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Abstract. We study cryptographic attacks on random Feistel schemes.
We denote by m the number of plaintext/ciphertext pairs, and by k the
number of rounds. In their famous paper [3], M. Luby and C. Rackoff have
completely solved the cases m ¿ 2n/2: the schemes are secure against
all adaptive chosen plaintext attacks (CPA-2) when k ≥ 3 and against
all adaptive chosen plaintext and chosen ciphertext attacks (CPCA-2)
when k ≥ 4 (for this second result a proof is given in [9]).

In this paper we study the cases m ¿ 2n. We will use the “coefficients
H technique” of proof to analyze known plaintext attacks (KPA), adap-
tive or non-adaptive chosen plaitext attacks (CPA-1 and CPA-2) and
adaptive or non-adaptive chosen plaitext and chosen ciphertext attacks
(CPCA-1 and CPCA-2). In the first part of this paper, we will show
that when m ¿ 2n the schemes are secure against all KPA when k ≥ 4,
against all CPA-2 when k ≥ 5 and against all CPCA-2 attacks when
k ≥ 6. This solves an open problem of [1], [14], and it improves the result
of [14] (where more rounds were needed and m ¿ 2n(1−ε) was obtained
instead of m ¿ 2n). The number 5 of rounds is minimal since CPA-2
attacks on 4 rounds are known when m ≥ O(2n/2) (see [1], [10]). Further-
more, in all these cases we have always obtained an explicit majoration
for the distinguishing probability. In the second part of this paper, we
present some improved generic attacks. For k = 5 rounds, we present a
KPA with m ' 23n/2 and a non-adaptive chosen plaintext attack (CPA-
1) with m ' 2n. For k ≥ 7 rounds we also show some improved attacks
against random Feistel generators (with more than one permutation to
analyze and ≥ 22n computations).

1 Introduction

A “Luby - Rackoff construction with k rounds”, which is also known as a “ran-
dom Feistel cipher” is a Feistel cipher in which the round functions f1, . . . , fk

are independently chosen as truly random functions (see section 2 for precise
definitions).

Since the famous original paper [3] of M. Luby and C. Rackoff, these con-
structions have inspired a considerable amount of research. In [8] and [14] a
summary of existing works on this topic is given.



We will denote by k the number of rounds and by n the integer such that
the Feistel cipher is a permutation of 2n bits → 2n bits. In [3] it was proved
that when k ≥ 3 these Feistel ciphers are secure against all adaptative chosen
plaintext attacks (CPA-2) when the number of queries (i.e. plaintext/ciphertext
pairs obtained) is m ¿ 2n/2. Moreover when k ≥ 4 they are secure against all
adaptative chosen plaintext and chosen ciphertext attacks (CPCA-2) when the
number of queries is m ¿ 2n/2 (a proof of this second result is given in [9]).

These results are valid if the adversary has unbounded computing power as
long as he does only m queries.

These results can be applied in two different ways: directly using k truly
random functions f1, . . . , fk (that requires significant storage), or in a hybrid
setting, in which instead of using k truly random functions f1, . . . , fk, we use k
pseudo-random functions. These two ways are both interesting for cryptography.
The first way gives “locally random permutations” where we have proofs of
security without any unproven hypothesis (but we need a lot of storage), and the
second way gives constructions for block encryption schemes where the security
can be relied on a pseudo-random number generator, or on any one-way function.

In this paper, we will study security when m ¿ 2n, instead of m ¿ 2n/2

for the original paper of M. Luby and C. Rackoff. For this we must have k ≥ 5,
since for k ≤ 4 some CPA-2 attacks when m ≥ O(2n/2) exist (see [1], [10]).
Moreover the bound m ¿ 2n is the larger bound that we can get, since an
adversary with unlimited computing power can always distinguish a k-round
random Feistel scheme from a random permutation with O(k · 2n) queries and
O(2kn2n

) computations by simply guessing all the round functions (it is also
possible to do less computing with the same number of queries by using collisions,
see [13]).

The bound m ¿ 2n/2 is called the ‘birthday bound’, i.e. it is about the square
root of the optimal bound against an adversary with unbounded computing
power. In [1] W. Aiello and R. Venkatesan have found a construction of locally
random functions (‘Benes’) where the optimal bound (m ¿ 2n) is obtained
instead of the birthday bound. However here the functions are not permutations.
Similarly, in [4], U. Maurer has found some other construction of locally random
functions (not permutations) where he can get as close as wanted to the optimal
bound (i.e. m ¿ 2n(1−ε) and for all ε > 0 he has a construction). In [8] the
security of unbalanced Feistel schemes is studied and a security proof in 2n(1−ε)

is obtained, instead of 2n/2, but for much larger round functions (from 2n bits
to ε bits, instead of n bits to n bits). This bound is basically again the birthday
bound for these functions.

In this paper we will show that 5-round random Feistel schemes resist all
CPA-2 attacks when m ¿ 2n and that 6-round random Feistel schemes resist all
CPCA-2 attacks when m ¿ 2n. Here we are very near the optimal bound, and we
have permutations. This solves an open problem of [1], [10]. It also significantly
improves the results of [6] in which the 2n security is only obtained when the
number of rounds tends to infinity, and the result of [14] where 2n(1−ε) security
was proved for CPA-2 after 7 rounds (instead of 5 here) and for CPCA-2 after 10



rounds (instead of 6 here). Moreover we will obtain in this paper some explicit
and simple majorations for the distinguishing probabilities. We will also present
some improved generic attacks. All these results are summarized in appendix A.

2 Notations

General notations

– In = {0, 1}n denotes the set of the 2n binary strings of length n. |In| = 2n.
– The set of all functions from In to In is Fn. Thus |Fn| = 2n·2n

.
– For any f, g ∈ Fn, f ◦ g denotes the usual composition of functions.
– For any a, b ∈ In, [a, b] will be the string of length 2n of I2n which is the

concatenation of a and b.
– For a, b ∈ In, a⊕ b stands for bit by bit exclusive or of a and b.
– Let f1 be a function of Fn. Let L, R, S and T be four n-bit strings in In.

Then by definition

Ψ(f1)[L,R] = [S, T ] def⇔
{

S = R
T = L⊕ f1(R)

– Let f1, f2, . . . , fk be k functions of Fn. Then by definition:
Ψk(f1, . . . , fk) = Ψ(fk) ◦ · · · ◦ Ψ(f2) ◦ Ψ(f1).

The permutation Ψk(f1, . . . , fk) is called a ‘Feistel scheme with k rounds’
or shortly Ψk. When f1, . . . , fk are randomly and independently chosen in Fn,
then Ψk(f1, . . . , fk) is called a ‘random Feistel scheme with k rounds’ or a ‘Luby-
Rackoff construction with k rounds’.

We will first study 4 rounds (with some limitations on the inputs/outputs),
then prove our cryptographic results by adding one or two rounds.

Notations for 4 rounds

• We will denote by [Li, Ri], 1 ≤ i ≤ m, the m cleartexts. These cleartexts
can be assumed to be pairwise distinct, i.e. i 6= j ⇒ Li 6= Lj or Ri 6= Rj .

• We call “index” any integer between 1 and m.
• [Ri, Xi] is the output after one round, i.e.

∀i, 1 ≤ i ≤ m,Xi = Li ⊕ f1(Ri).

• [Xi, Yi] is the output after two rounds, i.e.

∀i, 1 ≤ i ≤ m,Yi = Ri ⊕ f2(Xi) = Ri ⊕ f2(Li ⊕ f1(Ri)).

• [Yi, Si] is the output after three rounds, i.e.

∀i, 1 ≤ i ≤ m, Si = Xi ⊕ f3(Yi) = Li ⊕ f1(Ri)⊕ f3(Yi).

• [Si, Ti] is the output after 4 rounds, i.e.

∀i, 1 ≤ i ≤ m,Ti = Yi ⊕ f4(Si).



Notations for 5 rounds We keep the same notations for Li, Ri, Xi, Yi. Now Zi =
Xi⊕f3(Yi), and [Si, Ti] is still the output: Si = Yi⊕f4(Zi) and Ti = Zi⊕f5(Si).

Part I: Security results

3 The general proof strategy

We will first study the properties of 4-round schemes. Our result on 4-round
schemes for proving KPA security will be:

Theorem 31 (4 rounds) For random values [Li, Ri], [Si, Ti], 1 ≤ i ≤ m, such
that the [Li, Ri], 1 ≤ i ≤ m, are pairwise distinct, with probability ≥ 1 − β we
have:

1. the number H of (f1, f2, f3, f4) ∈ F 4
n such that ∀i, 1 ≤ i ≤ m,

Ψ4(f1, f2, f3, f4)[Li, Ri] = [Si, Ti]

satisfies:

H ≥ |Fn|4
22nm

(1− α).

2. α and β can be chosen ¿ 1 when m ¿ 2n.

For 5 rounds, we will have :

Theorem 32 (5 rounds) There are some values α > 0 and β > 0 and there
is a subset E ⊂ Im

2n such that:

1. for all pairwise distinct [Li, Ri], 1 ≤ i ≤ m, and for all sequences [Si, Ti],
1 ≤ i ≤ m, of E the number H of (f1, f2, f3, f4, f5) ∈ F 5

n such that ∀i,
1 ≤ i ≤ m,

Ψ5(f1, f2, f3, f4, f5)[Li, Ri] = [Si, Ti]

satisfies:

H ≥ |Fn|5
22nm

(1− α).

2. |E| ≥ (1 − β) · 22nm, and α and β can be chosen ¿ 1 when m ¿ 2n(1−ε),
∀ε > 0.

Remark

1. Here the set E does not depend on the [Li, Ri], and it will give security
against CPA-2. If E depends on the [Li, Ri], we will obtain security against
CPA-1 only.

2. Instead of fixing a set E, as in theorem 32, we can formulate a similar
theorem in term of expectancy of the deviation of H from the average value
(see[15]: there is a formulation for CPA-1 and another for CPA-2). From
these formulas we will get security when m ¿ 2n.



For 6 rounds, we will have :

Theorem 33 (6 rounds) There are some values α > 0 and β > 0 and there
is a subset E ⊂ I4m

n such that:

1. for all [Li, Ri, Si, Ti], 1 ≤ i ≤ m, of E, the number H of (f1, f2, f3, f4, f5, f6) ∈
F 6

n such that ∀i, 1 ≤ i ≤ m,

Ψ6(f1, f2, f3, f4, f5, f6)[Li, Ri] = [Si, Ti]

satisfies:

H ≥ |Fn|6
22nm

(1− α).

2. For all super distinguishing circuit Φ with m oracle gates, the probability that
[Li, Ri, Si, Ti](Φ), 1 ≤ i ≤ m, be in E is ≥ 1− β, when Φ acts on a random
permutation f of I2n → I2n (here [Li, Ri, Si, Ti](Φ), 1 ≤ i ≤ m, denotes the
successive [Si, Ti] = f [Li, Ri] or [Li, Ri] = f−1[Si, Ti], 1 ≤ i ≤ m, that will
appear).

3. α and β can be chosen ¿ 1 when m ¿ 2n.

Now from these theorems and from the general “coefficients H technique”
theorems given in [11], [12], we will get immediately that when m ¿ 2n, Ψ4 is
secure against all KPA, Ψ5 against all CPA-2 and Ψ6 against all CPCA-2.

4 Circles

One of the terms of the the deviation of Ψk from random permutations will be
the probability to get “circles” in the variables, as we will explain below.

Definition We will say that we have ‘a circle in R, X, Y ’ if there are k indices
i1, . . . , ik with k ≥ 3 and such that:

1. i1, i2, . . . , ik−1 are pairwise distinct and ik = i1.
2. ∀λ, 1 ≤ λ ≤ k − 2 we have at least one of the three following conditions:

• Riλ
= Riλ+1 and (Xiλ+1 = Xiλ+2 or Yiλ+1 = Yiλ+2)

or • Xiλ
= Xiλ+1 and (Riλ+1 = Riλ+2 or Yiλ+1 = Yiλ+2)

or • Yiλ
= Yiλ+1 and (Riλ+1 = Riλ+2 or Xiλ+1 = Xiλ+2)

Example If R1 = R2 and X1 = X2, then we have a circle in R, X, Y . If R1 = R2,
X2 = X3, Y3 = Y1 then we have a circle in R, X, Y .

We will prove the following theorems.

Theorem 41 (For 4 rounds) When [Li, Ri], 1 ≤ i ≤ m, are pairwise distinct
and randomly chosen, the probability p to obtain a circle in R, X, Y with at
least one equation in Y when f1, f2 are randomly chosen in Fn satisfies:

p ≤ 3m2

2 · 22n
+

3m3

23n
· 1
1− 2m

2n

.



Theorem 42 (For 5 rounds) For all pairwise distinct [Li, Ri], 1 ≤ i ≤ m and
for all value λ, such that λ > 0 and 2m

√
λ < 2n, we have: the probability p to

obtain a circle in X, Y , Z with at least one equation Zi = Zj when f1, f2, f3 are
randomly chosen in Fn satisfies:

p ≤ 1
λ

+
m(m− 1)

2 · 22n
+

m(m− 1)(m− 2)
23n

+
4λm4

24n
· 1

1− 2m
√

λ
2n

.

Corollary 41 From this theorem 42 we get immediately that if m ¿ 2n, then
(λ can be chosen such that), p is very small. So when m ¿ 2n, the probability
to have a circle in X, Y , Z with at least one equation Zi = Zj is negligible.

Remark In [15] we show that the condition ‘with at least one equation Zi = Zj ’
is important: sometime we cannot avoid some circles in X, Y .

With 6 rounds, we can get a simpler formula:

Theorem 43 (For 6 rounds) For all [Li, Ri], 1 ≤ i ≤ m (such that i 6= j ⇒
Li 6= Lj or Ri 6= Rj), the probability p to obtain a circle in X, Y , Z with at
least one equation in Z when f1, f2, f3, f4 are randomly chosen in Fn satisfies:

p ≤ 3m2

22n
+

11m3

23n
· 1
1− 2m

2n

.

Proof of theorem 41, 42, 43 are given in the extended version of this paper
([15]). A basic tool for these proofs is:

Theorem 44 ∀λ > 0, for all pairwise distinct [Li, Ri], 1 ≤ i ≤ m, when f1 is
randomly chosen in Fn we have a probability ≥ 1− 1

λ that the number N of (i, j),
i < j/Xi = Xj satisfies:

N ≤ λm(m− 1)
2 · 2n

.

Proof This result comes immediately from this lemma:

Lemma 41 For all [Li, Ri], 1 ≤ i ≤ m, (such that i 6= j ⇒ Li 6= LjorRi 6= Rj)
the number of (f1, i, j) such that Xi = Xj, i < j, is ≤ |Fn| · m(m−1)

2·2n .

Proof of lemma 41 Xi = Xj means Li ⊕ f1(Ri) = Lj ⊕ f1(Rj). This implies
Ri 6= Rj (because Li = Lj and Ri = Rj ⇒ i = j). Thus, when (i, j) is fixed,
the number of f1 such that Xi = Xj is exactly |Fn|

2n if Ri 6= Rj , and exactly 0 if
Ri = Rj . Therefore, since we have at most m(m− 1)/2 values (i, j), i < j/Ri 6=
Rj , the total number of (f1, i, j) such that Xi = Xj is ≤ |Fn|m(m−1)

2·2n as claimed.



5 Properties of H with 4 rounds

We give here the main ideas. See the extended version of this paper for more
details ([15]). We will first prove that if the [Yi, Si] are given, 1 ≤ i ≤ m, (i.e. the
output after 3 rounds), then the Si variables will look random as long as m ¿ 2n

(but the Yi variables will not look random in general). Then, with one more
round and the same argument, we will obtain that the [Si, Ti] variables will look
random as long as m ¿ 2n. We want to evaluate the number H of f1, f2, f3 such
that: ∀i, 1 ≤ i ≤ m, Si = Li⊕f1(Ri)⊕f3(Yi) with Yi = Ri⊕f2(Li⊕f1(Ri)) (1).

Remarks

1. If Yi = Yj with i 6= j, then Si 6= Sj . So the Si variables are not perfectly
random in In when the Yi are given. However, here we just say that the
[Yi, Si] must be pairwise distinct, since Ψk is a permutation.

2. If Si is a constant (∀i, 1 ≤ i ≤ m, Si = 0 for example), then all the Yi

variables must be pairwise distinct, and in (1) f3 is then fixed on exactly
m points. However the probability for f1, f2 to be such that all the Yi are
pairwise distinct is very small. So in this case H ¿ |Fn|3

2nm .
3. Let us consider that instead of (1) we had to evaluate the number J of

f1, f2, f3 such that ∀i, 1 ≤ i ≤ m, Si = f3(Yi) with Yi = Ri⊕f2(Li⊕f1(Ri))
(i.e. here we do not have the term Li ⊕ f1(Ri)). Then, for random Li, Ri

and for random f1, f2, f3, we will have about 2 times more collisions Si = Sj

compared with a random variable Si. So if Si is random, J ¿ |Fn|3
2nm in this

case. For (1) we will prove (among other results) that, unlike here for J ,
when the Si are random, we always have H ' |Fn|3

2nm .

Analysis of (1) (In appendix B an example is given on what we do here) We will
consider that all the Yi are given (as well as the Li, Ri, Si), and we want to study
how H can depend on the values Si. If H has almost always the same value for
all the Si, then (by summation on all the Yi) we will get H ' |Fn|3

2nm , and for all
[Li, Ri] the Si will look random, as wanted, when f1, f2, f3 are randomly chosen
in Fn (this is an indirect way to evaluate H).

In (1), when we have a new value Yi, whatever Si is, f3 is exactly fixed
on this point Yi by (1). However if Yi is not a new value, we have Yi = Yj ⇒
Li⊕f1(Ri) = Lj⊕f1(Rj)⊕Si⊕Sj . For each equation Yi = Yj , we will introduce
a value λk(i,j) = Si ⊕ Sj . We want to evaluate the number H ′ of (f1, f2) such
that: ∀i, 1 ≤ i ≤ m, f2(Li ⊕ f1(Ri)) = Ri ⊕ Yi (2).

We will fix the points (i, j) where Xi = Xj , i.e. we look for solutions (f1, f2)
such that Xi = Xj exactly on these (i, j), and, again, we want to evaluate how
the number H ′ of (f1, f2) can depend on the values Si (i.e. on the values λk).

We will group the equations (2) by the same f1(Ri), i.e. by “blocks in
R, X, Y ”: two indices i and j are in the same block if we can go from i to j
by equations Rk = Rl, or Xk = Xl, or Yk = Yl (Since Xk = Xl ⇒ f1(Rk) =
f1(Rl)⊕Lk ⊕Ll and Yk = Yl ⇒ f1(Rk) = f1(Rl)⊕Lk ⊕Ll ⊕ λk(i,j), from these
relations, we can replace the variable f1(Rk) by the variable f1(Rl) instead).



Finally, the only dependencies on the λk come when we want to evaluate the
number H ′′ of f1 such that: ∀i, 1 ≤ i ≤ α, Xi are pairwise distinct, where α
is the number of Xi that we want pairwise distinct (if wanted we can assume
α ≤ O

(
m2

2n

)
since variables with no equation in R, X or Y create no problem).

Each Xi has an expression like this: Xi = f1(Rj) ⊕ λk ⊕ L′l (where L′l is an
expression in ⊕ of some Li values), or like this: Xi = f1(Rj)⊕ L′l. This gives a
number of solutions for f1 that depends only of the fact that some equations of
degree one in the λk variables are satisfied or not.

(These equations are Xi ⊕ Xj = Xk ⊕ Xl where i, j are in the same block
in R, X, Y and k, l are in the same block in R, X, Y , so these equations can be
written only the Li and λk variables).

Example In the example given in appendix B, λ1 = L1 ⊕ L4 ⊕ L5 ⊕ L7 is one
of these equations, that can be true or not when the λi values are fixed (here it
comes from X1 ⊕X2 ⊕X5 ⊕X7).

Analysis of the dependencies in the λk First, we can notice that if the system has
no solution due to an incompatibility (for example if we want X1 = f1(R1)⊕L1

and X2 = f1(R1) ⊕ λ1 to be distinct) then we have a circle in R, X, Y with at
least one equation in Y . The probability to get such circles has been evaluated
in section 4 and is negligible if m ¿ 2n. So we will assume that we have no
incompatibility in the system that says that the Xi variables considered are
pairwise distinct. Let µ be the number of variables λk that satisfied at least one
of these equations among the

(
α2

2

)
equations considered for the evaluation of

f1. Each of the µ special λk values can have at most α exceptional relations.
So for a λ like this, we have: H ≤ H∗ (

1− α
2n

)−µ. The value
(
1− α

2n

)−µ can
be À 1, but since we have µ exceptional relations of degree one on µ variables
λi, the weight Wλ of these λ values (i.e. the number of f1, f2, f3 that give these
values multiplied by the number of these values) satisfies:

Wλ ≤ 1
2nµ

Cµ
α2
2

(
1− α

2n

)−µ

(we denote by Aµ this expression).

(since we have ≤ α2

2 possible equations). We have:

Aµ+1 ≥ Aµ ⇔
(

α2

2
− µ

) (
1− α

2n

)−1

≥ 2n(µ + 1) ⇔ µ ≤ about
α2

2 · 2n
.

So the weight Wλ becomes negligible as soon as µ À α2

2·2n .

Remark If these µ variables λi generate almost all the possible relations with
these variables, then the weight of these variables is even smaller since we just
have to choose these µ variables among the α variables and then they are fixed
(since almost all the equations are satisfied, many of these equations give equiv-
alent values for the special λi). So we will have a Cµ

α instead of Cµ
α2
2

.

Finally we have obtain:



Theorem 51 Let F be the set of values that we fix: i.e. in F we have the values
of the Yi, and all the indices (i, j) where we have all the equations Xi = Xj.
Then if S and S′ are two sequences of values of Im

n such that:

1. ∀i, j, Yi = Yj ⇒ Si 6= Sj (and S′i 6= S′j).
2. No circle in R, X, Y can be created from the equalities Yi = Yj ⇒ Si ⊕ Sj =

Xi ⊕Xj and Rk = Rl ⇒ Xk ⊕Xl = Lk ⊕ Ll.

Then the number HF of f1, f2, f3 solutions satisfies:

|HF (S)−HF (S′)| ≤ HF (S) · (q + r)

where q = m2

2·2n comes from the λi with very few special equalities, and r is a
very small term related to the weight of the λi with a lot of special equalities (as
we have seen r is negligible when m ¿ 2n).

We can do the same for [Si, Ti], as we did for [Yi, Si]. So, since by summation,
we must obtain all the (f1, . . . , f4) with no circles, from theorem 51 we will
get our results. Here the set E′ depends on E, so this works for non-adaptive
attacks. For adaptive attacks see [15] (then we have to eliminate some equations
by conditions in [Si, Ti] independently of [Li, Ri], or to study the expectancy of
the deviation of H).

Remark Another possibility is to use the result of [5]: with 2 times more rounds,
security in CPA-1 can be changed in security in CPCA-2. However we would get
like this CPCA-2 for 10 rounds (exactly as in [14]) instead of 6 rounds.

6 Comparing [14] and this paper

Technically the main differences between [14] and this paper are:

1. Here we introduce a condition: no more than λm(m−1)
2n indices (i, j), i < j

such that Xi = Xj (instead of no more than θ pairwise distinct indices such
that Xi1 = Xi2 = . . . = Xiθ

of [14]). this gives us security when m ¿ 2n

(instead of m ¿ 2n(1−ε) or m ¿ 2n

n of [14]).
2. In [14], 3 rounds are needed for half the variables to look random, and then 4

more rounds for the [Si, Ti]. Here we show that the Si will look random after
4 rounds even if the Zi are public (with a probability near 1 when m ¿ 2n).
So for the Ti we can use the same result with only one more round. Like
this, we need less rounds in this paper compared with [14].

3. In this paper we study λk that come for Ψ4 from Yi ⊕ Yj = 0 (or similarly
Zi ⊕ Zj = 0 for Ψ5) while in [14] all possible λk can be fixed.

Part II: Best found attacks



7 Generic attacks on Ψ5

We will present here the two best generic attacks that we have found on Ψ5:

1. A CPA-1 attack on Ψ5 with m ' 2n and λ = O(2n) computations (This is
an improvement compared with m ' 23n/2 and λ = O(23n/2) of [13]).

2. A KPA on Ψ5 with m ' 23n/2 and λ = O(23n/2)computations (This is an
improvement compared with m ' 27n/4 and λ = O(27n/4) of [13]).

1. CPA-1 attack on Ψ5.
Let us assume that Ri =constant, ∀i, 1 ≤ i ≤ m, m ' 2n. We will simply
count the number N of (i, j), i < j such that Si = Sj and Li⊕Ti = Lj ⊕Tj .
This number N will be about double for Ψ5 compared with a truly random
permutation.
Proof:
If Si = Sj ,
Li⊕Ti = Lj ⊕Tj ⇔ Li⊕Zi = Lj ⊕Zj ⇔ f1(R1)⊕ f3(Yi) = f1(R1)⊕ f3(Yj)
⇔ f3(R1 ⊕ f2(Li ⊕ f1(R1))) = f3(R1 ⊕ f2(Lj ⊕ f1(R1))) (#).
This will occur if f2(Li ⊕ f1(R1)) = f2(Lj ⊕ f1(R1)), or if these values are
distinct but have the same images by f3, so the probability is about two
times larger.

Remarks
(a) By storing the Si||Li⊕Ti values and looking for collisions, the complexity

is in λ ' O(2n).
(b) With a single value for Ri, we will get very few collisions. However this

attack becomes significant if we have a few values Ri and for all these
values about 2n values Li.

2. KPA on Ψ5.
The CPA attack can immediately be transformed in a KPA: for random
[Li, Ri], we will simply count the number N of (i, j), i < j such that Ri = Rj ,
Si = Sj , and Li ⊕ Ti = Lj ⊕ Tj . We will get about m(m−1)

23n such collisions
for Ψ5, and about m(m−1)

2·23n for a random permutation. This KPA is efficient
when m2 becomes not negligible compared with 23n, i.e. when m ≥ about
23n/2.

Remark These attacks are very similar with the attacks on 5-round Feistel
schemes described by Knudsen (cf [2]) in the case where (unlike us) f2 and f3

are permutations (therefore, not random functions). Knudsen attacks are based
on this theorem:

Theorem 71 (Knudsen, see [2]) Let [L1, R1] and [L2, R2] be two inputs of
a 5-round Feistel scheme, and let [S1, T1] and [S2, T2] be the outputs. Let us
assume that the round functions f2 and f3 are permutations (therefore they are
not random functions of Fn). Then, if R1 = R2 and L1 6= L2, it is impossible to
have simultaneously S1 = S2 and L1 ⊕ L2 = T1 ⊕ T2.



Proof This comes immediately from (#) above.

8 Generic attacks on Ψk generators, k ≥ 6

Ψk has always an even signature. This gives an attack in 22n if we want to dis-
tinguish Ψk from random permutations (see [13]) and if we have all the possible
cleartext/ciphertext. In this appendix, we will present the best attacks that we
know when we want to distinguish Ψk from random permutations with an even
signature, or when we do not have exactly all the possible cleartext/ciphertext.

1. KPA with k even.
Let (i, j) be two indices, i 6= j, such that Ri = Rj and Si ⊕ Sj = Li ⊕ Lj .
From [10] or [11] p.146, we know the exact value of H in this case, when k
is even. We have:

H = H∗
(

1 +
1

2( k
2−2)n

− 1

2( k
2−1)n

− 2

2
kn
2

+
1

2(k−1)n

)

where

H∗ =
|Fn|k
22nm

· 1
1− 1

22n

i.e. H∗ is the average value of H on two cleartext/ciphertext. So there is a
small deviation, of about 1

2( k
2−2)n

, from the average value.
So in a KPA, when the [Li, Ri] are chosen at random, and if the fi functions
are chosen at random, we will get slightly more (i, j), i < j, with Ri = Rj

and Si ⊕ Sj = Li ⊕ Lj from a Ψk (with k even) than from a truly random
permutation. This can be detected if we have enough cleartext/ciphertext
pairs from many Ψk permutations. In first approximation, these relations
will act like independent Bernoulli variables (in reality the equations are
not truly independent, but this is expected to create only a modification of
second order).
If we have N possibilities for (i, j), i < j, and if X is the number of (i, j),
i < j/Ri = Rj and Si ⊕ Sj = Li ⊕ Lj , we expect to have:

E(X) ' N
22n

V (X) ' N
22n

σ(X) '
√

N
2n .

We want σ(X) ≤ N

2( k
2−2)n

· 1
22n in order to distinguish Ψk from a random

permutation. So we want
√

N
2n ≤ N

2
k
2 n

i.e. N ≥ 2(k−2)n.

However, if we have µ available permutations, with about 22n cleartext/ciphertext
for each of these permutations, then N ' 24nµ (here we know these µ per-
mutations almost on every possible cleartext. If not, µ will be larger and
we will do more computations). N ≥ 2(k−2)n gives µ ≥ 2(k−6)n. This is an
attack with 2(k−6)n permutations and 22nµ ' 2(k−4)n computations.

2. KPA with k odd.
In [15], a KPA with k odd is given (it has the same properties as the attack
above for k even).



9 Conclusion

For a block cipher from 2n bits → 2n bits, we generally want to have no better
attack than attacks with ≥ 22n computations. If this block cipher is a Feistel
scheme we then need to have ≥ 6 rounds since (as shown in this paper) there is
a generic attack on 5 rounds with 2n computations in CPA-1 and 23n/2 compu-
tations in KPA.

In this paper we have also shown that however, in the model where the
adversaries have unlimited computing power but have access to only m cleart-
ext/ciphertext pairs, the maximum possible security (i.e. m ¿ 2n) is obtained
already for 5 rounds for CPA-1 and CPA-2 attacks. This solves an open prob-
lem of [1] and [14]. Moreover 6-round Feistel schemes can resist all CPCA-1
and CPCA-2 attacks when m ¿ 2n (For CPCA-1 or CPCA-2 the case k = 5
rounds is still unclear: we only know that the security is between m ¿ 2n/2 and
m ¿ 2n). When 22n is small (for example to generate 1000 pseudorandom per-
mutations with an even signature of 30 bits → 30 bits) then more than 6 rounds
are needed. In this paper we have studied such attacks, and we have extended
the “coefficients H technique” to various cryptographic attacks.

We think that our proof strategy is very general and should be also efficient in
the future to study different kinds of functions or permutation generators, such
as, for example, Feistel schemes with a different group law than ⊕, or unbalanced
Feistel schemes.
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Appendices

A Summary of the known results on random Feistel
schemes

KPA denotes known plaintext attacks. CPA-1 denotes non-adaptive chosen plain-
text attacks. CPA-2 denotes adaptive chosen plaintext attacks. CPCA-1 denotes
non-adaptive chosen plaintext and ciphertext attacks. CPCA-2 denotes adaptive
chosen plaintext and chosen ciphertext attacks. Non-Homogeneous properties are
defined in [12].

This figure 1 present the best known results against unbounded adversaries
limited by m oracle queries.

KPA CPA-1 CPA-2 CPCA-1 CPCA-2 Non-Homogeneous

Ψ 1 1 1 1 1 1

Ψ2 2n/2 2 2 2 2 2

Ψ3 2n/2 2n/2 2n/2 2n/2 3 2

Ψ4 2n 2n/2 2n/2 2n/2 2n/2 2

Ψ5 2n 2n 2n ≥ 2n/2 ≥ 2n/2 2
Ψ6 2n 2n 2n 2n 2n 4 *

Ψk, k ≥ 6 2n 2n 2n 2n 2n ≤
(

k
2
− 1

)2
**

Fig. 1. Minimum number m of queries to distinguish Ψk from a random permutation
of In → In. For simplicity we denote 2α for O(2α) i.e. when we have security as long
as m ¿ 2α. ≥ means best security proved.

* ≤ 4 comes from [13] and ≥ 4 comes from [7].
** with k even and with (k− 2)(k− 4) exceptional equations, so if k ≥ 7 we need more
than one permutation for this property.



KPA CPA-1 CPA-2 CPCA-1 CPCA-2

Ψ 1 1 1 1 1

Ψ2 2n/2 2 2 2 2

Ψ3 2n/2 2n/2 2n/2 2n/2 3

Ψ4 2n 2n/2 2n/2 2n/2 2n/2

Ψ5 ≤ 23n/2 2n 2n ≤ 2n ≤ 2n

Ψ6 ≤ 22n ≤ 22n ≤ 22n ≤ 22n ≤ 22n

Ψ7 ≤ 23n ≤ 23n ≤ 23n ≤ 23n ≤ 23n

Ψ8 ≤ 24n ≤ 24n ≤ 24n ≤ 24n ≤ 24n

Ψk, k ≥ 6 * ≤ 2(k−4)n ≤ 2(k−4)n ≤ 2(k−4)n ≤ 2(k−4)n ≤ 2(k−4)n

Fig. 2. Minimum number λ of computations needed to distinguish a generator Ψk

(with one or many such permutations available) from random permutations with an
even signature of In → In. For simplicity we denote α for O(α). ≤ means best known
attack.

* If k ≥ 7 these attacks analyze about 2(k−6)n permutations of the generator and if
k ≤ 6 only one permutation is needed.

History for Ψ5 For Ψ5 the best results of security against CPA-2 was:

– In 1988: m ¿ 2n/2 (cf [3]).
– In 1998: m ¿ 23n/4 (cf [12]).
– In 2003: m ¿ 25n/6 (cf [13]).
– In 2004: m ¿ 2n (cf this paper).

However CPCA-2 for Ψ5 is still unclear: so far we only have the original result
of Luby and Rackoff m ¿ 2n/2.

B Example for theorem 31

We will illustrate here theorem 31 on a small toy example. Let 1, 2, 3, 4, 5, 6, 7
be our indices (m = 7). Let us assume that f1 is fixed such that R4 = R1,
and R7 = R5, are our only equations Ri = Rj i > j. Let us assume that the
Yi are given, and that Y4 = Y2, and Y7 = Y3 are the only equations Yi = Yj ,
i > j.Then we want to show that λ1 and λ2 look random, where λ1 = X4 ⊕X2

and λ2 = X7 ⊕X3 when f1, f2 are randomly chosen. For this, we fix λ1 and λ2,
λ1 6= 0, λ2 6= 0, and we look for the number H of (f1, f2) that give these values.
We want to prove that this number H does not depend significantly on λ1 and
λ2 (except for well detected values of small weight). H is the number of (f1, f2)
such that (here we put only pairwise distinct Ri variables):

1. f1(R2) = f1(R1)⊕L2 ⊕L4 ⊕ λ1 and f1(R5) = f1(R3)⊕L3 ⊕L7 ⊕ λ2 (these
two equations do not create any problem: they just fix f1 on two points).

2. Block R1Y :

f2(L1 ⊕ f1(R1)) = R1 ⊕ Y1



f2(L4 ⊕ λ1 ⊕ f1(R1)) = R2 ⊕ Y2

f2(L4 ⊕ f1(R1)) = R1 ⊕ Y2.

Block R3Y :

f2(L3 ⊕ f1(R3)) = R3 ⊕ Y3

f2(L3 ⊕ L5 ⊕ L7 ⊕ λ2 ⊕ f1(R3)) = R5 ⊕ Y5

f2(L3 ⊕ f1(R3)⊕ λ2) = R5 ⊕ Y3.

Block R6Y :

f2(L6 ⊕ f1(R6)) = R6 ⊕ Y6

Let us assume that, for example, all the Ri ⊕ Yi are pairwise distinct. Then
we want to evaluate the number of functions f1 such that all the Xi are pairwise
distinct. These conditions are more difficult to analyze since here we do not want
equalities, but non equalities.

– If λ1 ∈ {0, L1⊕L4}, or λ2 ∈ {0, L5⊕L7}, we have no solution (these values
give a circle in R,X, Y ).

– For the Xi to be pairwise distinct, we must choose f1 such that: f1(R1) ⊕
f1(R3) is not in A, where A is a set of 9 values (or less if we have collisions):
A = {L1⊕L3, L4⊕λ1⊕L3, L4⊕L3, L1⊕L3⊕L5⊕L7⊕λ2, L4⊕λ1⊕L3⊕L5⊕
L7⊕λ2, L4⊕L3⊕L5⊕L7⊕λ2, L1⊕L3⊕λ2, L4⊕λ1⊕L3⊕λ2, L4⊕L3⊕λ2}.
In the proof of theorem 31, we analyze the possible dependencies of |A| with
the λi values.

C Examples of unusual values of H for Ψ5

Example 1: Large value for H
With m = 2, when R1 = R2, S1 = S2 and L1 ⊕ L2 = T1 ⊕ T2, then

H =
|Fn|5
22nm

(
2− 1

2n

)
.

So here the value of H is about double than average with only m = 2.

Remark: ∀k ∈ N∗, Ψk has always such large H with small m (m ≤ (
k
2 − 1

)2
if

k is even), we say that “Ψk is not homogeneous”: see [12]. However, when k ≥ 7,
the probability that such inputs/outputs exist is generally negligible if we study
only one single specific permutation.

Example 2: Small value for H
Here our example cannot be with m ¿ 2n/2 since we know that we always

have

H ≥ |Fn|5
22nm

(
1− m(m− 1)

2n

)



(the proof is the same for Ψ4 and Ψ5).
However, we will show that when m → 2n/2, H can be much smaller than

average (i.e. m → 2n is not necessary, m → 2n/2 is enough). In this example 2,
we will assume:

1. ∀i, j, 1 ≤ i ≤ j ≤ m, Ri = Rj (= R1).
2. ∀i, j, 1 ≤ i ≤ j ≤ m, Si = Sj (= S1).
3. ∀i, j, 1 ≤ i ≤ j ≤ m, i 6= j ⇒ Li ⊕Lj 6= Ti ⊕ Tj (in example 3 below we will

not need this condition 3).

To get condition 3, we may assume, for example, that ∀i, 1 ≤ i ≤ m, Li =
i⊕ ϕ(i) and Ti = ϕ(i), where ϕ is well chosen. So Li ⊕ Lj = Ti ⊕ Tj ⇔ i = j.

From 1 we have: ∀i, j, 1 ≤ i ≤ j ≤ m, Xi ⊕Xj = Li ⊕ Lj .
From 2 we have: ∀i, j, 1 ≤ i ≤ j ≤ m, Zi ⊕ Zj = Ti ⊕ Tj .
H is the number of f1, f2, f3, f4, f5 such that: ∀i, 1 ≤ i ≤ m,

Li ⊕ f1(R1) = Xi

R1 ⊕ f2(Li ⊕ f1(R1)) = Yi

Xi ⊕ f3(Yi) = Zi

Yi ⊕ f4(Ti ⊕ f5(S1)) = S1

Zi ⊕ f5(S1) = Ti

So H is |Fn|2 times the number of f2, f3, f4 such that: ∀i, 1 ≤ i ≤ m,
{

Yi = R1 ⊕ f2(Li ⊕ f1(R1)) = S1 ⊕ f4(Ti ⊕ f5(S1))
f3(Yi) = Li ⊕ Ti ⊕ f1(R1)⊕ f5(S1)

Since all the Li⊕Ti are pairwise distinct, all the Yi must be pairwise distinct.
So for Yi, 1 ≤ i ≤ m, we have exactly: 2n(2n−1)(2n−2) . . . (2n−m+1) solutions.

Now when Yi, 1 ≤ i ≤ m, are fixed, f2, f3 and f4 are fixed on exactly m

pairwise distinct points. So H = |Fn|5
23nm 2n(2n − 1)(2n − 2) . . . (2n −m + 1).

Let H∗ be the average value of H (when the [Si, Ti] are pairwise distinct).

H∗ =
|Fn|5

22n(22n − 1)(2n − 2) . . . (22n −m + 1)
≥ |Fn|5

22nm
.

So here:
H

H∗ ≤ (1− 1
2n

)(1− 2
2n

) . . . (1− m− 1
2n

)

ln

(
H

H∗

)
' −1 + 2 + . . . + (m− 1)

2n
= −m(m− 1)

2n
.

So when m(m−1) is not negligible compared with 2n, H will be significatively
smaller than H∗, as claimed.



Remark 1 Here Ri ⊕ Si is not random (since Ri ⊕ Siis constant), and Li ⊕ Ti

is not random (in example 3 below we will remove this condition on Li ⊕ Ti).
These hypothesis are generally unrealistic in a cryptographic attack, where ∀i,
1 ≤ i ≤ m, Li or Ti, and Ri or Si, cannot be chosen.

Remark 2 If we start, as here, from [Li, Ri] values with Ri constant, then the
Xi values are pairwise distinct, so the Yi values are perfectly random (if we
define Yi only from the relation Yi = Ri ⊕ f2(Xi)). However, the Zi values are
not perfectly random (since the probability to have Zi ⊕ Zj = Li ⊕ Lj is the
probability to have f3(Yi) = f3(Yj) so is about double than average). Similarly,
the [Si, Ti] values are not perfectly random since the probability to have Si = Sj

and Ti⊕Tj = Li⊕Lj is in relation with the probability to have f3(Yi) = f3(Yj),
so is about double than average. We will use again this idea in example 3 below.

Remark 3 Here when m → 2n/2, we can have circles in Y , S, (and circles in
R, Y ) and this is a way to explain why in this example H can be much smaller
than H∗.

Example 3: Small value for H, with random Li and Ti

In this example 3, we will assume:

1. ∀i, j, 1 ≤ i ≤ j ≤ m, Ri = Rj (= R1).
2. ∀i, j, 1 ≤ i ≤ j ≤ m, Si = Sj (= S1).
3. Let Ai = Li ⊕ Ti. Then Ai, 1 ≤ i ≤ m, is random. More precisely it will

be enough to assume that the number N of collisions Ai = Aj , i < j, is
< m(m−1)

2·2nln2 to show that H is small compared with the average value H∗. For
random values Ai we have N ' m(m−1)

2·2n , so it is the case ( 1
ln2 ' 1, 44).

As in example 2, H is |Fn|2 times the number of f2, f3, f4 such that: ∀i,
1 ≤ i ≤ m,

{
Yi = R1 ⊕ f2(Li ⊕ f1(R1)) = S1 ⊕ f4(Ti ⊕ f5(S1))
f3(Yi) = Li ⊕ Ti ⊕ f1(R1)⊕ f5(S1)

.

Since all the Li ⊕ f1(R1) are pairwise distinct, and all the Ti ⊕ f5(S1) are
pairwise distinct, f2 and f4 are fixed on exactly m points when Yi, 1 ≤ i ≤ m,
is fixed.

So H is |Fn|4
22nm times the number of Yi, f3 such that: ∀i, 1 ≤ i ≤ m, f3(Yi) =

Li ⊕ Ti ⊕ f1(R1)⊕ f5(S1).
Let Ai be a sequence of values of In, 1 ≤ i ≤ m. We want to evaluate the

number h of Yi, f3 such that: ∀i, 1 ≤ i ≤ m, f3(Yi) = Ai. Let h∗ be the average
value for h (average on all sequences Ai). We have h∗ = |Fn|. For random values
Yi, and random functions f3, Ai will have about 2 times more collisions Ai = Aj ,
i < j, than average sequences Ai.

So h for random values Ai is ¿ h∗, and h for values Ai with 2 times more
collisions than average is À h∗. This shows that if in this example 3 Li ⊕ Ti is
random, then H ¿ H∗.


