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Abstract. We introduce Ad hoc Anonymous Identification schemes, a
new multi-user cryptographic primitive that allows participants from
a user population to form ad-hoc groups, and then prove membership
anonymously in such groups. Our schemes are based on the notion of
accumulator with one-way domain, a natural extension of cryptographic
accumulators we introduce in this work. We provide a formal model
for Ad hoc Anonymous Identification schemes and design secure such
schemes both generically (based on any accumulator with one-way do-
main) and for a specific efficient implementation of such an accumulator
based on the Strong RSA Assumption. A salient feature of our approach
is that all the identification protocols take time independent of the size of
the ad-hoc group. All our schemes and notions can be generally and ef-
ficiently amended so that they allow the recovery of the signer’s identity
by an authority, if the latter is desired.
Using the Fiat-Shamir transform, we also obtain constant-size, signer-
ambiguous group and ring signatures (provably secure in the Random
Oracle Model). For ring signatures, this is the first such constant-size
scheme, as all the previous proposals had signature size proportional to
the size of the ring. For group signatures, we obtain schemes comparable
in performance with state-of-the-art schemes, with the additional feature
that the role of the group manager during key registration is extremely
simple and essentially passive: all it does is accept the public key of the
new member (and update the constant-size public key of the group).

1 Introduction

Anonymous identification is an oxymoron with many useful applications. Con-
sider the setting, for a known user population and a known set of resources,
where a user wants to gain access to a certain resource. In many cases, accessing
the resource is an action that does not mandate positive identification of the
user. Instead, it would be sufficient for the user to prove that he belongs to the
subset of the population that is supposed to have access to the resource. This
would allow the user to lawfully access the resource while protect his real identity
and thus “anonymously identify” himself.

Given the close relationships between identification schemes and digital sig-
natures, one can easily extend the above reasoning to settings where a user



produces a signature that is “signer-ambiguous” i.e., such that the verifier is
not capable of distinguishing the actual signer among a subgroup of potential
signers. In fact, it was in the digital signature setting that such an anonymous
scheme was presented for the first time, with the introduction of the group signa-
ture model [19], which additionally mandates the presence of a designated party
able to reveal the identity of the signer, were the need to arise.

Subsequent work on group signatures and on anonymous identification in
general [20, 24, 13, 18, 16, 23, 3, 1, 11, 14, 6, 2] allowed for more efficient designs
and formal modelling of the primitive, with the current state of the art being
the scheme by Ateniese et al. [1]. In general, existing group signature schemes
are derived from their interactive counterpart (ID Escrow schemes [32]) via the
Fiat-Shamir transform [28].

A related notion, but of slightly different nature, is that of ring signatures,
introduced by Rivest, Shamir and Tauman in [34] and further studied in [12, 33].
Ring signatures differ from group signatures in that they allow group formation
to happen in an ad-hoc fashion: group must be formed without the help of a
group manager; in fact, a user might not even know that he has been included
in a certain group. This is in sharp contrast to the group signature setting where
the user must execute a Join protocol with the group manager and obtain a
group-membership certificate that cannot be constructed without the help of
the group manager. Note that ad-hoc group formation in the context of ring
signatures is always understood within the context of a user population and an
associated PKI. Based on the PKI, ad-hoc subsets of the user population can be
formed without the help of a “subset manager”—but it is assumed that every
user has a registered public key.

While ring signatures are attractive because they have simple group for-
mation procedures that can be executed by any user individually, they have
the shortcoming that the length of the signature is proportional to the group
size. For large groups, the length of a ring signature (growing linearly with the
group size) will become impractical. To the contrary, schemes with constant-size

signatures have been successfully designed in the group signature setting [1].
We remark that in the setting of anonymous identification, the counterpart of
“signature size” is the bandwidth consumed by the protocol, which is thus an
important complexity measure to minimize.

Based on the above discussion, an important open question in the context of
anonymous identification and signature schemes, recently posed by Naor in [33],
is the following:

Is it possible to design secure anonymous identification schemes that
enable ad-hoc group formation in the sense of ring signatures and at the
same time possess constant-size signature (or proof) length?

Our contribution. In this work we provide an affirmative answer to the above
question. Specifically, we introduce a new primitive called Ad hoc Anonymous
Identification schemes; this is a family of schemes where participants from a
user population can form groups in ad-hoc fashion (without the help of a group
manager) and then get anonymously identified as members of such groups.



Our main tool in the construction of Ad hoc Anonymous Identification
schemes is a new cryptographic primitive, accumulator with one-way domain,
which extends the notion of a collision-resistant accumulator [7, 4, 15]. In simple
terms, in an accumulator with one-way domain, the set of values that can be ac-
cumulated are associated with a “witness space” such that it is computationally
intractable to find witnesses for random values in the accumulator’s domain.

First, we demonstrate the relationship between such accumulators and Ad hoc

Anonymous Identification schemes by presenting a generic construction based on
any accumulator with one-way domain. Second, we design an efficient implemen-
tation of accumulator with a one-way domain based on the Strong RSA Assump-
tion, from which we obtain a more efficient construction of Ad hoc Anonymous
Identification scheme whose security rests upon the Strong RSA Assumption.

We remark that previous work on anonymous identification that allowed
subset queries was done by Boneh and Franklin [8]. They define a more limited
security model, and show a protocol which imposes on both parties a computa-
tional load proportional to the subset size at each run. Moreover, their scheme
is susceptible to collusion attacks (both against the soundness and against the
anonymity of the scheme) that do not apply to our setting.

In our Strong-RSA-based Ad hoc Anonymous Identification scheme, the com-
putational and communication complexity on both ends is constant in the size
of the group. Thus, the signature version of our ad-hoc anonymous identifica-
tion scheme yields a ring signature with constant size signatures (over a dedi-
cated PKI). Other applications of our scheme include “ad-hoc” group signatures
(group signature schemes where the group manager can be offline during the
group formation) and identity escrow over ad-hoc groups.

Recently, work by Tsudik and Xu [35], building on the work by Camenisch
and Lysyanskaya [15], investigated techniques to obtain more flexible dynamic
accumulators, on which to base group signature schemes (which is one of our
applications). The specific method used by [35] bears many similarities with our
Strong-RSA-based instantiation, with some important differences. Namely, in
their solution anonymity revocation takes time proportional to the user popu-
lation, due to subtle problems concerning the accumulation of composite values
inside the accumulator. Our work resolves this technical problem. Moreover, we
present a new notion of Ad hoc Anonymous Identification scheme, which has
more applications than those specific to group signature schemes: for example,
they allow us to build the first constant-size ring signature schemes. We present
a general construction for our primitives from any accumulator and not just the
one of [15]. Last, our formal definitional framework is of independent interest.

2 Preliminaries

2.1 NP-Relations and Σ-Protocols

Throughout the paper, we assume familiarity with the GMR notation [30].



An NP-relation R is a relation over bitstrings for which there is an efficient
algorithm to decide whether (x,w) ∈ R in time polynomial in the length of x.
The NP-language LR associated to R is defined as LR

.
= {x | (∃w)[(x,w) ∈ R]}

A Σ-protocol [22, 21] for an NP-relation R is an efficient 3-round two-party
protocol, such that for every input (x,w) to P and x to V , the first P -round yields
a commitment message, the subsequent V -round replies with a random challenge

message, and the last P -round concludes by sending a response message. At
the end of a run, V outputs a 0/1 value, functionally dependent on x and the
transcript π only. Additionally, aΣ-protocol satisfies Special Soundness, meaning
that for any (x,w) 6∈ R and any commitment message, there is at most one pair
of challenge/response messages for which V would output 1; and Special Honest-

Verifier Zero-Knowledge, meaning that there is an efficient algorithm (called a
Simulator) that on input x ∈ LR and any challenge message, outputs a pair of
commitment/response messages for which V would output 1.

The main result we will need about Σ-protocols is the following:

Theorem 1 ([29, 27]). A Σ-protocol for any NP-relation can be efficiently

constructed if one-way functions exist.

2.2 Accumulators

An accumulator family is a pair ({Fλ}λ∈N, {Xλ}λ∈N), where {Fλ}λ∈N is a se-
quence of families of functions such that each f ∈ Fλ is defined as f : Uf×X

ext
f →

Uf for some Xext
f ⊇ Xλ and additionally the following properties are satisfied:

– (efficient generation) There exists an efficient algorithm G that on input a
security parameter 1λ outputs a random element f of Fλ, possibly together
with some auxiliary information af .

– (efficient evaluation) Any f ∈ Fλ is computable in time polynomial in λ.
– (quasi-commutativity) For all λ ∈ N, f ∈ Fλ, u ∈ Uf , x1, x2 ∈ Xλ,

f(f(u, x1), x2) = f(f(u, x2), x1)

We will refer to {Xλ}λ∈N as the value domain of the accumulator. For any
λ ∈ N, f ∈ Fλ and X = {x1, . . . , xs} ⊂ Xλ, we will refer to f(. . . f(u, x1) . . . , xs)
as the accumulated value of the set X over u: due to quasi-commutativity, such
value is independent of the order of the xi’s and will be denoted by f(u,X).

Definition 1. An accumulator is said to be collision resistant if for any λ ∈ N

and any adversary A:

Pr[f
R
← Fλ;u

R
← Uf ; (x,w,X)

R
← A(f, Uf , u) |

(X ⊆ Xλ) ∧ (w ∈ Uf ) ∧ (x ∈ Xext
f \X) ∧ (f(w, x) = f(u,X))] = ν(λ)

For λ ∈ N and f ∈ Fλ, we say that w ∈ Uf is a witness for the fact that
x ∈ Xλ has been accumulated within v ∈ Uf (or simply that w is a witness for x
in v) whenever f(w, x) = v. We extend the notion of witness for a set of values
X = {x1, . . . , xs} in a straightforward manner.



Accumulators with One-Way Domain. An accumulator with one-way do-

main is a quadruple ({Fλ}λ∈N, {Xλ}λ∈N, {Zλ}λ∈N, {Rλ}λ∈N), such that the pair
({Fλ}λ∈N, {Xλ}λ∈N) is a collision-resistant accumulator, and each Rλ is a rela-
tion over Xλ × Zλ with the following properties:

– (efficient verification) There exists an efficient algorithm D that on input
(x, z) ∈ Xλ × Zλ, returns 1 if and only if (x, z) ∈ Rλ.

– (efficient sampling) There exists a probabilistic algorithm W that on input
1λ returns a pair (x, z) ∈ Xλ × Zλ such that (x, z) ∈ Rλ. We refer to z as a
pre-image of x.

– (one-wayness) It is computationally hard to compute any pre-image z ′ of an
x that was sampled with W . Formally, for any adversary A:

Pr[(x, z)
R
←W (1λ); z′

R
← A(1λ, x) | (x, z′) ∈ Rλ] = ν(λ)

2.3 The Strong RSA Assumption

We briefly review some definitions [7, 4] regarding the computational assumption
underlying our efficient construction in Section 5.

A number n is an RSA integer if n = pq for distinct primes p and q such that
|p| = |q|. For λ ∈ N, let RSAλ be the set of RSA integers of size λ. A number p
is a safe prime if p = 2p′ + 1 and both p and p′ are odd primes. A number n is
a rigid integer if n = pq for distinct safe primes p and q such that |p| = |q|. For
λ ∈ N, let Rigλ be the set of λ-bit rigid integers.

Definition 2 (Strong RSA Assumption, [4]).
For any integer λ and for any adversary A:

Pr[n
R
← Rigλ; z

R
← Z

∗
n; (x′, y′)

R
← A(1λ, n, z) |

(

y′ > 1
)

∧
(

(x′)y′

≡ z(n)
)

] < ν(λ)

the probability being over the random choice of n and z, and A’s random coins.

3 Ad hoc Anonymous Identification scheme

3.1 Syntax

An Ad hoc Anonymous Identification scheme is a six-tuple of efficient algorithms
(Setup, Register, Make-GPK, Make-GSK, Anon-IDP, Anon-IDV), where:

– Setup initializes the state of the system: on input a security parameter 1λ,
Setup creates a public database DB (that will be used to store information
about the users’ public keys), and then generates the system’s parameters
param; its output implicitly defines a domain of possible global parameters.

– Register, the registration algorithm, allows users to initially register with the
system. On input the system’s parameters param and the identity of the
new user u (from a suitable universe of users’ identity U), Register returns
a secret key/public key pair (sk, pk). To complete the subscription process,



the user then sends his public key to a bulletin board for inclusion in a public
database DB.
The Register algorithm implicitly defines a domain SK of possible user secret
keys and a domain PK of possible user public keys; its output induces a
relation over user secret key/public key pairs, that we will denote by . We
also require a superset PK′ ⊇ PK to be specified, such that membership to
PK′ can be tested in polynomial time.

– Make-GPK, the group public key construction algorithm, is a deterministic
algorithm used to combine a set of user public keys S into a single group
public key gpkS , suitable for use in the Anon-ID protocol described below.
Syntactically, Make-GPK takes as input param and a set S ⊆ PK′; its output
implicitly defines a domain GPK of possible group public keys. We also
require a superset GPK′ ⊇ GPK to be specified, such that membership to
GPK′ can be tested in polynomial time.
The Make-GPK algorithm shall run in time linear in the number of public
keys being aggregated; we also remark here that our definition forces Make-

GPK to be order-independent i.e., the order in which the public keys to be
aggregated are provided shall not matter.

– Make-GSK, the group secret key construction algorithm, is a deterministic
algorithm used to combine a set of user public keys S ′, along with a secret
key/public key pair (sku, pku), into a single group secret key gsku, suitable
for use in the Anon-ID protocol described below.
Make-GSK takes as input param, a set S ′ ⊆ PK′ and a key pair (sku, pku)
satisfying skupku, and it shall run in time proportional to the size of S ′.
Its output implicitly defines a domain GSK of possible group secret keys.
The Make-GPK and Make-GSK algorithms can be used to extend the
-relation to GSK × GPK, as follows: A group secret key gsk

.
=

Make-GSK(param, S′, (sk, pk)) is in -relation with a group public key
gpk

.
= Make-GPK(param, S) if and only if S = S ′∪{pk}. Observe that even in

the case that the-relation is one-to-one over SK×PK, it is usually many-
to-one over GSK × GPK, as more than one group secret key correspond to
the same group public key.

– Anon-ID
.
= (Anon-IDP,Anon-IDV), the Anonymous Identification Protocol, is

an efficient two-party protocol, in which both Anon-IDP (the prover) and
Anon-IDV (the verifier) get in input the system’s parameters param and a
group public key gpk (corresponding to some set S of user public keys i.e.,
gpk

.
= Make-GPK(param, S)); Anon-IDP is also given a group secret key gsk

as an additional input.
Any execution of the Anon-ID protocol shall complete in time independent
from the number of public keys that were aggregated when constructing gpk
and/or gsk; at the end of each protocol run, Anon-IDV outputs a 0/1-valued
answer.

Correctness. For correctness, we require that any execution of the Anon-ID

protocol in which the additional input to Anon-IDP is a group secret key gsk
-related to the common input gpk, shall terminate with Anon-IDV outputting
a 1 answer, with overwhelming probability.



Honest user registration oracle OHReg User corruption oracle OCor

IN: u ∈ U IN: pk
u
∈ PK′

RUN: 1. (sku, pk
u
)

R
← Register(param, u) RUN: 1. sku ← DB.Lookup(pk

u
)

2. DB.Store(sku, pk
u
) /* sku ← ⊥ if no match found */

OUT: pk
u

OUT: sku

Transcript oracle OScr

IN: S′ ⊆ PK′, pk
u
∈ PK′

RUN: 1. sku ← DB.Lookup(pk
u
)

2. if sku = ⊥
3. then π ← ⊥
4. else gpk ← Make-GPK(param, S ′ ∪ {pk

u
})

5. gsk ← Make-GSK(param, S′, (sku, pk
u
))

6. π
R
← Anon-IDP(param, gpk, gsk)↔ Anon-IDV(param, gpk)

OUT: π

Fig. 1. Oracles for the soundness attack game. DB denotes a database storing user
secret key/public key pairs, indexed by public key.

3.2 Soundness

The Attack Game. We formalize the soundness guarantees that we require
from an Ad hoc Anonymous Identification scheme in terms of a game being played
between an honest dealer and an adversary A. In this game, the adversary is
allowed to interact with three oracles OHReg (the honest user registration oracle),
OCor (the user corruption oracle), and OScr (the transcript oracle) (see Fig. 1).

The game begins with the honest dealer running the Setup algorithm for
the security parameter 1λ, and handing the resulting global parameters param

to the adversary. Then, A arbitrarily interleaves queries to the three oracles,
according to any adaptive strategy she wishes: eventually, she outputs a target

group S∗ ⊆ PK′. At this point, A starts executing, in the role of the prover, a
run of the Anon-ID protocol with the honest dealer, on common inputs param and
gpk∗

.
= Make-GPK(param, S∗). Notice that during such interaction, the adversary

is still allowed to query the three oracles OReg,OScr and OCor. Let π̃ be the
transcript resulting from such run of the Anon-ID protocol. A wins the game if
the following conditions hold:

1. for all pk∗ ∈ S∗, there is an entry indexed by pk∗ in the SK-DB Database,
and

2. π̃ is a valid transcript i.e., the run completed with the honest dealer out-
putting 1, and

3. for all pk∗ ∈ S∗, A never queried OCor on input pk∗;

Define Succ
Imp
A

(λ) to be the probability that A wins the above game.

Definition 3. An Ad hoc Anonymous Identification scheme is sound against

passive chosen-group attacks if any adversary A has negligible advantage to win

the above game:

(∀λ ∈ N)(∀PPTA)[SuccSnd

A (λ) ≤ ν(λ)]



Challenge oracle OCh

IN: S′ ⊆ PK′, (sk0, pk
0
), (sk1, pk

1
)

RUN: 1. b∗
R
← {0, 1}

2. if sk0 6pk
0
or sk1 6pk

1
then abort

3. gpk ← Make-GSK(param, S′ ∪ {pk
0
, pk

1
})

4. gsk∗ ← Make-GSK(param, S′ ∪ {pk
1−b∗
}, (skb∗ , pk

b∗
))

5. π∗ R
← Anon-IDP(param, gpk, gsk∗)↔ Anon-IDV(param, gpk)

OUT: π∗

Fig. 2. The oracle for the anonymity attack game.

A Note on Active Security. Our definition of soundness models an adversary
that, in her attempt to fool an honest verifier into accepting a “fake” run of
the Anon-ID protocol, can actively (and, in fact, adaptively) corrupt users, but
can only passively eavesdrop the communication between honest provers and
verifiers. One could, of course, define stronger notions of security by considering
active, concurrent or even reset attacks, along the lines of previous work on
Identification Schemes [26, 5]; however, we refrain from doing so, both to keep the
presentation simpler, and because the main application of our Ad hoc Anonymous
Identification schemes is to obtain new ring and group signatures scheme by
means of the Fiat-Shamir Heuristic (see Section 6.3), for which security against
a passive adversary suffices.

3.3 Anonymity

The Attack Game. We formalize the anonymity guarantees that we require
from an Ad hoc Anonymous Identification scheme in terms of a game being played
between an honest dealer and an adversary A. In this game, the adversary is
allowed to interact only once with a “challenge” oracle OCh, described in Fig. 2.

The game begins with the honest dealer running the Setup algorithm for the
security parameter 1λ, and handing the resulting global parameters param to the
adversary. Then, the adversary A creates as many user secret key/public key
pairs as she wishes, and experiments with the Make-GPK, Make-GSK, Anon-IDP

and Anon-IDV algorithms as long as she deems necessary; eventually, she queries
the OCh oracle, getting back a “challenge” transcript π∗. The adversary then
continues experimenting with the algorithms of the system, trying to infer the
random bit b∗ used by the oracle OCh to construct the challenge π∗; finally, A
outputs a single bit b̃, her best guess to the “challenge” bit b∗.

Define SuccAnon
A (λ) to be the probability that the bit b̃ output by A at the

end of the above game is equal to the random bit b∗ used by the OCh oracle.

Definition 4. An Ad hoc Anonymous Identification scheme is fully anonymiz-
ing if any probabilistic, polynomial-time adversary A has success probability at

most negligibly greater than one half:

(∀λ ∈ N)(∀PPTA)
[∣

∣

∣
SuccAnon

A (λ)−
1

2

∣

∣

∣
≤ ν(λ)

]



3.4 Extensions

Identity Escrow. In some scenarios, complete anonymity might create more
security concerns than what it actually solves. Instead, some degree of “limited
anonymity”, not hindering user accountability, would be preferable. In our con-
text, this can be achieved with the help of a trusted Identity Escrow Authority, or
IEA (also called Anonymity Revocation Manager elsewhere [15]), endowed with
the capability of “reading” the identity of the prover “between the lines” of any
transcript produced by a run of the Anon-ID protocol.

To enable such escrow capability, the definition of Ad hoc Anonymous Iden-
tification scheme from Section 3.1 is modified as follows:

– The Setup algorithm is run by the IEA, and it additionally outputs an identity
escrow key skIE (from some domain SKIE), which the IEA keeps for himself.

– Register is replaced by an efficient two-party protocol
(Registeruser,RegisterIEA), meant to be run between the prospective user and
the IEA, at the end of which the IEA learns the user’s newly generated
public key pku (possibly along with some other information auxu about u
that the IEA stores in a public registry database DB), but he doesn’t learn
anything about the corresponding secret key sku.

– An additional (deterministic) Extract algorithm is defined, which takes as
input a transcript π (for the Anon-ID protocol), along with the Identity
Escrow secret key skIE and the registry database DB, and returns a public
key pk ∈ PK′ or one of the special symbols⊥ and ?. Intuitively, the algorithm
should be able to recover the identity of the user who participated as the
prover in the run of the Anon-ID protocol that produced π as transcript; the
symbol ⊥ should be output when π is ill-formed (e.g., when π comes from a
ZK simulator), whereas ? indicates failure to trace the correct identity.

Our definitions of the security properties of the system have to be adjusted,
since we now have an additional functionality that the adversary may try to
attack; moreover, the presence of the IEA may open new attack possibilities to
the adversary.

The security requirements for the new Extract algorithm are formalized by
augmenting the attack scenario defining the soundness property (Section 3.2). In
this new, combined game, the adversary initially gets the IEA’s secret key sk IE,
along with the public parameters param of the system. Then, the game proceeds
as described in Section 3.2, except that we loosen the conditions under which
the adversary is considered to win the game, substituting the last two caveats
with the following:

2′. π̃ is a valid transcript i.e., Extract(π̃, skIE,DB) 6= ⊥ and
3′. for all pk∗ ∈ S∗, either Extract(π̃, skIE,DB) 6= pk∗, or A never queried OCor

on input pk∗;

As for the anonymity property, the definition from Section 3.3 is changed
in that the adversary is now given access to two more oracles (beside
the challenge oracle OCh): a corrupted-user registration oracle OCReg()

.
=



RegisterIEA(skIE, param,DB), and a user identity extraction oracle OXtr(·)
.
=

Extract(·, skIE,DB). The adversary wins the game if she successfully guesses the
random bit chosen by the challenge oracle OCh, without ever submitting the
challenge transcript π∗ to the extraction oracle OXtr.
Supporting Multiple Large Ad Hoc Groups. In many applications where
Ad hoc Anonymous Identification schemes could be useful, new ad hoc groups
are often created as supersets of existing ones: for example, if ad hoc groups are
used to enforce access control, new users may be added to the group of principals
authorized to access a given resource. In such cases, the ability to “augment” a
group public key with the a new user’s public key can be very handy, especially
if coupled with algorithms to efficiently create the corresponding group secret
key for the new user, and to update the group secret keys for the existing users.
Our model can be easily amended to capture this incremental functionality; we
refer the reader to the full version of this paper [25] for the details.

4 Generic Construction

In this section, we will establish the fact that the existence of accumulators
with one way domain implies the existence of Ad hoc Anonymous Identification
schemes. Below we describe how the algorithms (Setup, Register, Make-GPK,
Make-GSK, Anon-IDP, Anon-IDV) can be implemented given an accumulator with
one-way domain ({Fλ}λ∈N, {Xλ}λ∈N, {Zλ}λ∈N, {Rλ}λ∈N, ).

– Setup executes the accumulator generation algorithm G on 1λ to obtain
f ∈ Fλ. Then it samples Uf to obtain u ∈R Uf . Setup terminates by setting
param := (λ, u, f,D,W ), where D and W are polynomial-time algorithms
respectively to decide and to sample the relation Rλ.

– Register first samples a pair (x, z) ∈ Xλ×Zλ such that (x, z) ∈ Rλ using the
sampling algorithm W of the relation Rλ on input 1λ. Then, Register outputs
sk

.
= z (the user secret key) and pk

.
= x (the user public key). Observe that

SK′ = SK
.
= Zλ, PK′ = Xext

f and PK
.
= Xλ.

– Make-GPK operates as follows: given a set of user public keys S =
{x1, . . . , xt} and the parameters (λ, u, f,D), it sets the group public key
of S to be the (unique) accumulated value of S over u i.e., gpkS

.
= f(u, S).

Note that thanks to the quasi-commutativity property of f , Make-GPK is
indeed order-independent.

– Make-GSK operates as follows: given the set of user public keys S ′ .
=

{x1, . . . , xt}, a user secret key/public key pair (z, x) and the system pa-
rameters param = (λ, u, f,D,W ), it first computes the accumulated value
w
.
= f(u, S′), and then sets the group secret key gsk to be the tuple (x, z, w)

(where S
.
= S′∪{x}). Observe that w is a witness for x in f(u, S ′), and that

GSK
.
= Xλ × Zλ × Uf and GPK

.
= Uf .

– Anon-IDP and Anon-IDV are obtained generically as the Σ-protocol corre-
sponding to the following NP-relation Rparam ⊂ GPK × GSK:

Rparam
.
=
{(

v, (x, z, w)
)

|
(

(x, z) ∈ Rλ

)

∧
(

f(w, x) = v
)}



It is easy to see that the above relation is polynomial-time verifiable: indeed,
given v and (x, z, w), one can check in time polynomial in |v| whether (x, z) ∈
Rλ (by verifying that D(x, z) = 1), and whether w is indeed a witness for x
in v (by verifying that f(w, x) = v). Thus, by Theorem 1, we can construct
a Σ-protocol (P, V ) for the NP-relation Rparam. In the resulting protocol,
the common input to the prover and the verifier is the accumulated value v
(i.e. a group public key) and the additional input to the prover is a tuple of
the form (x, z, w) (i.e., a group secret key). Hence, the protocol (P, V ) meets
the specification of the Anon-ID protocol.

As for the correctness of the above construction, observe that relation Rparam

is essentially equivalent to the  relation. Consequently, a prover holding a
group secret key gsk

.
= (x, z, w) -related to the group public key gpk

.
= v

given as input to the verifier, possesses a tuple belonging to the relation Rparam,
so that the execution of the Anon-ID protocol will terminate with the verifier
outputting 1, with overwhelming probability.

Soundness. Intuitively, the soundness of the above generic construction stems
from the following considerations. The Special Honest-Verifier Zero-Knowledge
property of the Σ-protocol Anon-ID guarantees that the Transcript Oracle
doesn’t leak any information to the adversary that she could not compute her-
self. By the Special Soundness property, in order to make the honest dealer ac-
cept (with non-negligible probability) a run of the Anon-ID protocol in which the
group public key gpk

.
= v consists solely of the aggregation of public keys of non-

corrupted users, A should posses a tuple gsk
.
= (x, z, w) such that (x, z) ∈ Rλ

and w is a witness of x in v. Now, the collision resistance of the accumulator
implies that the user public key x must indeed have been accumulated within v,
which means (by the third caveat of the soundness attack game in Section 3.2)
that x belongs to a non-corrupted user. Hence, the adversary didn’t obtain the
pre-image z via the user corruption oracle, which implies that A was able to find
it by herself, contradicting the one-wayness of the accumulator’s domain.

The above intuition could be turned into a rigorous reduction argument: we
refer the reader to the full version [25] for a formal proof.

Anonymity. In attacking the anonymity of the proposed scheme, the adver-
sary basically chooses a group public key gpk

.
= v and two group secret keys

gsk1
.
= (x1, z1, w1) and gsk2

.
= (x2, z2, w2), both -related to gpk. To subvert

anonymity, the adversary should then be able (cfr. Section 3.3) to tell whether
gsk1 or gsk2 was used in producing the (honest) “challenge” transcript. Since
in the generic construction above the Anon-ID protocol is implemented as a
Σ-protocol, this would mean that the adversary is able to tell which “witness”
(gsk1 or gsk2) was used by the prover to show that v belongs to the NP-language
Lparam associated to the NP-relation Rparam. In other words, a successful adver-
sary would break the Witness Indistinguishability of the Anon-ID protocol, which
contradicts the fact that Anon-ID enjoys Special Honest-Verifier Zero-Knowledge.

The reader is referred to [25] for a formalization of the above argument.



4.1 Adding ID Escrow

The generic construction described above can be extended to deal with Identity
Escrow as follows. During the initialization, the Setup algorithm additionally
runs the key generation algorithm K of some CCA2-secure encryption scheme
(K, E ,D). The resulting public key pkIE is included in the system parameters
param, and the secret key skIE is given to the Identity Escrow Authority (IEA).

As for the user registration phase, each new user, after choosing his user secret
key/public key pair (sk, pk)

.
= (z, x), registers his public key with the IEA, which

simply stores his identity and public key in a publicly-available database DB.

The Anon-ID protocol is also changed to be the Σ-protocol corresponding to
the following NP-relation RIE

param:

RIE
param

.
=
{(

(v, ψ), (x, z, w)
)

|
(

(x, z) ∈ Rλ

)

∧
(

f(w, x) = v
)

∧
(

ψ decrypts to x
)}

In other words, the prover now additionally encrypts his public key x under the
IEA’s public key pkIE, and proves to the verifier that he did so correctly.

Finally, the Extract algorithm, on input a transcript π, recovers the ciphertext
ψ from π and decrypts ψ, thus obtaining the identity of the user that played the
role of the prover.

It is not hard to check that the above changes do not affect the soundness
and anonymity properties of the generic construction: in particular, the CCA2-
security of the encryption scheme (which is needed since a malicious party could
trick the IEA into acting as a decryption oracle) guarantees that honest tran-
scripts cannot be modified so as to alter the prover identity hidden under the
ciphertext ψ. See [25] for a security analysis of the extended scheme.

5 Efficient Implementation

5.1 Construction of an Accumulator with One-way Domain

An efficient construction of a collision-resistant accumulator was presented in
[15], based on earlier work by [4] and [7]. Based on this construction, we present
an efficient implementation of an accumulator with one-way domain.

For λ ∈ N, the family Fλ consists of the exponentiation functions modulo
λ-bit rigid integers:

f : (Z∗
n)2 × Zn/4 → (Z∗

n)2

f : (u, x) 7→ ux mod n

where n ∈ Rigλ and (Z∗
n)2 denotes the set of quadratic residues modulo n.

The accumulator domain {Xλ}λ∈N is defined by:

Xλ
.
=
{

e prime |
(e− 1

2
∈ RSA`

)

∧
(

e ∈ S(2`, 2µ)
)

}



where S(2`, 2µ) is the integer range (2` − 2µ, 2` + 2µ) that is embedded within
(0, 2λ) with λ− 2 > ` and `/2 > µ+ 1. The pre-image domain {Zλ}λ∈N and the
one-way relation {Rλ}λ∈N are defined as follows:

Zλ
.
= {(e1, e2) | e1, e2 are distinct `/2-bit primes and e2 ∈ S(2`/2, 2µ)}

Rλ
.
= {

(

x, (e1, e2)
)

∈ Xλ × Zλ |
(

x = 2e1e2 + 1
)

}

The collision resistance of the above construction can be based on the Strong
RSA Assumption, as showed in [15]. Regarding the added one-wayness of the
domain, assuming the hardness of factoring RSA integers, it is easy to see that
the NP-relation Rλ satisfies our one-wayness requirement (cfr. Section 2.2):
hence, the above construction yields a secure accumulator with one-way domain.

5.2 Efficient proof of witnesses for the Accumulator

The generic construction described in Section 4 derives algorithms Anon-IDP and
Anon-IDV from the Σ-protocol corresponding to some NP-relation Rparam: for
our RSA-based accumulator with one-way domain, the relation is defined as:

RRSA
param

.
=
{(

v, (x, (e1, e2), w)
)

|
(

wx ≡ v mod n
)

∧
(

x ∈ S(2`, 2µ)
)

∧
(

x− 1 = 2e1e2
)

∧
(

e2 ∈ S(2`/2, 2µ)
)}

However, the protocol generically obtained in virtue of Theorem 1, though
polynomial time, is not efficient enough to be useful in practice; thus, below we
describe how a practical Σ-protocol for relation RRSA

param could be constructed,
exploiting the framework of discrete-log relation sets [31], which provides a sim-
ple method to construct complex proofs of knowledge over groups of unknown
order. A discrete-log relation set R is a set of vectors of length m defined over
Z ∪ {α1, . . . , αr} (where the αj ’s are called the free variables of the relation)
and involves a sequence of base elements A1, . . . , Am ∈ (Z∗

n)2. For any vector

〈ai
1, . . . , a

i
m〉 the corresponding relation is defined as

∏m
j=1A

ai
j

i = 1. The con-
junction of all the relations is denoted as R(α1, . . . , αr). In [31], an efficient Σ-
protocol is presented for any discrete-log relation set R, by which the prover can
prove of knowledge of a sequence of witnesses x1, . . . , xr, with xi ∈ S(2`i , 2µi)

that satisfy R(x1, . . . , xr) ∧
(

∧r
i=1 (xi ∈ S(2`i , 2ε(µi+k)+2)

)

, where ε > 1, k ∈ N

are security parameters. Note that the tightness of the integer ranges can be in-
creased by employing the range proofs of [10], nevertheless the tightness achieved
above is sufficient for our purposes, and incurs a lower overhead.

In order to prove the relation RRSA
param, we assume that the public parameters

param include the elements g, h, y, t, s ∈ (Z∗
n)2 with unknown relative discrete-

logarithms. In order to construct the proof, the prover provides a sequence of
public values T1, T2, T3, T4, T5 such that T1 = gr, T2 = hrgx, T3 = srge2 , T4 =

wyr, T5 = trg2e1 , where r
R
← [0, bn/4c − 1].



The proof is constructed as a discrete-log relation set that corresponds to
the equations T1 = gr, T2 = hrgx, (T1)

x = ga1 , (T1)
e2 = ga2 , T3 = srge2

(T4)
x = vya1 , (T5)

e2g = ta2gx, for the free variables r, x, e2, a1, a2 such that
x ∈ S(2`, 2µ), e2 ∈ S(2`/2, 2µ), a1 = rx and a2 = re2. The matrix of the discrete-
log relation set is shown below:

























g h y t s v T−1
1 T−1

2 T−1
3 T−1

4 T−1
5 g−1

T1 = gr : r 0 0 0 0 0 1 0 0 0 0 0
T2 = hrgx : x r 0 0 0 0 0 1 0 0 0 0

(T1)
x = ga1 : a1 0 0 0 0 0 x 0 0 0 0 0

T3 = srge2 : e2 0 0 0 r 0 0 0 1 0 0 0
(T1)

e2 = ga2 : a2 0 0 0 0 0 e2 0 0 0 0 0
(T4)

x = vya1 : 0 0 a1 0 0 1 0 0 0 x 0 0
(T5)

e2g = ta2gx : x 0 0 a2 0 0 0 0 0 0 e2 1

























Observe that a proof of the above discrete-log relation set ensures that (i)
the prover knows a witness w for some value x in the ad-hoc group accumulated
value v, and (ii) for the same x, the value x − 1 can be split by the prover
into two integers one of which belongs to S(2`/2, 2µ). This latter range-property
guarantees the non-triviality of the splitting i.e., that the prover knows a non-
trivial factor of x − 1 (i.e., different than −1, 1, 2). Note that this will require
that the parameters `, µ, ε, k should be selected such that `/2 > ε(µ+ k) + 2.

5.3 ID Escrow

In Section 4.1, we discussed a generic transformation to add Identity Escrow
to an Ad hoc Anonymous Identification scheme. Most of the required changes
do not affect the system’s efficiency, except for the need to resort to a generic
derivation of the Anon-ID protocol.

This performance penalty is not unavoidable, however: in fact, escrow capa-
bilities can be directly supported by theΣ-protocol for Anonymous Identification
described in Section 5.2. using protocols for verifiable encryption and decryption
of discrete logarithms from [17].

With notation as in Section 5.2, the Anon-ID protocol is augmented as follows:
after sending the commitment T2 to the verifier, the prover verifiably encrypts
an opening of T2 (namely, x and r) under the IEA public key. By checking
that the encryption was carried out correctly, the verifier can be assured that,
should the need arise, the IEA would be able to identify the prover by decrypting
such opening, which would yield the prover’s public key x. Moreover, by using
verifiable decryption in the Extract algorithm, we can prevent the IEA from
untruthfully opening the identity of the prover for a given transcript, or falsely
claiming that the prover’s identity cannot be properly recovered.

Alternatively, if only honest users are assumed to have access to the Escrow
functionality (so that malicious parties cannot exploit the IEA as a “decryption
oracle”), then a more efficient solution is possible, by having the IEA knowing the
value logg(h) in the proof of knowledge from Section 5. Then, given a transcript



of the protocol (which includes the values T1, T2, T3, T4, T5) the IEA can recover

the value gx = T2T
− logg(h)

1 , from which the prover’s identity can be recovered
by comparing gx to the public keys published in the public DB database.

6 Applications

6.1 Ad Hoc Identification Schemes

This is the most direct application. Imagine a large universe of users, where
each user has a public certificate, but otherwise there is no central authority
in the system. Now, some party “from the street” has a resources which he is
willing to share with some subset of the users. For example, an Internet provider
P may want to enable internet access to all its subscribers. However, privacy
considerations may lead a user to refuse to positively identify himself; in fact,
this is not strictly necessary, as long as he proves he belongs to the group of
current subscribers. Our ad-hoc identification schemes are ideally suited for this
application, bringing several very convenient feautures. First, P can simply take
all the public keys of the users (call this set S) and combine them into one
short group public key gpkS . Notice, this initial setup is the only operation P
performs which requires time proportional to the group size. As for each user
u ∈ S, once again he will use his secret key and the public keys of other user
to prepare one short group secret key gsku. After that, all identifications that u
makes to P require computation and communication independent of the size of
the group. Now, another provider P ′ can do the same for a totally different sub-
group, and so on, allowing truly ad-hoc groups with no trusted authority needed
in the system. Additionally, with incremental Ad hoc Anonymous Identification
schemes (defined in the full version of this paper [25]), one can preserve efficiency
even when the ad-hoc group is built gradually, as each new member addition only
requires constant computation by P and by every pre-existing user in the system.

6.2 Constant Size Ring Signatures

This is one of our main applications, since it dramatically improves the efficiency
of all known ring signature schemes (e.g. [34, 12, 9]). Recall, in a ring signature
scheme there again is a universe of registered users, but no trusted authority.
Any user u can then form a ring S, and sign a message m in such a way that
any verifier (who knows S) can confidently conclude that “the message m was
signed by some member u of S”, but gets no information about u beyond u ∈ S.
Previous papers on the subject suggested that linear dependence of the ring
signature size on the size of the ring S was inevitable, since the group is ad-hoc,
so the verifier needs to know at least the description of the ring. While the latter
is true, in practical situations the ring often stays the same for a long period
of time (in fact, there could be many “popular” rings that are used very often
by various members of the ring), or has an implicit short decryption (e.g., the
ring of public keys of all members of the President’s Cabinet). Thus, we feel



that the right measure of “signature size” in this situation is that of an “actual
signature”—the string one needs in addition to the group description. Indeed,
when the ring stays the same for a long time or has a short description, this
actual signature is all that the verifier needs in order to verify its correctness.
With this in mind, there is no reason why the signature size must be linear in
the size of the ring.

In fact, our result shows that it does not have to be. Specifically, by applying
the Fiat-Shamir heuristics to our ad-hoc identification scheme, we immediately
get ring signatures of constant size. Moreover, our ring signatures enjoy several
desirable features not generally required by ring signatures (even those of con-
stant size). For example, both the signer and the verifier need to perform a one-
time computation proportional to the size of the ring, and get some constant-size
information (gskS and gpkS , respectively) which allows them to produce/verify
many subsequent signatures in constant time.

6.3 Ad Hoc ID Escrow and Group Signatures

As mentioned in Section 3.4, in some situations complete anonymity might not
be desirable. In this case, one wishes to introduce a trusted Identity Escrow Au-

thority (IEA), who can reveal the true identity of the user given the transcript of
the identification procedure (presumably, when some “anonymity abuse” hap-
pens). Such schemes are called ID Escrow schemes [32] and have traditionally
been considered for fixed groups. ID Escrow schemes are duals of group signa-
ture schemes [19, 1], which again maintain a single group of signers, and where
a similar concern is an issue when signing a document anonymously. As argued
in Section 4.1 and Section 5.3, our Ad hoc Anonymous Identification schemes
and the corresponding signer-ambiguous signature schemes can efficiently sup-
port identity escrow capabilities. As a result, we get an ID Escrow and a group
signature scheme with the following nice features. (For concreteness, we concen-
trate on group signatures below.) First, just like in current state-of-the-art group
signature schemes, the signature is of constant size. Second, a user can join any
group by simply telling the group manager about its public key: no expensive
interactive protocols, where the user will “get a special certificate” have to be
run. Thus, the group manager only needs to decide if the user can join the group,
and periodically certify the “current” public key of the group. In other words,
we can imagine a simple bulletin board, where the group manager periodically
publishes the (certified) group public key the group, the description of the group,
and potentially the history of how the public key evolved (which is very handy
for incremental Ad hoc Anonymous Identification schemes; see [25]). From this
information, each member of the group can figure out its group secret key and
sign arbitrary many messages efficiently. (Of course, when signing a message the
signer should also include the certified version of the current group key, so that
“old” signatures do not get invalidated when the group key changes.)
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