n, all (independent) random quadratic
residues, except for yj which is a random quadratic non-residue with Jacobi sym-
bol 1. The database’s reply consists of v elements in Z∗

n, one for each of the v
blocks, where for each block D computes the product of all the ym corresponding
to 1’s in the block. More precisely, R(Q(i), x) consists of one element of Z∗

n for
each block, where for the first block (x1, . . . , xt) the value is

t∏
k=1

yxk

k ,



for the second block it is
∏t

k=1 y
xt+k

k , and similarly for the other blocks. Let
m ∈ {1, . . . , v} be the index of the block to which xi belongs. It is easy to see
that xi = 0 if and only if the reply for the mth block is a quadratic residue.
Clearly this can be efficiently checked by the user U (who knows p and q). Note
that the user ignores all other received values not relevant for obtaining xi. The
communication complexity of this scheme is as follows: The query consists of t
elements of Z∗

n and the reply consists of v elements of Z∗
n. A reasonable trade-off

is to let t ≈
√

l.

3 Limitations of Key-Agreement in the BSM

3.1 The Setting

In this section we consider the BSM without an initially shared secret key be-
tween Alice and Bob. In this setting, in the first phase when R is available
to all parties, Alice and Bob may use a randomized strategy (where the ran-
dom strings of Alice and Bob are independent and denoted as RA and RB ,
respectively) to execute a protocol resulting in transcript T , and to each store
some information about R. Alice stores MA = fA(R, T, RA), and Bob stores
MB = fB(R, T, RB), for some functions fA and fB . Eve also stores some infor-
mation ME = fE(R, T, RE) about R, for some random string RE .

In the second phase, when R has disappeared, Alice and Bob execute a
second (probabilistic) protocol based on the stored values MA and MB , resulting
in a second transcript T ′ and in both computing the key K.2 The security
requirement is that Eve must have only a negligible amount of information about
K, i.e., I(K;MET ′) ≈ 0. In fact, for the sake of simplicity, we assume here that
Eve should obtain zero information about K, i.e.,

I(K;MET ′) = 0,

but the analysis can easily be generalized to a setting where Eve is allowed to
obtain some minimal amount of information about K. The lower bound result
changes only marginally.

We prove the following result, which shows that the practicality of such an
approach without shared initial key is inherently limited. Alice or Bob must have
storage capacity

√
s. The proof is given in Section 3.3.

Theorem 1. For any key-agreement protocol secure in the BSM with no initial
key for which I(K;MET ′) = 0, the entropy H(K) of the generated secret key K
is upper bounded by

H(K) ≤ sAsB

s
,

where sA and sB are the storage requirements for Alice and Bob, respectively,
and s is the assumed storage bound for Eve.
2 Here we assume that Alice and Bob generate the same key K, but this is of course a

requirement of the scheme. The results can easily be generalized to a setting where
the two key values must agree only with high probability.



We note that this bound also implies a bound on the memory of the adversary
in the protocol for the oblivious transfer in the bounded-storage model.3 Namely,
if the memory of the honest parties is sA then the memory of a cheating party
has to be much smaller than s2

A. This shows that the protocol of [8] is essentially
optimal and answers the question posted in [8, 9].

3.2 The Cachin-Maurer Scheme

Indeed, as shown in [3], key agreement can be possible in such a BSM setting
where Alice and Bob share no secret initial key . In this scheme, Alice and Bob
each stores an (independent) random subset (with pairwise independent indices)
of the bits of R. After R has disappeared for all parties, they publicly check which
bits they have stored. Eve has only partial information about these bits (with
overwhelming probability), no matter what she has stored. Therefore Alice and
Bob can use privacy amplification using an extractor to distill an essentially
perfect key K.

In this scheme, due to the birthday paradox, the number of bits stored by
Alice and Bob must be greater than

√
t since otherwise the number of bits known

to both Alice and Bob would be very small with high probability. This also shows
that for s on the order of t, the scheme of [3] has parameters close to the lower
bound given by Theorem 1.4

3.3 Proof of Theorem 1

We first need the following information-theoretic lemma.

Lemma 1. Consider a random experiment with random variables Y,Z, Z1,
. . . , Zn such that conditioned on Y , the variables Z,Z1, . . . , Zn are independent
and identically distributed, i.e.,

PZZ1,...,Zn|Y (z, z1, . . . , zn, y) = PZ|Y (z, y)
n∏

i=1

PZ|Y (zi, y)

for all y, z, z1, . . . , zn and for some conditional probability distribution PZ|Y .5

Then

I(Y ;Z|Z1 · · ·Zn) ≤ H(Y )
n + 1

.

3 This is because there exists a black-box reduction of the key-agreement problem to
the oblivious transfer problem [12]. (It is easy to see that the reduction of [12] works
in the bounded-storage model.)

4 It should be mentioned that the security analysis given in [3] is quite weak, but this
could potentially be improved by a better scheme or a tighter security analysis.

5 In other words, Z, Z1, . . . , Zn can be considered as being generated from Y by sending
Y over n + 1 independent channels specified by PZ|Y , i.e.,

PZ|Y (z, y) = PZ1|Y (z, y) = · · · = PZn|Y (z, y)

for all y and z.



Proof. The random experiment has a strong symmetry between the random
variables Z,Z1, . . . , Zn, both when considered without Y , and also when con-
sidered conditioned on Y . Any information-theoretic quantity involving some of
the random variables Z,Z1, . . . , Zn (and possibly Y ) depends only on how many
of these random variables occur, but not which ones. Let therefore H(u) denote
the entropy of (any) u of the random variables Z,Z1, . . . , Zn. Similarly, we can
define H(u|v) as the conditional entropy of u of them, given any other v of them.
The quantities H(Y, u|v), H(u|Y, v), and I(Y ;u|v) can be defined analogously.
We refer to [5] for an introduction to information theory.

In this notation, the lemma states that

I(Y ; 1|n) ≤ H(Y )
n + 1

.

The chain rule for conditional information6 implies that

I(Y ;n + 1) =
n∑

i=0

I(Y ; 1|i). (1)

We next show that
I(Y ; 1|i) ≤ I(Y ; 1|i− 1). (2)

This can be seen as follows:

I(Y ; 1|i− 1)− I(Y ; 1|i) = H(Y, i− 1) + H(i)−H(Y, i)−H(i− 1)
−(H(Y, i) + H(i + 1)−H(Y, i + 1)−H(i))

= 2H(i)−H(i− 1)−H(i + 1)︸ ︷︷ ︸
=I(1;1|i−1)

− (2H(Y, i)−H(Y, i− 1)−H(Y, i + 1))︸ ︷︷ ︸
I(1;1|Y,i−1)=0

≥ 0

The first step follows from

I(U ;V |W ) = H(UW ) + H(V W )−H(UV W )−H(W ),

the second step by rearranging terms, and the last step since I(1; 1|i − 1) ≥ 0
but I(1; 1|Y, i − 1) = 0. This last fact follows since when given Y , any disjoint
sets of Z-variables are independent.

Now using I(Y ;n + 1) ≤ H(Y ) and combining (1) and (2) completes the
proof since the right side of (2) is the sum of n + 1 terms, the smallest of which
is I(Y ; 1|n). ut
6 Recall that the chain rule for information (see eg. [5], Theorem 2.5.2) states that for

arbitrary random variables V1, . . . , Vn, and U we have

I(U ; V1, . . . , Vn) =

n∑
i=1

I(U ; Vi|Vi−1, . . . , V1)



To prove Theorem 1, recall that sA, sB and s, are the storage capacities of
Alice, Bob, and Eve, respectively. We have to specify a strategy for Eve to store
information (i.e., the function fE). Such an admissible strategy is the following:
For the fixed observed randomizer R = r and transcript T = t, Eve generates
bs/sBc independent copies of what Bob stores, according to the distribution
PMB |R=r,T=t. In other words, Eve plays, independently, bs/sBc times the role
of Bob. We denote Eve’s stored information (consisting of β parts) as ME . The
above lemma implies that

I(MA;MB |ME) ≤ H(MA)⌊
s

sB

⌋
+ 1

≤ H(MA)
s

sB

≤ sAsB

s
.

The last step follows from H(MA) ≤ sA. Now we can apply Theorem 3 in [16]
which considers exactly this setting, where Alice, Bob, and Eve have some ran-
dom variables MA, MB , and ME , respectively, jointly distributed according to
some distribution PMAMBME

. The theorem states that the entropy of a secret
key K that can be generated by public discussion is upper bounded as

H(K) ≤ min
(
I(MA;MB), I(MA;MB |ME)

)
,

i.e., in particular by I(MA;MB |ME). This concludes the proof. ut

4 The Hybrid Model

As described in Section 1.2, some authors have suggested that one can securely
combine the BSM with a (computationally secure) public-key agreement scheme
KA used to generate the initial key K. We call this model the hybrid model. The
motivation for the hybrid model is to achieve provable security under the sole
assumption that Eve cannot break the key agreement scheme during the storage
phase, even if afterwards she may gain infinite computing power, or for some
other reason might be able to break the key agreement scheme. The BSM can
hence potentially be used to preserve the security of a computationally secure
scheme for eternity. The reason is that because if Eve has no information about
K during the storage phase, she has missed any opportunity to know anything
about the derived key X, even if she later learns K. Note that in the standard
BSM Eve learns K by definition, but in the hybrid scheme she may at a later
stage learn it because she can possibly break the key agreement scheme based
on the stored transcript.

We show that this very intuitive and apparently correct reasoning is false
by giving an example of a secure (according to the standard definition) compu-
tational key-agreement scheme for which the BSM-scheme is nevertheless com-
pletely insecure.

The hybrid model can be formalized as follows. During the first phase, Eve
is computationally bounded (typically a polynomial bound), and Alice and Bob
carry out a key agreement protocol, resulting in transcript T . Eve performs an



efficient computation on R and T (instead of performing an unbounded compu-
tation on R alone), and stores the result U of the computation (which is again
bounded to be at most s bits). Then she loses access to R and obtains infinite
computing power. Without much loss of generality we can assume that she stored
T as part of U and hence she can now compute K.

Theorem 2. Assume that a computationally secure PIR scheme7 exists, and
assume its communication complexity is at most l2/3, where l is the size of the
database. Then there exists a key-expansion function f secure in the standard
BSM but insecure in the hybrid model, for the same bound on Eve’s storage
capacity.

Clearly, the scheme of [13] (described in Section 2.2) satisfies the requirements
stated in the theorem. The key-expansion function f (whose existence we claim
in the theorem) can be basically any key-expansion function proven secure in
the literature.

Proof (of Theorem 2). We are going to construct a (rather artificial) key agree-
ment scheme KA such that f is not secure in the hybrid model. To construct
KA we will use an arbitrary computationally secure key agreement scheme KA′.
In [12, 6] it was shown that the existence of computationally secure PIR schemes
implies the existence of a key agreement scheme. Therefore we can assume that
such a scheme exists (since we assume a secure PIR scheme). It is also reason-
able to assume that the communication complexity of this scheme is small when
compared to the size of the randomizer. One can also have in mind a concrete
key-agreement scheme, for instance the Diffie-Hellman protocol, in which case
the transcript consists of gx and gy (for x and y chosen secretly be Alice and
Bob, respectively) and the resulting shared key is gxy. This protocol is secure
under the so-called decision Diffie-Hellman assumption.

Let us fix some PIR scheme. For the key-expansion we will use an arbitrary
function f (secure in the BSM) with the property that the number m of bits
accessed by the honest parties is much smaller than the total length t of the
randomizer, say m ≤ t1/4 (without essential loss of generality as any practi-
cal scheme satisfies this). We assume that f is secure in the BSM against an
adversary who can store at most s = t/2 bits. An example of a function sat-
isfying these requirements is the function f of [11] (for a specific choice of the
parameters).

In our scenario Eve will be able (at the end of the second phase) to recon-
struct each bit accessed by the honest parties. The basic idea is to execute m
times independently and in parallel the PIR query protocol. More precisely the
protocol KA is defined as follows:

1. Alice and Bob invoke the given key-agreement scheme KA′. Let K be the
agreed key and let T ′ be the transcript of the key agreement scheme.

7 as defined in Section 2.2



2. Let κ1, . . . , κm be the indices of the bits in the randomizer that are accessed
by the parties (for the given initial key K and the BSM scheme f). Alice
sends to Bob a sequence Q(κ1), . . . ,Q(κm) of m PIR queries, where each
query is generated independently (with fresh random coins).

3. Alice and Bob (locally) output K as their secret key.

It is not hard to see that the security of KA′ and the privacy of PIR imply
the security of KA. Step 2 is an artificial extension of KA′ needed to make the
resulting scheme insecure in the hybrid BSM, i.e., to encode into the transcript
some useful information that can be used by Eve. Her strategy (for a given tran-
script of KA and a randomizer R) is as follows. In the first phase she computes
the answers to the queries (,,acting” as a database). She does not send them
anywhere, but simply stores them in her memory. She also stores the queries
and the transcript T ′ of the key-agreement scheme KA′. In other words:

U := ((Q(κ1),R(Q(κ1), R)), . . . , (Q(κm),R(Q(κm), R), T ).

(where R denotes the randomizer). Since the PIR is efficient, so is Eve’s compu-
tation. Because of the communication efficiency of the PIR scheme and of the
key-agreement protocol KA′, the length of U is at most m · t2/3 + |T |, which is
at most t1/4+2/3 + |T |. Since |T | is much smaller than t, this value has to be
smaller than s = 1

2 · t for sufficiently large t.
In the second phase the adversary can easily compute (from T ′) the value of

K and therefore she can obtain κ1, . . . , κm. For every i she also knows (Q(κi, R)),
thus she can (using the unlimited computing power) compute the bit of R at
position κi.8 Therefore she can compute the value of f(K, R). ut

5 Discussion

One of the surprising consequences of Theorem 2 is that existing definitions
for the computational security of key-agreement and encryption are too weak
to cover settings in which the adversary’s computing power may change over
time, as is the case in real life. We thus need a new security definition of a key-
agreement scheme and a public-key cryptosystem which implies, for example, the
security in the BSM, as discussed above. It is quite possible that existing schemes
such as the Diffie-Hellman protocol satisfy such a stronger security definition,
and that only artificial schemes as the one described in the proof of Theorem 2
fail to be secure according to the stronger definition. It is an interesting problem
to formalize in a more general context how and when security can be preserved
even though a scheme gets broken a a certain point in time.
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