
Hash Function Balance
and its Impact on Birthday Attacks

Mihir Bellare1 and Tadayoshi Kohno1

Dept. of Computer Science & Engineering, University of California, San Diego
9500 Gilman Drive, La Jolla, CA 92093, USA.

Email: {mihir,tkohno}@cs.ucsd.edu
URL: http://www-cse.ucsd.edu/users/{mihir,tkohno}

Abstract. Textbooks tell us that a birthday attack on a hash function
h with range size r requires r1/2 trials (hash computations) to find a
collision. But this is quite misleading, being true only if h is regular,
meaning all points in the range have the same number of pre-images
under h; if h is not regular, fewer trials may be required. But how much
fewer? This paper addresses this question by introducing a measure of
the “amount of regularity” of a hash function that we call its balance,
and then providing estimates of the success-rate of the birthday attack,
and the expected number of trials to find a collision, as a function of
the balance of the hash function being attacked. In particular, we will
see that the number of trials can be significantly less than r1/2 for hash
functions of low balance. This leads us to examine popular design prin-
ciples, such as the MD (Merkle-Damg̊ard) transform, from the point of
view of balance preservation, and to mount experiments to determine
the balance of popular hash functions.

1 Introduction

Birthday attacks. Let h: D → R be a hash function. In a birthday attack,
we pick points x1, . . . , xq from D and compute yi = h(xi) for i = 1, . . . , q. The
attack is successful if there exists a collision, i.e. a pair i, j such that xi 6= xj but
yi = yj . We call q the number of trials.

There are several variants of this attack which differ in the way the points
x1, . . . , xq are chosen (cf. [4, 8–10]). The one we consider is that they are chosen
independently at random from D.1

Textbooks (eg. Stinson [8, Section 7.3]) say that (due to the birthday phe-
nomenon which gives the attack its name) a collision is expected within r1/2

trials, where r denotes the size of the range of h. In particular, they say that
1 One might ask how to mount the attack (meaning how to pick random domain

points) when the domain is a very large set as in the case of a hash function like
SHA-1 whose domain is the set of all strings of length at most 264. We would simply
let h be the restriction of SHA-1 to inputs of some reasonable length, like 161 bits
or 320 bits. A collision for h is a collision for SHA-1, so it suffices to attack the
restricted function.

collisions in a hash function with output length m bits can be found in about
2m/2 trials. This estimate is the basis for the choice of hash function length m,
which is typically made just large enough to make 2m/2 trials infeasible.

However Stinson’s analysis [8, Section 7.3], as well as all others that we have
seen, are misleading, for they assume the hash function is regular, meaning all
points in the range have the same number of pre-images under h.2 It turns out
that if h is not regular, it takes fewer than r1/2 trials to find a collision, meaning
the birthday attack would succeed sooner than expected.

This could be dangerous, for we do not know that popular hash functions are
regular. In fact they are usually designed to have “random” behavior and thus
would not be regular. Yet, one might say, they are probably “almost” regular.
But what exactly does this mean, and how does the “amount of regularity” affect
the number of trials to success in the birthday attack? Having answers to such
questions will enable us to better assess the true impact of birthday attacks.

This paper. To help answer questions such as those posed above, this paper
begins by introducing a measure of the “amount of regularity” that we call the
balance of a hash function. This is a real number between 0 and 1, with balance 1
indicating that the hash function is regular and balance 0 that it is a constant
function, meaning as irregular as can be. We then provide quantitative estimates
of the success-rate, and number of trials to success, of the birthday attack, as a
function of the balance of the hash function being attacked.

This yields a tool that has a variety of uses, and lends insight into various
aspects of hash function design and parameter choices. For example, by analyti-
cally or experimentally estimating the balance of a particular hash function, we
can tell how quickly the birthday attack on this hash function will succeed. Let
us now look at all this in more detail.

The balance measure. View the range R of hash function h: D → R as
consisting of r ≥ 2 points R1, . . . , Rr. For i = 1, . . . , r we let h−1(Ri) be the
pre-image of Ri under h, meaning the set of all x ∈ D such that h(x) = Ri, and
let di = |h−1(Ri)| be the size of the pre-image of Ri under h. We let d = |D| be
the size of the domain. We define the balance of h as

µ(h) = logr

[
d2

d2
1 + · · ·+ d2

r

]
,

where logr(·) denotes the logarithm in base r. Proposition 1 says that for any
hash function h, the balance of h is a real number in the range from 0 to 1.
Furthermore, the maximum balance of 1 is achieved when h is regular (meaning
di = d/r for all i) and the minimum balance of 0 is achieved when h is a
constant function (meaning di = d for some i and dj = 0 for all j 6= i). Thus
regular functions are well-balanced and constant functions are poorly balanced,
but there are lots of possibilities in between these extremes.
2 They regard xi as a ball thrown into bin h(xi) and then apply the standard birthday

analysis. But the latter assumes each ball is equally likely to land in each bin. If
R1, . . . , Rr denote the range points then the probability that a ball lands in bin Rj

is |h−1(Rj)|/d where d = |D|. These values are all the same only if h is regular.

Results. We are interested in the probability C of finding a collision in q trials
of the birthday attack, and also in the threshold Q, defined as the number of
trials required for the expected number of collisions to be one. (Alternatively,
the expected number of trials to find a collision.) Corollary 1 and Theorem 2,
respectively, say that, up to constant factors,3

C =
(

q

2

)
· 1
rµ(h)

and Q = rµ(h)/2 . (1)

These results indicate that the performance of the birthday attack can be char-
acterized, quite simply and accurately, via the balance of the hash function h
being attacked.

Remarks. Note that when µ(h) = 1 (meaning, h is regular) then Equation (1)
says that, up to constant factors, Q = r1/2, which agrees with the above-
discussed standard estimate for this case. At the other extreme, when µ(h) = 0,
meaning h is a constant function, the attack finds collisions in O(1) trials so
Q = 1. The value of the general results of Equation (1) is that they show the
full spectrum in between the extremes of regular and constant functions. As
the balance of the hash function drops, the threshold Q of the attack decreases,
meaning collisions are found faster. For example a birthday attack on a hash
function of balance µ(h) = 1/2 will find a collision in about Q = r1/4 trials,
which is significantly less than r1/2. Thus, we now have a way to quantitatively
assess how irregularity in h impacts the success-rate of the birthday attack.

We clarify that the attacker does not need to know the balance of the hash
function in order to mount the attack. (The attack itself remains the birthday
attack outlined above.)

Bounds rather than approximate equalities. Corollary 1 provides both
upper and lower bounds on C that are tight in the sense of being within a
constant factor (specifically, a factor of four) of each other. (And Theorem 1 does
even better, but the expressions are a little more complex.) Similarly, Theorem 2
provides upper and lower bounds on Q that are within a constant factor of each
other.

We claim bounds are important. The estimates of how long the birthday
attack takes to succeed, and the ensuing choices of output-lengths of hash func-
tions, have been based so far on textbook approximate equality calculations of
the threshold that are usually upper bounds but not lower bounds on the exact
value. Yet, from a design perspective, the relevant parameter is actually a lower
bound on the threshold since otherwise the attack might be doing better than
we estimate.

The quality (ie. tightness) of the bounds is also important. Deriving a good
lower bound on C required significantly more analytical work than merely pro-
ducing a rough estimate of approximate equality. With regard to Q we remark
that our upper bound, although within a constant factor of the lower bound, is
not as tight as would like, and it is an interesting question to improve it.

3 This assumes d ≥ 2r and, in the case of C, that q ≤ O(rµ(h)/2).

Impact on output lengths. Suppose we wish to design a hash function h for
which the birthday attack threshold is 280 trials. A consequence of our results
above is that we must have rµ(h)/2 = 280, meaning must choose the output-length
of the hash function to be 160/µ(h) bits. Thus to minimize output-length we
must maximize balance, meaning we would usually want to design hash functions
that are almost regular (balance close to one).

The general principle that hash functions should be as close to regular as
possible is, we believe, well-known as a heuristic. Our results, however, provide a
way of quantifying the loss in security as a function of deviations from regularity.

Random hash functions. Designers of hash functions often have as target to
make the hash function have “random” behavior. Proposition 2 together with
Equation (1) enable us to estimate the impact of this design principle on birthday
attacks. As an example, they imply that if h is a random hash function with
d = 2r then the expected probability of a collision in q trials is about 3/2
times what it would be for a regular function, while the expected threshold is
about

√
2/3 times what it would be for a regular function. In particular, random

functions are worse than regular functions from the point of view of protection
against birthday attacks, though the difference between random and regular
functions decrease as the ratio d/r increases.

Thus, if one wants the best possible protection against both birthday and
cryptanalytic attacks, one should design a function that is not entirely random
but random subject to being regular. This is true both of the hash function itself,
and of the hash function restricted to domains from which the adversary may
draw points in its attack (eg. a restriction of SHA-1 to all 161-bit strings). This,
however, may be more difficult than designing a hash function that has entirely
random behavior, so that the latter remains the design goal, and in this case it
is useful to have tools like ours that enable designers to estimate the impact of
deviations from regularity on the birthday attack and fine tune output lengths
if necessary.

Does the MD transform preserve balance? Given the above results we
would like to be building hash functions that have high balance. We look at some
elements of current design to see how well they reflect this requirement.

Hash functions like MD5 [7], SHA-1 [6] and RIPEMD-160 [3] are designed
by applying the Merkle-Damg̊ard (MD) [5, 2] transform to an underlying com-
pression function. Designers could certainly try to ensure that the compression
function is regular or has high balance, but this turns out not to be enough
to ensure high balance of the hash function because Proposition 3 shows that
the MD transform does not preserve regularity or maintain balance. (We give
an example of a compression function that has balance one, yet the hash func-
tion resulting from the MD transform applied to this compression function has
balance zero.)

Proposition 4 is more positive, showing that regularity not only of the com-
pression function but also of certain associated functions does suffice to guarantee
regularity of the hash function. But Proposition 5 notes that if the compression
and associated functions have even minor deviations from regularity, meaning

balance that is high but not equal to one, then the MD transform can amplify
the imbalance and result in a hash function with very low balance.

Given that a random compression function has balance close to but not
equal to one, and we expect practical compression functions to be similar, our
final conclusion is that we cannot recommend, as a general design principle,
attempting to ensure high balance of a hash function by only establishing some
properties of the compression function and hoping the MD transform does the
rest.

We stress that none of this implies any weaknesses in specific existing hash
functions such as those mentioned above. But it does indicate a weakness in the
MD transform based design principle from the point of view of ensuring high
balance, and means that if we want to ensure or verify high balance of a hash
function we might be forced to analyze it directly rather than being able to
concentrate on the possibly simpler task of analyzing the compression function.
We turn next to some preliminary experimental work in this vein with SHA-1.

Experimenting with SHA-1. The hash function SHA-1 was designed with
the goal that the birthday attack threshold is about 280 trials. As per the above,
this goal would only be met if the balance of the hash function was close to
one. More precisely, letting SHAn: {0, 1}n → {0, 1}160 denote the restriction of
SHA-1 to inputs of length n < 264, we would like to know whether SHAn has
balance close to one for practical values of n, since otherwise a birthday attack
on SHAn will find a collision for SHA-1 in less than 280 trials.

The balance of SHAn is however hard to compute, and even to estimate exper-
imentally, when n is large. Section 6 however reports on some experiments that
compute µ(SHA32;t1...t2) for small values of t2−t1, where SHAn;t1...t2 : {0, 1}n →
{0, 1}t2−t1+1 is the function which returns the t1-th through t2-th output bits
of SHAn. The computed values for µ(SHA32;t1...t2) are extremely close to what
one would expect from a random function with the same domain and range. To-
ward estimating the balance of SHAn for larger values of n, Section 6 reports on
some experiments on SHAn;t1...t2 for larger n. Broadly speaking, the experiments
indicate that these functions have high balance. This can be taken as some indi-
cation that SHAn also has high balance, meaning SHA-1 is well-designed from
the balance point of view.

Remarks. We clarify that while high balance is a necessary requirement for a
collision-resistant hash function, it is certainly not sufficient. It is easy to give
examples of high-balance hash functions for which it easy to find collisions. High
balance is just one of many design criteria that designers should consider.

We also clarify that this paper does not uncover any weaknesses, or demon-
strate improved performance of birthday attacks, on any specific, existing hash
functions such as those mentioned above. However it provides analytical tools
that contribute toward the goal of better understanding the security of existing
hash functions or building new ones, and suggests a need to put more effort
into estimating the balance of existing hash functions to see whether weaknesses
exist.

2 Notation and Terminology

If n is a non-negative integer then we let [n] = {1, . . . , n}. If S is a set then
|S| denotes its size. We denote by h: D → R a function mapping domain D to
range R, and throughout the paper we assume that R has size at least two. We
usually denote |D| by d and |R| by r. A collision for h is a pair x1, x2 of points
in D such that x1 6= x2 but h(x1) = h(x2). For any y ∈ R we let

h−1(y) = { x ∈ D : h(x) = y } .

We say that h is regular if |h−1(y)| = d/r for every y ∈ R, where d = |D| and
r = |R|.

3 The Balance Measure and its Properties

We introduce a measure that we call the balance, and establish some of its basic
properties.

Definition 1. Let h: D → R be a function whose domain D and range R =
{R1, . . . , Rr} have sizes d, r ≥ 2, respectively. For i ∈ [r] let di = |h−1(Ri)|
denote the size of the pre-image of Ri under h. The balance of h, denoted µ(h),
is defined as

µ(h) = logr

[
d2

d2
1 + · · ·+ d2

r

]
, (2)

where logr(·) denotes the logarithm in base r.

It is easy to see that a regular function has balance 1 and a constant function
has balance 0. The following says that these are the two extremes: In general,
the balance is a real number that could fall somewhere in the range between 0
and 1. The proof is based on standard facts and provided in the full version of
this paper [1] for completeness.

Proposition 1. Let h be a function. Then

0 ≤ µ(h) ≤ 1 . (3)

Furthermore, µ(h) = 0 iff h is a constant function, and µ(h) = 1 iff h is a
regular function.

The following lemma, which we prove in [1], will be useful later.

Lemma 1. Let h: D → R be a function. Let d = |D| and r = |R| and assume
d ≥ r ≥ 2. Then

r−µ(h) − 1
d
≥

(
1− r

d

)
· r−µ(h) , (4)

where µ(h) is the balance of h as per Definition 1.

For i = 1, . . . , q do // q is the number of trials
Pick xi at random from the domain of h
yi ← h(xi) // Hash xi to get yi

If there exists j < i such that yi = yj but xi 6= xj then
return xi, xj // collision found

EndIf
EndFor
Return ⊥ // No collision found

Fig. 1. Birthday attack on a hash function h: D → R. The attack is successful in
finding a collision if it does not return ⊥. We call q the number of trials.

4 Balance-based Analysis of the Birthday attack

The attack is presented in Figure 1. (Note that it picks the points x1, . . . , xq

independently at random, rather than picking them at random subject to being
distinct as in some variants of the attack [8]. The difference in performance is
negligible as long as the domain is larger than the range.)

We are interested in two quantities: the probability C of finding a collision in
a given number q of trials, and the threshold Q, defined as the expected number
of trials to get a collision. Both will be estimated in terms of the balance of
the hash function being attacked. Note that although Q is a simpler metric it
is less informative than C since the latter shows how the success-rate of the
attack grows with the number of trials. We begin with Theorem 1 below, which
gives both upper and lower bounds on C that are within constant factors of each
other. The proof of Theorem 1 is in Section 4.1 below.

Theorem 1. Let h: D → R be a hash function. Let d = |D| and r = |R| and
assume d > r ≥ 2. Let C denote the probability of finding a collision for h in
q ≥ 2 trials of the birthday attack of Figure 1. Let µ(h) be the balance of h as
per Definition 1. Then

C ≤
(

q

2

)
·
[

1
rµ(h)

− 1
d

]
. (5)

Additionally, if α is any real number, we have(
1− α2

4
− α

)
·
(

q

2

)
·
[

1
rµ(h)

− 1
d

]
≤ C (6)

under the assumption that

q ≤ α ·
(
1− r

d

)
· rµ(h)/2 . (7)

The above may be a bit hard to interpret. The following, which simply picks
a particular value for the parameter α and applies the above, may be easier to
understand. It provides upper and lower bounds on C that are within a factor
of four of each other assuming q = O(rµ(h)/2). The proof of Corollary 1 is in [1].

Corollary 1. Let h: D → R be a hash function. Let d = |D| and r = |R| and
assume d ≥ 2r ≥ 4. Let C denote the probability of finding a collision for h in
q ≥ 2 trials of the birthday attack of Figure 1. Let µ(h) be the balance of h as
per Definition 1. Then

C ≤
(

q

2

)
· 1
rµ(h)

. (8)

Additionally,

1
4
·
(

q

2

)
· 1
rµ(h)

≤ C (9)

under the assumption that q ≤ (1/5) · rµ(h)/2.

As we mentioned before, we believe it is important to have close upper and lower
bounds rather than approximate equalities when it comes to computing the suc-
cess rate of attacks since we are making very specific choices of parameters, such
as hash function output lengths, based on these estimates, and if our estimates
of the success rates are not specific too we might choose parameters incorrectly.

Remark 1. The lower bound in Equation (9) is only valid when 2 ≤ q ≤ (1/5) ·
rµ(h)/2. The upper bound on q here is not particularly restrictive since we know
that as q approaches rµ(h)/2, the probability C gets close to 1. However, note that
we are implicitly assuming 2 ≤ (1/5) · rµ(h)/2, meaning we are assuming a lower
bound on µ(h). However the result only excludes functions of tiny balance.

Next, we show that the threshold is Θ(rµ(h)/2). Again, we provide explicit upper
and lower bounds that are within a constant factor of each other. The proof of
Theorem 2 is in Section 4.2.

Theorem 2. Let h: D → R be a hash function. Let d = |D| and r = |R| and
assume d ≥ 2r ≥ 4. Let Q denote the threshold, meaning the expected number
of trials, in the birthday attack of Figure 1, to get a collision. Let µ(h) be the
balance of h as per Definition 1 and assume ((

√
7− 2)/3) · rµ(h)/2 ≥ 2. Then

(1/2) · rµ(h)/2 ≤ Q ≤ 72 · rµ(h)/2 (10)

Designers of hash functions often have as target to make the hash function have
“random” behavior. We now state a result which will enable us to gage how well
random functions fare against the birthday attack. (Consequences are discussed
after the statement). Proposition 2 below says that if h is chosen at random
then the expectation of r−µ(h) is more than 1/r (what it would be for a regular
function) by a factor equal to about 1 + r/d. The proof of Proposition 2 is in
the full version of this paper [1].

Proposition 2. Let D, R be sets of sizes d, r respectively, where d ≥ r ≥ 2. If
we choose a function h: D → R at random then

E
[
r−µ(h)

]
=

1
r
·
(

1 +
r − 1

d

)
.

As an example, suppose d = 2r. Then the above implies that if h is chosen at
random then

E
[
r−µ(h)

]
≈ 3

2
· 1
r

.

As per Theorem 1 and Theorem 2 this means that if h is chosen at random then
the probability of finding a collision in q trials is expected to rise to about 3/2
times what it would be for a regular function, while the threshold is expected
to fall to about

√
2/3 times what it would be for a regular function. Although

the difference in the efficacy of birthday attacks against regular and random
functions becomes less as d/r increases, the above example with d = 2r sug-
gests that although hash functions are often designed to be “random”, in terms
of resistance to birthday attacks a more desirable goal is to have randomness
subject to regularity. This also applies to all restrictions of the hash function
to domains from which an adversary may draw during a birthday attack (eg.
SHA-1 restricted to 161-bit inputs).

4.1 Proof of Theorem 1

We let [q]2 denote the set of all two-element subsets of [q]. Recall that the
attack picks x1, . . . , xq at random from the domain D of the hash function. We
associated to any two-element set I = {i, j} ∈ [q]2 the random variable XI which
takes value 1 if xi, xj form a collision (meaning xi 6= xj and h(xi) = h(xj)), and
0 otherwise. We let

X =
∑

I∈[q]2
XI .

The random variable X is the number of collisions. (We clarify that in this
manner of counting the number of collisions, if n distinct points have the same
hash value, they contribute n(n− 1)/2 toward the value of X.) For any I ∈ [q]2
we have

E [XI] = Pr [XI = 1] =
r∑

i=1

di(di − 1)
d2

=
r∑

i=1

d2
i

d2
−

r∑

i=1

di

d2
= r−µ(h) − 1

d
.

(11)
By linearity of expectation we have

E [X] =
∑

I∈[q]2

E [XI] =
(

q

2

)
·
[
r−µ(h) − 1

d

]
. (12)

Let

p = r−µ(h) − 1
d

.

The upper bound of Theorem 1 is a simple application of Markov’s inequality
and Equation (12):

Pr [C] = Pr [X ≥ 1] ≤ E [X]
1

=
(

q

2

)
· p .

We proceed to the lower bound. Let [q]2,2 denote the set of all two-elements
subsets of [q]2. Via the inclusion-exclusion principle we have

Pr [C] = Pr
[∨

I∈[q]2
XI = 1

]

≥
∑

I∈[q]2

Pr [XI = 1] −
∑

{I,J}∈[q]2,2

Pr [XI = 1 ∧XJ = 1] . (13)

Equation (12) tells us that the first sum above is
∑

I∈[q]2

Pr [XI = 1] =
∑

I∈[q]2

E [XI] = E [X] =
(

q

2

)
· p . (14)

We now claim that
∑

{I,J}∈[q]2,2

Pr [XI = 1 ∧XJ = 1] ≤
(

α2

4
+ α

)
·
(

q

2

)
· p . (15)

This completes the proof because from Equations (13), (14) and (15) we obtain
Equation (6) as follows:

Pr [C] ≥
(

q

2

)
· p −

∑

{I,J}∈[q]2,2

Pr [XI = 1 ∧XJ = 1]

≥
(

q

2

)
· p −

(
α2

4
+ α

)
·
(

q

2

)
· p

=
(

1− α2

4
− α

)
·
(

q

2

)
· p .

It remains to prove Equation (15).
Let E be the set of all {I, J} ∈ [q]2,2 such that I ∩ J = ∅, and let N be the

set of all {I, J} ∈ [q]2,2 such that I ∩ J 6= ∅. Then
∑

{I,J}∈[q]2,2

Pr [XI = 1 ∧XJ = 1]

=
∑

{I,J}∈E

Pr [XI = 1 ∧XJ = 1]

︸ ︷︷ ︸
SE

+
∑

{I,J}∈N

Pr [XI = 1 ∧XJ = 1]

︸ ︷︷ ︸
SN

. (16)

We now claim that

SE ≤
(

q

2

)
· 1
4
· α2 · p (17)

SN ≤
(

q

2

)
· α · p , (18)

Equation (15) follows from Equations (16), (17) and (18). We now prove Equa-
tions (17) and (18).

To upper bound SE , we note that if {I, J} ∈ E then the random variables
XI and XJ are independent. Using Equation (11) we get

SE =
∑

{I,J}∈E

Pr [XI = 1 ∧XJ = 1]

=
∑

{I,J}∈E

Pr [XI = 1] · Pr [XJ = 1] = |E| · p2 .

Computing the size of the set E and simplifying, we get

SE =
1
2

(
q

2

)(
q − 2

2

)
· p2 =

(
q

2

)
· p · q2 − 5q + 6

4
· p .

We now upper bound this as follows:

SE <

(
q

2

)
· p · q2 · p

4
≤

(
q

2

)
· p · α2 · rµ(h) · p

4
≤ 1

4
· α2 ·

(
q

2

)
· p .

Above the first inequality is true because Theorem 1 assumes q ≥ 2. The second
inequality is true because of the assumption made in Equation (7). The third
inequality is true because rµ(h) · p < 1. We have now obtained Equation (17).

The remaining task is to upper bound SN . The difficulty here is that for
{I, J} ∈ N the random variables XI and XJ are not independent. We let di =
|h−1(Ri)| for i ∈ [r] where R = {R1, . . . , Rr} is the range of the hash function.
If {I, J} ∈ N then the two-elements sets I and J intersect in exactly one point.
(They cannot be equal since I, J are assumed distinct.) Accordingly we have

SN =
∑

{I,J}∈N

Pr [XI = 1 ∧XJ = 1]

= |N | ·
r∑

i=1

di(di − 1)2

d3

<
|N |
d3

·
r∑

i=1

d3
i . (19)

We now compute the size of the set N :

|N | = 1
2

(
q

2

)(
q

2

)
− 1

2

(
q

2

)
− 1

2

(
q

2

)(
q − 2

2

)

=
(

q

2

)
· (q − 2) .

Putting this together with Equation (19) we have

SN <

(
q

2

)
· q ·

[
1
d3
·∑r

i=1d
3
i

]
. (20)

To upper bound the sum of Equation (20), we view d1, . . . , dr as variables and
consider the problem of maximizing d3

1 + · · · + d3
r subject to the constraint

∑r
i=1 d2

i = d2 · r−µ(h). The maximum occurs when d1 = d · r−µ(h)/2 and
di = 0 for i = 2, . . . , r, meaning that

∑r
i=1d

3
i ≤ d3r−3µ(h)/2 .

Returning to Equation (20) with this information we get

SN <

(
q

2

)
·q ·

[
1
d3
·∑r

i=1d
3
i

]
≤

(
q

2

)
·q · 1

d3
·d3r−3µ(h)/2 =

(
q

2

)
·q ·r−3µ(h)/2 .

We now use the assumption made in Equation (7), and finally use Lemma 1, to
get

SN <

(
q

2

)
· α ·

(
1− r

d

)
· rµ(h)/2 · r−3µ(h)/2

≤
(

q

2

)
· α ·

(
1− r

d

)
r−µ(h) ≤

(
q

2

)
· α · p .

This proves Equation (18) and thus concludes the proof of Theorem 1.

4.2 Proof of Theorem 2

We begin by proving the lower bound. Let the random variable Y denote the
number of trials to collision. Let C(q) denote the probability of finding a collision
for h in q ≥ 2 trials of the birthday attack in Figure 1, and let D(q) denote the
probability of finding the first collision on the q-th trial. Let Q = rµ(h)/2. From
the definition of Y :

E [Y] =
∞∑

x=1

x ·D(x) ≥ Q ·
∞∑

x=Q

D(x) = Q · (1− C(Q− 1)) .

We claim that
C(Q− 1) <

1
2

. (21)

It follows that

E [Y] ≥ Q · (1/2) ≥ (1/2) · rµ(h)/2 ,

as desired. We now justify Equation (21). From Equation (8) of Corollary 1 we
know that

C(Q− 1) ≤
(

Q− 1
2

)
· 1
rµ(h)

=
1
2
·
(
(Q− 1)2 − (Q− 1)

)
· 1
rµ(h)

.

Since Q = rµ(h)/2 ≥ 2 by assumption,

(Q− 1)2 − (Q− 1) = Q2 − 3 ·Q + 2 < Q2 = rµ(h)

and

C(Q− 1) <
1
2
· rµ(h) · 1

rµ(h)
=

1
2

as desired
For the upper bound, we must be careful since there is an upper restrictions

on q in Equation (9) and Equation (6). Fix α = (2
√

7 − 4)/3 and q = (α/2) ·
rµ(h)/2. First note that

q =
α

2
· rµ(h)/2 ≤ α ·

(
1− r

d

)
· rµ(h)/2

since we assume that d ≥ 2r and therefore that 1− r/d ≥ 1/2. This means that
we can use Theorem 1 with α and q defined as above. Combining Theorem 1
with Lemma 1 and the assumptions that d ≥ 2r and q = (α/2) · rµ(h)/2 ≥ 2, we
have

C(q) ≥
(

1− α2

4
− α

)
·
(

q

2

)
· 1
2
· 1
rµ(h)

≥
(

1− α2

4
− α

)
· q2 · 1

8
· 1
rµ(h)

.

Replacing q with (α/2) · rµ(h)/2 we get

C(q) ≥
(

1− α2

4
− α

)
·
(α

2
· rµ(h)/2

)2

· 1
8
· 1
rµ(h)

=
1
32
·
(

α2 − α4

4
− α3

)
. (22)

Now consider the following experiment that repeatedly runs the birthday attack,
using q = (α/2) · rµ(h)/2 trials, until a collision is found:

For j = 1, 2, . . . do
For i = 1, . . . , q do

Pick xq(j−1)+i at random from the domain of h
yq(j−1)+i ← h(xq(j−1)+i)
If there exists k such that q(j − 1) < k < q(j − 1) + i
and yq(j−1)+i = yk but xq(j−1)+i 6= xk then

return xq(j−1)+i, xk // collision found in this block of q trials

EndIf
EndFor

EndFor

Let the random variable A denote the number of trials to success in the above
experiment. We claim that

E [Y] ≤ E [A] (23)

and

E [A] ≤ q

C(q)
, (24)

and combining with Equation (22), it follows that

E [Y] ≤ q

C(q)
≤ (α/2) · rµ(h)/2

(1/32) · (α2 − (α4/4)− α3)
< 72 · rµ(h)/2 ,

giving the upper bound in the theorem statement.
To prove Equation (23) it is sufficient to note that, for any random tape T ,

Y (T) ≤ A(T)

since any collision in the above experiment is immediately a collision for the
birthday attack in Figure 1.

To prove Equation (24), consider each inner loop of the above experiment an
independent Bernoulli trial, and let Z denote the expected number of Bernoulli
trials (inner loop executions) to collision. Since each inner loop has a success
probability C(q), standard results tell us that

E [Z] ≤ 1
C(q)

. (25)

Let F (i) denote the probability that the first collision in the above experiment
occurs on the i-th trial. Let G(j) denote the probability that the first collision
is found in the j-th execution of the inner loop in the above experiment. Then

E [A] =
∞∑

i=1

i · F (i)

=
∞∑

j=1

q∑

i=1

(q · (j − 1) + i) · F (q · (j − 1) + i)

≤ q ·
∞∑

j=1

(
j ·

q∑

i=1

F (q · (j − 1) + i)

)

Since, by the definition of G(j), for any j ≥ 1
q∑

i=1

F (q · (j − 1) + i) = G(j) ,

it follows that

E [A] ≤ q ·
∞∑

j=1

j ·G(j) = q ·E [Z] . (26)

Combining Equation (25) with Equation (26) yields Equation (24), completing
the proof.

5 Does the MD transform preserve balance?

We consider the following popular paradigm for the construction of hash func-
tions. First build a compression function H: {0, 1}b+c → {0, 1}c, where b ≥ 1 is
called the block-length and c ≥ 1 is called the chaining-length. Then transform
H into a hash function H: Db → {0, 1}c, where

Db = {M ∈ {0, 1}∗ : |M | = nb for some 1 ≤ n < 2b } ,

Function H(M)
Break M into b-bit blocks M1‖ · · · ‖Mn

Mn+1 ← 〈n〉b ; C0 ← 0c

For i = 1, . . . , n + 1 do Ci ← H(Mi‖Ci−1) EndFor
Return Cn+1

Fig. 2. Hash function H: Db → {0, 1}c obtained via the MD transform applied to
compression function H: {0, 1}b+c → {0, 1}c.

via the Merkle-Damg̊ard (MD) [5, 2] transform depicted in Figure 2. (In this
description and below, we let 〈i〉b denote the representation of integer i as a
string of length exactly b bits for i = 0, . . . , 2b−1.) In particular, modulo details,
this is the paradigm used in the design of popular hash functions including MD5
[7], SHA-1 [6] and RIPEMD-160 [3].

For the considerations in this section, we will focus on the restriction of H
to strings of some particular length. For any integer 1 ≤ n < 2b (the number
of blocks) we let Hn: Db,n → {0, 1}c denote the restriction of H to the domain
Db,n, defined as the set of all strings in Db that have length exactly nb bits.

Our results lead us to desire that Hn has high balance for all practical values
of n. Designers could certainly try to ensure that the compression function is
regular or has high balance, but to be assured that Hn has high balance it would
need to be the case that the MD transform is “balance preserving.” Unfortu-
nately, the following shows that this is not true. It presents an example of a
compression function H which has high balance (in fact is regular, with balance
one) but Hn has low balance (in fact, balance zero) even for n = 2.

Proposition 3. Let b, c be positive integers. There exists a compression function
H: {0, 1}b+c → {0, 1}c such that H is regular (µ(H) = 1) but H2 is a constant
function (µ(H2) = 0).

Proof (Proposition 3). Let H: {0, 1}b+c → {0, 1}c map B‖C to C for all b-bit
strings B and c-bit strings C. Clearly µ(H) = 1 since each point in {0, 1}c

has exactly 2b pre-images under H. Because the initial vector (IV) in the MD
transform is the constant C0 = 0c, and by the definition of H, the function H2

maps all inputs to 0c. 2

This example might be viewed as contrived particularly because the compres-
sion function H above is not collision-resistant (although it is very resistant to
birthday attacks), but in fact it still serves to illustrate an important point. The
popularity of the MD paradigm arises from the fact that it provably preserves
collision-resistance [5, 2]. However, the above shows that it does not provably
preserve balance. Even though Proposition 3 does not say that the transform
will always be poor at preserving balance, it says that we cannot count on the
transform to preserve balance in general. This means that simply ensuring high
balance of the compression function is not a suitable general design principle.

(We also remark that there exist adversaries capable of finding collisions for
any unkeyed compression function, including the compression functions in MD5,
SHA-1, and RIPEMD-160, using exactly two trials. We just do not know what
these adversaries are.)

Is there any other design principle whereby some properties of the compres-
sion function suffice to ensure high balance of the hash function? Toward finding
one we note that the behavior exhibited by the function H2 in the proof of
Proposition 3 arose because the initial vector (IV) of the MD transform was
C0 = 0c, and although H was regular, the restriction of H to inputs having
the last c bits 0 was not regular, and in fact was constant. Accordingly we
consider requiring regularity conditions not just on the compression function
but on certain related functions as well. If H: {0, 1}b+c → {0, 1}c then define
H0: {0, 1}b → {0, 1}c via M 7→ H(M‖0c) for all M ∈ {0, 1}b, and for n ≥ 1
define Hn: {0, 1}c → {0, 1}c via M 7→ H(〈n〉b‖M) for all M ∈ {0, 1}c. The fol-
lowing shows that if H,H0,Hn are all regular, meaning have balance one, then
Hn is also regular.

Proposition 4. Let b, c, n be positive integers. Let H: {0, 1}b+c → {0, 1}c and
let H0,Hn be as above. Assume H, H0, and Hn are all regular. Then Hn is
regular.

Proof (Proposition 4). The computation of Hn can be written as

Function Hn(M)
Break M into b-bit blocks M1‖ · · · ‖Mn ; C1 ← H0(M1)
For i = 2, . . . , n do Ci ← H(Mi‖Ci−1) EndFor
Cn+1 ← Hn(Cn) ; Return Cn+1

It is not hard to check that the assumed regularity of H0,H and Hn imply the
regularity of Hn. 2

Unfortunately Proposition 4 is not “robust.” Although Hn has balance one
if H, H0,Hn have balance one, it turns out that if H, H0,Hn have balance
that is high but not quite one, we are not assured that Hn has high balance.
Proposition 5 shows that even a slight deviation from the maximum balance of
one in H,H0, Hn can be amplified, and result in Hn having very low balance.
The proof of the following is in the full version of this paper [1].

Proposition 5. Let b, c be integers, b ≥ c ≥ 2, and let n ≥ c. Then there
exists a compression function H: {0, 1}b+c → {0, 1}c such that µ(H) ≥ 1− 1/c,
µ(H0) = 1, and µ(Hn) ≥ 1− 2/c, but µ(Hn) ≤ 1/c, where the functions H0,Hn

are defined as above.

As indicated by Proposition 2, a random compression function will have expected
balance that is high but not quite 1. We expect that practical compression func-
tions are in the same boat. Furthermore it seems harder to build compression
functions that have balance exactly one than close to one. So the lack of robust-
ness of Proposition 4, as exhibited by Proposition 5, means that Proposition 4
is of limited use.

The consequence of the results in this section is that we are unable to rec-
ommend any design principle that, to ensure high balance, focuses solely on
establishing properties of the compression function. It seems one is forced to
look directly at the hash function. We endeavor next to do this for SHA-1.

6 Experiments on SHA-1

Let SHAn: {0, 1}n → {0, 1}160 denote the restriction of SHA-1 to inputs of
length n < 264. Because SHA-1’s range is {0, 1}160, it is commonly believed
that the expected number of trials necessary to find a collision for SHAn is
approximately 280. As Theorem 2 shows, however, this is only true if the balance
of SHAn is one or close to one for all practical values of n. If the balance is not
close to one, then we expect to be able to find collisions using less work. It
therefore seems desirable to calculate (or approximate) the balance of SHAn for
reasonable values of n (eg. n = 256). A direct computation of µ(SHAn) based
on Definition 1 is however infeasible given the size of the domain and range of
SHAn. Accordingly we focus on a more achievable goal. We look at properties of
SHAn that one can reasonably test and whose absence might indicate that SHAn

does not have high balance. Our experiments are not meant to be exhaustive,
but rather representative of the types of feasible experiments one can perform
with SHA-1.

Let SHAn;t1...t2 : {0, 1}n → {0, 1}t2−t1+1 denote the function that returns
the t1-th through t2-th output bits of SHAn. We ask what exactly is the balance
of SHA32;t1...t2 when t2− t1 + 1 ∈ {8, 16, 24}. And we ask whether the functions
SHAm;t1...t2 , m ∈ {160, 256, 1024, 2048}, appear regular when t2 − t1 + 1 ∈
{8, 16, 24}. (Note that SHA256 is SHA-1 restricted to the domain {0, 1}256, not
NIST’s SHA-256 hash algorithm.)

Balance of SHA32;t1...t2 . We calculate the balance of SHA32;t1...t2 for all pairs
t1, t2 such that t2− t1 +1 ∈ {8, 16, 24} and t1 begins on a byte boundary (ie. we
look at all 1-, 2-, and 3-byte portions of the SHA-1 output). The calculated values
of µ(SHA32;t1...t2) appear in the full version of this paper [1]. Characteristic
values are µ(SHA32;1...8) = 0.99999998893, µ(SHA32;1...16) = 0.999998623 and
µ(SHA32;1...24) = 0.99976567, indicating that, for the specified values of t1, t2,
the balance of SHA32;t1...t2 is high.

These results do not imply that the functions SHAn;t1...t2 or SHAn, n > 32
and t1, t2 as before, are regular. But it is encouraging that µ(SHA32;t1...t2) are
high, and in fact very close to what one would expect from a random function
(cf. Proposition 2), since a small value for µ(SHA32;t1...t2) for any of the specified
t1, t2 pairs might indicate some unusual property of the SHA-1 hash function.

Experiments on SHA160, SHA256, SHA1024, and SHA2048. Let n ∈ {160,
256, 1024, 2048}. Although we cannot calculate the balance of SHAn, we can
compare the behavior of SHAn;t1...t2 , t2− t1 + 1 ∈ {8, 16, 24}, on random inputs
to what one would expect from a regular or random function. There are several
possible approaches to take. Knowing that the balance of SHAn;t1...t2 directly

affects the expected number of trials to collision, the approach we take is to
compute the average, over 10000 runs, of the number of trials to collision in a
birthday attack against SHAn;t1...t2 .

If the average number of trials to collision against SHAn;t1...t2 on random bits
is approximately the same as what one would expect from a regular function,
it would support the view that SHAn has high balance. However, a significant
difference between the results for SHAn;t1...t2 on random inputs and what one
would expect from a regular function might indicate some unusual behavior
with SHA-1, and this unusual behavior would deserve further investigation. Our
experimental results are consistent with SHAn having high balance. However, we
again point out that these tests were only designed to uncover gross anomalies
and are not exhaustive. Details are in [1].

Acknowledgments

Mihir Bellare is supported in part by NSF grants CCR-0098123, ANR-0129617
and CCR-0208842, and by an IBM Faculty Partnership Development Award.
Tadayoshi Kohno is supported by a National Defense Science and Engineering
Graduate Fellowship.

References

1. M. Bellare and T. Kohno. Hash function balance and its impact on birthday
attacks. IACR ePrint archive, http://eprint.iacr.org/2003/065/. Full version
of this paper

2. I. Damg̊ard. A design principle for hash functions. Advances in Cryptology –
CRYPTO ’89, Lecture Notes in Computer Science Vol. 435, G. Brassard ed.,
Springer-Verlag, 1989.

3. H. Dobbertin, A. Bosselaers and B. Preneel. RIPEMD-160, a strengthened
version of RIPEMD. Fast Software Encryption ’96, Lecture Notes in Computer
Science Vol. 1039, D. Gollmann ed., Springer-Verlag, 1996.

4. A. Menezes, P. van Oorschot and S. Vanstone. Handbook of applied cryp-
tography. CRC Press, 1997.

5. R. Merkle. One way hash functions and DES. Advances in Cryptology – CRYPTO
’89, Lecture Notes in Computer Science Vol. 435, G. Brassard ed., Springer-Verlag,
1989.

6. National Institute of Standards. FIPS 180-2, Secure hash standard. August 1, 2000.
7. R. Rivest. The MD5 message-digest algorithm. IETF RFC 1321, April 1992.
8. D. Stinson. Cryptography theory and practice, 1st Edition. CRC Press, 1995.
9. P. van Oorschot and M. Wiener. Parallel collision search with cryptanalytic

applications, Journal of Cryptology 12(1), Jan 1999, 1–28.
10. G. Yuval. How to swindle Rabin. Cryptologia (3), 1979, 187–190.

