
How to Compress Rabin Ciphertexts and
Signatures (and More)

Craig Gentry

DoCoMo USA Labs
cgentry@docomolabs-usa.com

Abstract. Ordinarily, RSA and Rabin ciphertexts and signatures are
log N bits, where N is a composite modulus; here, we describe how to
“compress” Rabin ciphertexts and signatures (among other things) down
to about (2/3) log N bits, while maintaining a tight provable reduction
from factoring in the random oracle model. The computational overhead
of our compression algorithms is small. We also improve upon Coron’s re-
sults regarding partial-domain-hash signature schemes, reducing by over
300 bits the hash output size necessary to prove adequate security.

1 Introduction

The hardness of factoring is one of the most fundamental and frequently used
assumptions of public-key cryptography; yet cryptosystems that rely on the fac-
toring assumption have relatively poor performance in terms of bandwidth. For
example, RSA and Rabin ciphertexts and signatures are typically at least as
many bits as the composite modulus N , while recent advances in hardware-based
approaches to factoring (e.g., [32]) suggest that N must be more than 1024 bits
for strong security. So, factoring-based cryptosystems often do not compare fa-
vorably with cryptosystems based on alternative hard problems – e.g., ECC for
encryption or DSA for signatures.

Bandwidth consumption is important, in part because fundamental limita-
tions of wireless technology put bandwidth at a premium. For example, Barr
and K. Asanović [2] note that wireless transmission of a single bit can cost more
than 1000 times as much energy as a 32-bit computation. Since battery efficiency
is growing relatively slowly, energy consumption (particularly through wireless
transmission) may become a significant bottleneck.

Moreover, signal interference places physical limits on how much data can
be transmitted wirelessly in a given region. This was not a problem in wired
networks. These limitations are compounded by the lossiness of wireless channels,
which necessitates additional bandwidth in the form of forward error correction
(FEC). FEC is particularly important for cryptographic transmissions, where
partial recovery of a ciphertext or digital signature is typically useless.

These considerations make compression algorithms very attractive. In fact, in
recent years, substantial progress has been made in constructing “compressed”
cryptosystems. For example, XTR [22] and CEILIDH [30] both use “compact

representations” of certain elements to achieve a bandwidth savings. There are
also a variety of hybrid cryptosystems, such as signcryption and aggregate sig-
nature schemes, in which multiple cryptographic functionalities are somehow
represented by a single, relatively short string. However, although such hybrid
cryptosystems exist for RSA and Rabin, none of them breaks the “(log N)-bit
barrier.”

Our Design Goals. In light of these considerations, we would like to construct
a compression algorithm that is broadly applicable to factoring-based schemes,
such as RSA and Rabin. Ideally, the compression algorithm should allow RSA
and Rabin ciphertexts and signatures to be substantially less than log N bits
without sacrificing any security – i.e., while still using (and retaining the secu-
rity of) a (log N)-bit modulus. Moreover, the compression algorithm should add
minimal computational overhead. If the compression algorithm requires addi-
tional computation, this computation should not require use of the secret key,
so that it can be performed (more quickly) outside of a “secure environment,”
such as a smart card.

Our Results. We essentially achieve our design goals, except that our tech-
niques work only for Rabin-type cryptosystems, not for RSA. Along the way, we
also substantially improve upon Coron’s results on partial-domain-hash Rabin
signature schemes (Rabin-PDH).

Coron [16] proved the security of a variant of the Rabin signing scheme
(Rabin-PDH) in which the hash function that is used to hash the message out-
puts strings of length (2

3 + ε) log N bits. It turns out that this ε has a large effect
in practice; if the simulator in the security proof wishes to generate a distribution
of signatures whose statistical distance from uniform is less than 2−80, Coron’s
method requires that the hash output length be at least at 2

3 log N +364 bits. We
provide a perfectly uniform drawing algorithm that reduces the necessary hash
output length to only 2

3 log N + 3 bits; moreover, our security proof is tighter.
Our main result, however, is a compression algorithm that allows a 33%

reduction in the bit-length of Rabin signatures and ciphertexts, without any
sacrifice in security. (Notice that Coron’s result is not a compression algorithm;
although the hash output length of Coron’s Rabin-PDH scheme may be less
than log N bits, the Rabin-PDH signature itself, which is essentially a modular
square root of the hash output, is a (log N)-bit value.) For our improved version
of Rabin-PDH signatures, the “entropy” of the hash output is just over 2

3 log N
bits; thus, it is theoretically possible that the signature could also be expressed in
about 2

3 log N bits. In fact, up to the loss of a few bits, this is precisely what we
achieve: a (2

3 log N + 6)-bit Rabin-PDH signature, with a tight reduction from
factoring N .

Our lossless compression algorithm also works for Rabin encryption, but in
reverse. A (2

3 log N)-bit plaintext is “decompressed” by mapping it to a (log N)-
bit number that has a (2

3 log N + 3)-bit modular square. This modular square
is a “compressed” Rabin ciphertext. Numerous other cryptosystems also involve
computing square roots modulo a composite modulus N , including Fiat-Shamir,
Cocks’s identity-based encryption scheme, as well as various schemes enabling

ring signatures, signcryption, and so on. Our techniques enable a similar 33%
bandwidth reduction for these schemes.

Related Work. Like Coron’s work, our techniques build upon Brigitte Vallée’s
elegant analysis of the distribution, in Z/NZ, of integers in BN,h,h′ = {x ∈
[1, N) : h ≤ x2(modN) < h′} for h′ − h ≤ 8N2/3 – i.e., integers with modular
squares in a “narrow” interval. We provide a self-contained discussion of her
results in section 3.

Some previous work has been done on compressing Rabin and low-exponent
RSA signatures – in particular, Bernstein [7] mentions that one can simply re-
move the 1

e log2 N least significant bits of any regular Rabin or RSA signature,
and the verifier can use Coppersmith’s method [17] to recover those bits. Ble-
ichenbacher [8] describes an improvement: the signer can use continued fractions
to express the signature s as a/b(modN), where a is about e−1

e log2 N bits and
b is about 1

e log2 N bits, and send a as the signature. The verifier checks that
c = ae/H(m)(modN) is an eth power (namely be) over Z. The drawback of
these methods, though they arguably reduce Rabin signature length to 1

2 log2 N
bits, is that they do not allow message recovery; the verifier needs m before
verifying, which effectively adds to the signature length. These methods also do
not appear to be very broadly applicable; e.g., they do not appear to lead to
low-bit-length encryption, signcryption and aggregate signature schemes.

As mentioned above, Coron [16] uses a “compressed” output space for the
hash function in a Rabin signature scheme, but the partial-domain hash signa-
tures themselves are still log N bits.

Organization of the Paper. This paper is organized as follows. After noting
some preliminaries in Section 2, we describe Vallée’s distributional observations
and her “quasi-uniform” drawing algorithm in section 3. In section 4, we describe
our perfectly uniform drawing algorithm, and our improvement upon Coron’s
results regarding Rabin-PDH. We describe our compression algorithm in section
5, after which we describe compressed Rabin encryption and signature schemes
in section 6. Finally, in Section 7, we mention other cryptosystems – such as
signcryption, aggregate signature and ring signature schemes – for which our
compression algorithm allows a 33% bandwidth reduction.

2 Preliminaries

We gather some mathematical notation here for convenience. Let {0, 1}∗ denote
the set of all bit strings, and let {0, 1}n denote the set of all bit-strings of length
n. For a real number r, dre denotes the ceiling of r, that is, the smallest integer
value greater than or equal to r. Similarly, brc denotes the floor of r, that is,
the largest integer value less than or equal to r. Finally, bre denotes the closest
integer to r. Let the symbol ‖ denote concatenation.

Throughout, N will denote a suitable integer modulus. To be suitable, N
should at least be computationally hard to factor using any modern factoring
algorithm. In practice, one often generates N as the product of two large prime

numbers p and q – e.g., 512 bits apiece. However, one could choose N differently
for our schemes, if desired. For example, setting N = pdq for d > 1 can lead to
efficiency advantages, though one should be wary of setting d too large [11].

Let BN,h,h′ = {x ∈ [1, N] : h ≤ x2(modN) < h′} for integers h and h′ and
suitable modulus N – i.e., the set of integers with modular squares in [h, h′). Let
B be shorthand for BN,h,h′ when N , h and h′ are understood.

A “lattice” consists of the set of all vectors that can be generated as integer
linear combinations of a set of basis vectors. For example, if (a, b) and (c, d) are
two basis vectors in two-dimensional space, the lattice that they generate is the
set of vectors {(k1a + k2c, k1b + k2d) : k1, k2 ∈ Z}.

3 Distribution of Numbers with Small Modular Squares

Developing a compressed representation of numbers in BN,h,h′ that is efficiently
computable and invertible requires an understanding of how numbers in BN,h,h′

are distributed in [0, N/2). The compression algorithm works, at a high level, by
taking this distribution into account.

In [33], Vallée describes the “global” distribution of BN,h,h′ in [0, N/2) in
terms of its “local” distribution in each of a set of Farey intervals that covers
[0, N/2). She then describes each local distribution in terms of points of a lattice
that lie in the region between two parabolas. For h′ − h ≥ 8N2/3, the distri-
bution of BN,h,h′-elements among the Farey intervals is “quasi-independent,”
allowing her to construct an algorithm that draws integers from BN,h,h′ “quasi-
uniformly.” Since Vallée’s analysis forms the basis of our compression algorithm,
we review it in detail in this section.

3.1 Farey Sequences

Some properties of Farey sequences are collected in [20]; we recall them below.

Definition 1 (Farey Sequence). The Farey sequence Fk of order k is the
ascending sequence (0

1 , 1
k , . . . , 1

1) of fractions ai

bi
with 1 ≤ ai ≤ bi ≤ k and

gcd(ai, bi) = 1.

The characteristic property of Farey sequences is expressed in the following the-
orem [20]:

Theorem 1. If ai

bi
and ai+1

bi+1
are consecutive in Fk, then biai+1 − aibi+1 = 1.

Another useful theorem concerning Farey sequences is the following:

Theorem 2. If ai

bi
and ai+1

bi+1
are consecutive in Fk, then bi + bi+1 > k.

The latter theorem follows from the fact that (ai + ai+1)/(bi + bi+1), the so-
called “mediant” of ai/bi and ai+1/bi+1, is between ai/bi and ai+1/bi+1 and
would be in Fk if bi + bi+1 ≤ k. Farey sequences lead naturally to the notion
of a Farey partition, in which the set of mediants partition the interval [0, N/2)
into subintervals. The formal definition is as follows.

Definition 2 (Farey Partition). The Farey partition of order k of the interval
[0, N/2) is the set of intervals J(ai, bi) = [(ai−1+ai)N

2(bi−1+bi)
, (ai+ai+1)N

2(bi+bi+1)
), where ai

bi
is

the i-th term in Fk.

So that each “end” of [0, N/2) is covered by the partition, we set (a0, b0) =
(a1, b1) and (az+1, bz+1) = (az, bz), where az/bz = 1/1 is the final fraction in the
Farey sequence.

Vallée found it convenient to use another set of intervals I(ai, bi), called
“Farey intervals,” that are related to J(ai, bi).

Definition 3 (Farey Interval). The Farey interval I(ai, bi) of order k is the
open interval with center aiN

2bi
and radius N

2kbi
, where ai

bi
is the i-th term in Fk.

Using Theorems 1 and 2, one can easily prove that I(ai, bi) contains J(ai, bi), and
that the interval I(ai, bi) is no more than twice as wide as the interval J(ai, bi)
[1]. One can also prove that every number in [0, N/2) is covered by at least one,
and at most two, Farey intervals – e.g., by showing that, for every i, I(ai−1, bi−1)
intersects I(ai, bi), but neither I(ai−1, bi−1) nor I(ai+1, bi+1) contains the center
of I(ai, bi). Vallée probably favored using the Farey intervals rather than the
J(ai, bi) in her analysis, because (roughly speaking) the fact that each I(ai, bi)
is symmetric about aiN/2bi makes her analysis cleaner. A “Farey Covering,”
which is analogous to a Farey partition, is then defined as follows.

Definition 4 (Farey Covering). The Farey covering of order k of the interval
[0, N/2) is the set Farey intervals I(ai, bi) of order k.

3.2 The Connection between Farey Sequences and B’s Distribution

Although it is far from obvious, Farey sequences have a close connection with
the distribution in Z/NZ of integers in BN,h,h′ . Vallée observed that the gaps
between consecutive integers in B vary widely close to the rationals aiN/2bi of
small denominator bi. Close to these rationals, the distribution might be called
“clumpy,” with large gaps separating sequences of small gaps. However, as one
considers wider intervals centered at aiN/2bi, the distribution of B-elements
provably “evens out” – i.e., the ratio of the number of B-elements in the in-
terval, versus the number one would expect if the B-elements were distributed
uniformly, approaches 1. Roughly speaking, the width of interval needed before
the “clumpiness” can be disregarded is inversely proportional to bi. This is one
reason why Farey intervals are useful for analyzing B’s distribution; the diameter
of I(ai, bi) is also inversely proportional to bi.

Building on the above observations, Vallée ultimately proved that the number
of BN,h,h′-elements in I(ai, bi) is essentially proportional to the width of I(ai, bi)
(as one would expect), as long as h′−h is large enough. Formally, Vallée proved
the following theorem [33].

Theorem 3. For −h = h′ ≥ 4N2/3 and k = N
h′ , the subset BN,h,h′ and the

Farey covering of order k are quasi-independent.

Vallée defines quasi-independence as follows.

Definition 5 (Quasi-Independence). A subset X and a covering Y = {Yj} of
ZN are quasi-independent if, for all j, the sets X and Yj are (l1, l2)-independent
for some positive constants l1 and l2 – i.e., l1 ≤ P (X∩Yj)

P (X)P (Yj)
≤ l2.

Clearly, this definition is meaningless unless l1 and l2 are independent of N .
Vallée proves that l1 = 1

5 and l2 = 4 suffice when −h = h′ ≥ 4N2/3 and k = N
h′ .

This means that, for these parameters, any given Farey interval has no more
than l2/l1 = 20 times the “density” of BN,h,h′-elements than any other Farey
interval.

Interestingly, Vallée’s proof of Theorem 3 is essentially constructive. To an-
alyze the distribution of BN,h,h′-elements in the “local” region I(ai, bi), Vallée
associates each BN,h,h′ -element with a point that is in a particular lattice and
that lies in the region between two particular parabolas. She then partitions the
lattice into a set of parallel lines. The number of lines may be very large – e.g.,
superpolynomial in log N . Her distribution analysis then becomes “even more
local”; she provides upper and lower bounds on how many associated lattice
points can occur on each line (except for at most 6 of the lines, for which she
only provides upper bounds). These bounds imply similar bounds on the num-
ber of BN,h,h′-elements in I(ai, bi). Her constructive approach results in what
one may call a “quasi-enumeration” of BN,h,h′-elements in I(ai, bi), in which
each element is indexed first by the line of its associated lattice point, and then
by the lattice point’s position on the line. This quasi-enumeration is crucial
to Vallée’s “quasi-uniform” drawing algorithm (subsection 3.3), to our uniform
drawing algorithm (section 4), and to our algorithms for losslessly compressing
BN,h,h′-elements (section 5).

Before discussing these algorithms, we review the details of Vallée’s analysis.
Set x0 to be the closest integer to aiN

2bi
(the center of the Farey interval). If x =

x0+u is in BN,h,h′ , then h ≤ x2
0+2x0u+u2(mod N) < h′. Now, let L(x0) be the

lattice generated by the vectors (1, 2x0) and (0, N). Then, x = x0+u is in BN,h,h′

precisely when there is a w such that (u,w) ∈ L(x0) and h ≤ x2
0+w+u2 < h′. The

latter requirement implies that (u,w) is in between the two parabolas defined,
in variables u′ and w′, by the formulas x2

0 + w′+ u′2 = h and x2
0 + w′+ u′2 = h′.

Thus, if we set u0 = x0 − aiN
2bi

, then each x ∈ BN,h,h′ ∩ I(ai, bi) corresponds to
a lattice point in:

P (ai, bi) = {(u, w) ∈ L(x0) : |u + u0| ≤ h

2bi
and h ≤ x2

0 + w + u2 < h′}. (1)

It may seem like a fairly complicated task to approximate how many lattice
points in L(x0) are between the two parabolas defined above,1 but, as Vallée
describes, it is possible to find a lattice basis of L(x0) in which the basis vectors
are each short, with one basis vector being “quasi-horizontal” and the other
1 Indeed, finding all of the L(x0) points on a single parabola is equivalent to finding

all of a number’s modular square roots, which is equivalent to factoring.

being “quasi-vertical.” The basis is (r, s) with:

r = bi(1, 2x0)− ai(0, N) = (bi, 2biu0) , (2)

s = bi−1(1, 2x0)− ai−1(0, N) = (bi−1,
N

bi
+ 2bi−1u0) . (3)

Recall that |u0| ≤ 1
2 , and bi ≤ k with k = 1

4N1/3.
Having computed this short lattice basis, Vallée considers the distribution of

P (ai, bi)-points (and hence B-elements) on individual lines parallel to vecr. Each
point in P (ai, bi) lies on a quasi-horizontal line that intersects the vertical axis at
ordinate w0−vN/bi for some rational index v ∈ [0, (h′−h)2/16biN+(h′−h)bi/N],
where w0 = h′−x2

0 +u2
0 and where consecutive indices differ by 1. For lines with

indices from v1 = d2(h′ − h)bi/Ne to v2 = b(h′ − h)2/16biNc, which intersect
the region between the two parabolas in an area she dubs the “legs” (which is
in between the “chest” and the “feet”), Vallée proves the following theorem:

Theorem 4. The number n(v) of points in P (ai, bi) on the line with index v in
the legs satisfies: 1

2
(h′−h)√

vbiN
≤ n(v) ≤ 7

4
(h′−h)√

vbiN
.

Her bounds on each individual line in the legs imply lower and upper bounds on
the total number of lattice points in the legs, using the inequalities:

v2∑
v=v1

1√
v
≥

∫ v2+1

v1

dv√
v

= 2(
√

v2 + 1−√v1) , (4)

v2∑
v=v1

1√
v
≤ 1√

v1
+

∫ v2

v1+1

dv√
v

=
1√
v1

+ 2
√

v2 . (5)

For lines with indices in [0, 2(h′−h)bi/N] or [(h′−h)2/16biN, (h′−h)2/16biN+
(h′ − h)bi/N] that intersect the “chest” or “feet,” Vallée provides no nontrivial
lower bounds on the number of P (ai, bi)-points they may contain, only upper
bounds. For h′−h = 8N2/3, one can verify Vallée’s results that there are at most
4 lines in the chest, each with fewer than 2

bi

√
(v1 − 1)N/bi + 1 points, and that

there are at most 2 lines in the feet, each with fewer than 8 points. Ultimately,
Vallée proves Theorem 3 using her lower bounds for the legs, and upper bounds
for the chest, legs and feet.

3.3 Vallée’s Quasi-Uniform Drawing Algorithm

Vallée uses the above results, particularly her lower and upper bounds for the
legs, to obtain a concrete algorithm for drawing integers from BN,h,h′ quasi-
uniformly when h′ − h ≥ 8N2/3. For a quasi-uniform drawing algorithm, the
respective probabilities of any two BN,h,h′-elements being drawn are within a
constant factor of each other; formally:

Definition 6 (Quasi-Uniform). A drawing algorithm C, defined over a finite
set U and with values in a subset X of ZN , is said to be (l1, l2)-uniform (or quasi-
uniform) for constants l1 and l2 if, for all x ∈ X, l1

|X| ≤ Pr[u ← U | C(u) =
x] ≤ l2

|X| .

Vallée’s algorithm is as follows:

1. Randomly Select a Starting Point: Pick random integer x ∈ [0, N/2) with
uniform distribution.

2. Determine Farey Interval: Use continued fractions to compute (ai, bi) for
which x ∈ J(ai, bi).

3. Evaluate the Number of Points in P (ai, bi): Compute x0 = baiN
bi
e, count

exactly the number nc+f of points in the chest and feet, and obtain a lower
bound nl on the number of points in the legs using Vallée’s lower bounds
(with Equation 4).

4. Pick a Point from P (ai, bi): Randomly select an integer in t ∈ [1, nc+f + nl]
with uniform distribution. If t ≤ nc+f , output the appropriate point from
the chest or feet. Else, use Equation 4 to determine which quasi-horizontal
line would contain the nth

l point in the legs if each line met Vallée’s lower
bounds, and randomly choose a point in P (ai, bi) on that line with uniform
distribution.

5. Compute x′ from the Chosen Point in P (ai, bi): Let (u,w) be the lattice
point output by the previous step. Set x′ = x0 + u.

Remark 1. In Step 3, one can quickly can get an exact count for how many points
are in the chest and the feet by counting the exact number of points on each
line, using simple geometry. (Recall that there are at most 4 lines in the chest,
2 in the feet.) A line intersects one of the two parabolas in at most 4 locations,
possibly cutting the line into two segments that lie in between the parabolas.
After finding the first and last lattice points on each segment, extrapolating
the total number of points on each segment is easy since the x-coordinates of
consecutive lattice points differ by bi (see Equation 2). Vallée avoids counting
the number of points on lines in the legs, since the number of lines in the legs
may be super-polynomial in log N .

The drawing algorithm outputs an x′ ∈ BN,h,h′ that is in the same J(ai, bi)
interval as x. A wider interval (recall that I(ai, bi) has diameter N

bik
for 1 ≤ bi ≤

k, and that J(ai, bi) is at least half as wide as I(ai, bi)) has a higher chance
of being chosen in the first two steps. However, once an interval is chosen, any
given B-element in that interval has a lower probability of being chosen if the
interval is wide than if it is narrow. On balance, these factors even out (this is
quasi-independence), and the drawing algorithm is quasi-uniform.

In computing l2/l1, there are three things to consider. First, different Farey
intervals may have different “densities” of BN,h,h′ -elements; specifically, the ratio
may be as much as 20 (see discussion after Theorem 3). Second, in Step 2, we
used J(ai, bi) rather than I(ai, bi); since I(ai, bi) is between 1 and 2 times as
wide as J(ai, bi), this costs us another factor of 2. Finally, within the J(ai, bi)
interval, different lines may be closer to the lower bounds or closer to the upper
bounds, leading to a factor of 7/4

1/2 = 7
2 . Thus, l2/l1 is at most 20 · 2 · 7

2 = 140.

4 Improving Vallée’s and Coron’s Results

In this section, we describe how to modify Vallée’s quasi-uniform drawing al-
gorithm to make it perfectly uniform. Our perfectly uniform drawing algorithm
gives us an immediate improvement upon Coron’s proof of security for Rabin-
PDH; in particular, it allows us to reduce the output size of the partial domain
hash function (see subsection 4.2). More generally, the fact that a simulator
can draw B-elements uniformly in responding to an adversary’s hash queries
allows us (when combined with the compression schemes of Section 5) to reduce
the bandwidth of several signature-related cryptosystems, including aggregate
signature schemes, ring signature schemes and signcryption schemes.

4.1 A Perfectly Uniform Drawing Algorithm

Modifying Vallée’s quasi-uniform drawing algorithm to make it perfectly uni-
form is surprisingly simple. Our modification is based on our observation that,
for any BN,h,h′-element (with h′−h ≥ 8N2/3, as required by Vallée), anyone can
efficiently compute the exact probability Px′ that Vallée’s quasi-uniform draw-
ing algorithm will output x′. For example, a simulator in a security proof can
compute this probability (without, of course, needing the factorization of N).

Assume, for now, that we can efficiently compute Px′ for any given x′. Let
Pmin be a lower bound on such probabilities over all BN,h,h′-elements. Then, the
improved drawing algorithm is as follows:

1. Use Vallée’s method to pick an x′ ∈ BN,h,h′ quasi-uniformly.
2. Compute Px′ .
3. Goto Step 1 with probability (Px′ − Pmin)/Px′ .
4. Otherwise, output x′.

Since Vallée’s drawing algorithm is quasi-uniform, the expected number of “Goto”
loops per draw is a small constant; thus, the simulator’s estimated time-complexity
increases only by a constant factor. The probability that x′ is chosen in Step 1
and that it “survives” Step 3 is the same for all x′ – namely, Px′ ·(1− Px′−Pmin

Px′
) =

Pmin; for this reason, and since each run of Vallée’s algorithm is independent,
the algorithm is perfectly uniform.

Now, given x′, how does one (say, a simulator) compute Px′? First, the sim-
ulator determines the at most two Farey intervals I(ai, bi) and I(ai+1, bi+1)
that contain x′. For I(ai, bi), the simulator computes the index vi of the quasi-
horizontal line lvi that contains the lattice point (ui, wi) associated to x′, and
the exact number n(vi) of lattice points on lvi . Similarly, if there is a second
Farey interval I(ai+1, bi+1) that contains x′, the simulator computes vi+1, lvi+1 ,
(ui+1, wi+1), and n(vi+1). Then, using the variables x and t from Vallée’s draw-
ing algorithm, the probability that x′ will be chosen is:

(Pr[x ∈ J(ai, bi)]) · (Pr[ti ∈ lvi | x ∈ J(ai, bi)]) ·
(

1
n(vi)

)
+

(Pr[x ∈ J(ai+1, bi+1)]) ·
(
Pr[ti+1 ∈ lvi+1 | x ∈ J(ai+1, bi+1)]

) ·
(

1
n(vi+1)

)
,

where we use Pr[ti ∈ lvi
] to denote the probability that the choice of t in Step

4 of Vallée’s algorithm will map to the line lvi .

Remark 2. So that the above terminology works when (ui, wi) (or (ui+1, wi+1))
lies in the chest or feet, we can pretend that these nc+f points lie on a single
“line.”

Focusing on the first summand in the expression above, the simulator can
compute each of the two probabilities in this term efficiently. First, the simu-
lator computes the number of integers in J(ai, bi); denoting this number by ji,
Pr[x ∈ J(ai, bi)] is simply ji/dN/2e. Next, for the second probability, suppose
that nc+f +nl is the approximation used in Step 4 of Vallée’s algorithm derived
from her lower bounds (namely, nl = d (h′−h)√

biN
(
√

v2 + 1−√v1)e) for the legs, and

that nvi
= d (h′−h)√

biN

√
vi + 1e − d (h′−h)√

biN

√
vie is her approximation for the number

of points on lvi
. (Warning: our vi notation collides here with Vallée’s definition

of v1 and v2.) Then, Pr[t ∈ lvi | x ∈ J(ai, bi)] = nvi/(nc+f + nl). In a similar
fashion, the simulator can compute the necessary probabilities for I(ai+1, bi+1),
thereby obtaining a perfectly uniform drawing algorithm.

Vallée was presumably content with finding a quasi-uniform drawing al-
gorithm, since a uniform algorithm would not have improved her result of a
provable exp(

√
(4/3) log n log log n)-time factoring algorithm by a significant

amount. However, as described below, our uniform drawing algorithm has a
significant practical impact on Coron’s partial-domain hash variant of Rabin’s
signature scheme.

4.2 Improving Coron’s Results for Rabin-PDH

Coron [16] provided a random-oracle security proof for a partial-domain hash
Rabin signature scheme (Rabin-PDH), in which the signature x′ is a modular
square root (up to a fudge factor) of γ · H(m) + f(m), where H is a partial-
domain hash with output space [0, Nβ] for 2

3 + ε ≤ β < 1, f is a possibly
constant function, and γ is a constant. In Rabin signing, a common fudge factor
is to accept the signature if x′2 ≡ c(γ · H(m) + f(m))(modN) for any c ∈
{−2,−1, 1, 2}, when N = pq for p ≡ 3(mod8) and q ≡ 7(mod8). In this case,
x′ is an integer in BN,h,h′ for h = cf(m) and h′ = h + cγNβ if cγ is positive,
or for h = h′ + cγNβ and h′ = cf(m) if cγ is negative. Coron’s proof requires
that γ be very small in magnitude (e.g., 16 or 256) [16], so that h′−h = |cγNβ |
is sufficiently small. One reason that Rabin-PDH was an interesting problem
for Coron to analyze was that partial-domain hashes were already being used by
standardized encoding schemes. For example, ISO 9796-2 defined the encoding
µ(m) = 4A16‖m‖H(m)‖BC16.

As mentioned above, Coron provides a proof of security for Rabin-PDH when
h′ − h is at least (2

3 + ε) log N bits, but this “ε” can be quite large in practice.
Coron’s security proof relies completely on his algorithm for drawing integers
from BN,h,h′ with a distribution whose distance from uniform is at most 16N

−3ε
13 .

This statistical distance must be very small, so that an adversary cannot distin-
guish a real attack from a simulated attack, in which the simulator uses Coron’s
drawing algorithm to respond to hash queries. For the statistical distance to be at
most 2−k, we must have that 4− 3ε

13 log N ≤ −k, which implies that ε ≥ 13(k+4)
3 log N .

This implies that h′ − h is at least (2
3 + ε) log N = 2

3 log N + 13(k+4)
3 bits. When

k = 80, for example, h′−h must be at least 2
3 log N +364 bits. This means that,

for k = 80, Coron’s technique does not reduce the minimum output size of the
hash function at all, until N is at least 3 · 364 = 1092 bits!

We get a better, and much more practical, provable security result by using
our perfectly uniform drawing algorithm. In particular, since our algorithm al-
lows us to draw BN,h,h′-elements uniformly for h′ − h ≥ 8N2/3, we can prove
a reduction from factoring to Rabin-PDH when h′ − h is only 2

3 log N + 3 bits,
over 300 bits less than Coron’s result for k = 80! Moreover, the proof of security
is tighter than Coron’s proof for two reasons: 1) the adversary cannot possi-
bly distinguish the simulated distribution from uniform; and 2) Coron’s proof,
which adapts his proof for RSA-FDH [15], does not provide a tight reduction
from factoring (cf. Bernstein [6]).

For completeness, we prove the security of a specific variant of our improved
Rabin-PDH, though it should be clear that our drawing algorithm can work
with essentially any variant. We pick the one (succintly) described below for
its simplicity. Other variants may have advantages; e.g., Bernstein’s [6] security
reduction is tighter by a small constant, and Bellare and Rogaway [3] describe
an encoding scheme that allows (at least partial) recovery of the message being
signed.

Let N be the public key, with N = pq for p ≡ 3(mod8) and q ≡ 7(mod8).
Let Aa,b be the unique number modulo N that satisfies Aa,b ≡ a(modp) and
Aa,b ≡ b(modq). Let H1 : {0, 1}∗ → [h, h′) be the partial-domain hash function
with h′′ = h′ − h(modN) ≥ 8N2/3, and H2 : {0, 1}∗ → {A±1,±1} be a keyed
hash function, with the key known only to the signer. To sign M , the signer first
computes m = H1(M), and then:

1. Sets s′ = m(n−p−q+5)/8 mod n if
(

m
N

)
= 1; else, sets s′ = (m/2)(n−p−q+5)/8;

2. Sends s = s′ ·H2(m) mod n.

To verify, the recipient checks that either s2 ≡ ±H1(M)(modN) or s2 ≡ ±2 ·
H1(M)(modN). This scheme can be easily modified, à la Bernstein [6], to avoid
the computation of Jacobi symbols.

In Appendix A, we prove the following theorem.

Theorem 5. Assume that there is a chosen-message attack adversary A that
breaks our Rabin-PDH scheme for modulus N in time t with probability ε. Then,
in the random oracle model, there is an algorithm B that factors N in time t′

with probability ε′, where ε′ ≥ 1
2ε(1− 1

h′′), and t′ = O(t + qH log2 N).

5 The Compression Algorithms

In the previous section, we reduced the permissible output size of the hash
function in Rabin-PDH to about 2

3 log N bits, but Rabin-PDH signatures are
still log N bits. In this section, we describe compression algorithms that allow
us to compress not only Rabin-PDH signatures, but also Rabin ciphertexts (not
to mention aggregate signatures, ring signatures, signcryptions, and so on).

A prerequisite of any compression algorithm is to understand the distribu-
tion of what is being compressed. Vallée gives a constructive characterization
of the distribution, in Z/NZ, of integers in BN,h,h′ ; we leverage her character-
ization to construct a lossless compression algorithms. Roughly speaking, we
associate BN,h,h′-elements to strings of about log2(h′ − h) bits that specify the
BN,h,h′-element’s Farey interval and its “address” (according to Vallée’s rough
enumeration) within that interval. For a B-element in a wider Farey interval,
we use fewer bits of the bit string to specify the Farey interval and more bits to
specify its address; on balance, it evens out.

Our compression algorithms involve two nondeterministic quasi-bijections,
θ : BN,h,h′ × D → {0, 1}c2+log2(h

′−h) (used in the signature schemes) and
π : {0, 1}−c1+log2(h

′−h) × D → BN,h,h′ (used in the encryption scheme), for
small nonnegative constants c1 and c2. These mappings are not actual bijections;
we call them “nondeterministic quasi-bijections” since the image of an element
under each mapping or its inverse has a small constant cardinality; formally:

Definition 7 (Nondeterministic Quasi-Bijection). For sets (X ,D,Y) and
constants (l1, l2, l3, l4), we say π : X×D → Y is an (l1, l2, l3, l4)-nondeterministic-
quasi-bijection if:

1. For all x ∈ X , the cardinality of {π(x, d) : d ∈ D} is in [l1, l2].
2. For all y ∈ Y, the cardinality of {x : ∃d ∈ D with π(x, d) = y} is in [l3, l4].

Above, D is an auxiliary set – e.g., it may be used as a source of (a small number
of) random dummy bits if one wishes to make π randomized. The purpose of D
is simply to make π an actual “mapping,” with a single output for a given input
(even though for a single x ∈ X there may be multiple outputs). Notice that an
actual bijection is a (1, 1, 1, 1)-quasi-bijection.

Roughly speaking, our signature scheme uses θ to compress, without loss,
a Rabin-PDH signature (an element of BN,h,h′) to a short bit string. Since the
“entropy” of the hash output in Rabin-PDH is about 2

3 log N bits, one may hope
that a Rabin-PDH signature can also be this short; in fact, within a few bits, this
is precisely the case. To verify the compressed signature, it is decompressed to
recover the ordinary Rabin-PDH signature, which is then verified in the normal
fashion. Our encryption scheme uses π to map encoded bit strings to integers in
BN,h,h′ , which are then squared to create short ciphertexts. Both θ and π are
efficiently computable and efficiently invertible – i.e., it is easy to recover x from
π(x, d) or x′ from θ(x′, d) – without any trapdoor information.

Why don’t we just replace π with θ−1? Indeed, we could if θ were a bijec-
tion, but (unfortunately) θ maps each BN,h,h′-element to possibly several short

strings; if we used θ−1 to map short encoded messages to BN,h,h′-elements, mul-
tiple plaintexts would correspond to the same ciphertext, which we wish to avoid.
Thus, although the only real difference between π and θ−1 is that we reduce the
size of π’s domain to ensure that it is an injection, we find it convenient to keep
the notation separate.

5.1 Mapping B-Elements to Short Strings (The θ Quasi-Bijection)

Below, we give one approach to the θ quasi-bijection. Roughly speaking, θ(x′, d)
re-expresses a BN,h,h′-element x′ according to its Farey interval and its “address”
(using Vallée’s lattice) within the Farey interval. For example, a “naive” way to
re-express x′ is as (ai, bi, v, l), where (ai, bi) defines x′’s Farey interval, v is the
index of the quasi-horizontal line that contains the lattice point associated to x′,
and l represents the lattice point’s position on the line. In this format, x′ has at
most two representations, one corresponding to each Farey interval that contains
x′; the only effect of “d” is to pick one of these representations. We describe a
different format below that has tighter compression and does not suffer from the
parsing problems of the naive approach.

The θ quasi-bijection below maps x′ ∈ BN,h,h′ to a short string in [0, h′′],
where h′′ is a parameter whose value will be calibrated later.

Computing θ(x′, d):

1. Determine (ai, bi) for which x′ is in J(ai, bi).
2. Compute xleft, the smallest integer in [0, h′′] with (xleft +1) · N

h′′ in J(ai, bi),
and xright, the largest integer in [0, h′′] with xright · N

h′′ in J(ai, bi).
3. Compute nc+f , the number of lattice points in the chest and feet of P (ai, bi),

and nl, an upper bound for the number of points in the legs.
4. Using Vallée’s enumeration, select one integer in xright − xleft (there may

be several) that corresponds to the lattice point (u,w) that is associated to
x′. More specifically:
– If (u,w) is the lth point in the chest or feet, set c = l.
– Otherwise, let sv be Vallée’s upper bound for the number of leg lattice
points on quasi-horizontal lines with index at most v. Compute the index v
of the line containing (u,w). Let nv be the actual number of lattice points
on the line with index v and let n′v = sv − sv−1 be Vallée’s upper-bound
estimate. Suppose that x′ is the kth lattice point on the line. Pick an integer
c ∈ (nc+f + sv−1 + n′v

k−1
nv

, nc+f + sv−1 + n′v
k

nv
].

– Pick an integer c′ ∈ ((xright − xleft) c−1
nc+f+nl

, (xright − xleft) c
nc+f+nl

]. Set
x = xleft + c′.

Although not mentioned explicitly in the algorithm description above, Vallée’s
quasi-enumeration, and the steps that use this quasi-enumeration, depend on
the values of h and h′ (which we assume to be public, and which could be
most conveniently be set to 0 and 8N2/3). Shortly, we will calibrate h′′ so that
xright − xleft is larger than (but within a constant of) nc+f + nl. In computing

θ(x′, d), d is used – either deterministically or as a source of random bits – to
pick the values of c and c′. Given θ(x′, d), one can recover the value of x′ as
follows:

Computing θ−1(x):
1. Determine (ai, bi) for which x · N

h′′ is in J(ai, bi).
2. Compute xleft, the smallest integer in [0, h′′] with (xleft +1) · N

h′′ in J(ai, bi),
and xright, the largest integer in [0, h′′] with xright · N

h′′ in J(ai, bi).
3. Compute nc+f , the number of lattice points in the chest and feet of P (ai, bi),

and nl, an upper bound for the number of points in the legs.
4. Compute c′ = x − xleft. From c′ and nc+f + nl, compute the value of c. If

c ≤ nc+f , let (u,w) be the cth point in the chest or feet. Otherwise, compute
the index v such that c ∈ (nc+f + sv−1, nc+f + sv], as well as the value of
k (defined as above), and let (u,w) be the kth point on the quasi-horizontal
line with index v.

5. Set x′ = θ−1(x) = baiN
bi
e+ u.

Now, we calibrate h′′ to be as small as possible while still allowing the prop-
erty that at least one bit string in [0, h′′] is uniquely associated to each BN,h,h′-
element. We can ensure this property if, for every interval, xright − xleft ≥
nc+f + nl – i.e., the number of bit strings associated to J(ai, bi) is at least the
number of points in P (ai, bi).

Since xleft
N
h′′ and (xright +1) N

h′′ are separated by a distance greater than the
width of J(ai, bi), we get that (xright−xleft+1) N

h′′ > h′−h
4bi

, where the latter term

is the half of the diameter of I(ai, bi); thus, we get xright− xleft + 1 > h′′(h′−h)
4biN

.

To determine an h′′ for which h′′(h′−h)
4biN

≥ nc+f + nl, we use an upper bound

proven by Vallée [33]: nc+f + nl ≤ 4 (h′−h)2

2biN
= 2(h′−h)2

biN
. Thus, if h′′ ≥ 8(h′ − h),

then xright−xleft + 1 > nc+f + nl. As long as the nl estimate is an integer, this
implies that xright−xleft ≥ nc+f +nl, as desired. So, we can set h′′ = 8(h′−h).
For this value of h′′, the θ mapping compresses BN,h,h′ -elements to within 3 bits
of the theoretical minimum. The reader can verify that θ outputs an answer for
every x′ (i.e., l1 ≥ 1) and that θ−1 has exactly one possible output for each x
(i.e., l3 = l4 = 1).

5.2 Mapping Short Strings to B-Elements (The π Quasi-Bijection)

Like θ−1, the π quasi-bijection maps short strings to BN,h,h′-elements. However,
we would like π to map short strings (e.g., plaintext strings) into BN,h,h′ injec-
tively (e.g., to allow correct decryption); thus, the set of short strings is smaller
than the set of BN,h,h′-elements (rather than the reverse). For that reason, π
uses Vallée’s lower bounds (unlike θ). Since π is otherwise similar to θ−1, we
relegate a precise description of π to Appendix B.

In terms of performance, all steps of the θ and π quasi-bijections and their
inverses are O(log2 N), except (possibly) the determination of the Farey interval,
which uses continued fractions. However, even the continued fraction step can
be computed in O(log2 N) time – e.g., using adaptations of techniques from [14].

6 Compressed Rabin-PDH Signing and Compressed
Rabin-OAEP+ Encryption

In this section, we describe how to use the θ and π quasi-permutations to achieve
a 33% reduction in the size of Rabin signatures and Rabin ciphertexts.

The signature case is easy to describe. Recall that, in Section 4.2, we de-
scribed how to construct a Rabin-PDH signature s that satisfies either s2 ≡
±H1(M)(modN) or s2 ≡ ±2 ·H1(M)(modN) for H1 : {0, 1}∗ → [h, h′), where
h′ − h ≥ 8N2/3. For simplicity, let’s assume that s2 ≡ H1(M)(modN); the
other cases can be handled similarly. In this case, we simply set the compressed
Rabin-PDH signature to be θN,h,h′(s, d) – i.e., the θ quasi-permutation’s com-
pression of s for modulus N and parameters h and h′. To verify the compressed
Rabin-PDH signature, the verifier simply recovers s from θN,h,h′(s, d), and then
verifies s in the normal fashion. Note that anybody can create a compressed
Rabin-PDH signature from a (non-compressed) Rabin-PDH signature, and vice
versa, without needing trapdoor information – i.e., the compression algorithm is
completely separate from the signing process.

The proof of security for compressed Rabin-PDH follows easily from the proof
of security for (non-compressed) Rabin-PDH. Specifically, let A be a chosen-
message attack adversary against Compressed Rabin-PDH, and let B be chosen-
message attack adversary against Rabin-PDH that interacts both with a “chal-
lenger” and with A. To respond to A’s signature query on M , B queries the
challenger regarding M , receives back Rabin-PDH signature x′, and sends x to
A, where x = θN,h,h′(x′, d). Eventually, A aborts or sends B a forgery x∗ on a
message M∗ that it has never queried. B aborts or computes x′∗ = θ−1

N,h,h′(x
∗)

and sends x′∗ to the challenger as its forgery.
The encryption case is more complicated, because the compression algorithm

cannot be separated from the encryption process. Unfortunately, this fact –
together with the fact the encryption scheme is not quite a one-way permutation
as required by OAEP+, but rather a quasi-bijection – requires us redo the entire
OAEP+ security proof, albeit with relatively minor modifications. At a high
level, encryption and decryption proceed as follows:

Encryption:

1. Compute x ∈ [1, h′′], an encoding of M .
2. Compute x′ = πN,h,h′(x, d) ∈ BN,h,h′ ∩ [0, N/2).
3. Compute y = x′2(modN).
4. Output c = y − h as the ciphertext.

Decryption:

1. Recover y from c and h.
2. Compute each x′ ∈ BN,h,h′ ∩ [0, N/2) such that x′2 ≡ y(modN).
3. For each x′, compute the values of x = π−1

N,h,h′(x
′, d).

4. For each x, undo the message encoding, and confirm that the message M is
encoded correctly.

5. If an x is encoded correctly, output the decryption; otherwise, indicate de-
cryption failure.

For Vallée’s parameters, for a given x′, there are at most two values of x in Step
3 – i.e., l4 = 2 – so the encoding of at most 4 values of x must be checked.
As mentioned in section 5 and further discussed in Appendix B, our preferred
parameters are h′ − h = 8N2/3 and h′′ ≤ (h′−h)

5 .
Although we could use any of a variety of encoding schemes, we prove that

Compressed Rabin-OAEP+ has a tight reduction to factoring. The OAEP+
encoding scheme uses three hash functions:

G : {0, 1}k0 → {0, 1}m,H ′ : {0, 1}m+k0 → {0, 1}k1 , and H : {0, 1}m+k1 → {0, 1}k0

where m, k0, k1 are security parameters. The quantities 2−k0 and 2−k1 should
be negligible. Let n = m + k0 + k1 = log h′′ < 2

3 log N + 8
5 . To encode message

M ∈ {0, 1}m, the sender:

1. Picks a random r ∈ {0, 1}k0 .
2. Sets s ← (G(r)⊕M)‖H ′(r‖M) and t ← H(s)⊕ r.
3. Sets x ← s‖t, an n-bit integer.

In Step 4 of Decryption, the recipient decodes by parsing each candidate x into
si‖ti for si ∈ {0, 1}m+k1 and ti ∈ {0, 1}k0 , and then parsing si into for s′i‖s′′i for
s′i ∈ {0, 1}m and s′′i ∈ {0, 1}k1 . For each i, the recipient computes ri ← ti⊕H(si)
and Mi ← s′i ⊕ G(ri), and tests whether s′′i = H ′(ri‖Mi). If there is a unique
i for which the condition is satisfied, the recipient outputs Mi as the correct
plaintext; otherwise, it indicates a decryption failure. For technical reasons in
the security proof, we require that d = r – i.e., that the encrypter use r as the
random bits in the computation of πN,h,h′(x, d) – and that the decrypter indicate
a decryption failure if this is not done. For compressed Rabin-OAEP+, we prove
the following theorem in Appendix C.

Theorem 6. Let A be an IND-CCA2 adversary that breaks Compressed Rabin-
OAEP+ in time t with advantage ε for modulus N . Then ε ≤ l2

l1
ε′ + (qH′ +

qD)/2k1 + (qD + 1)qG/2k0 , where ε′ is the success probability that a particular
algorithm B can factor, t′ = O(t + qGqHTf + (qG + qH′ + qH + qD) log N), and
Tf is the complexity of encryption.

7 Extensions

In the full version of the paper, we describe compressed signcryption, aggregate
signature and ring signature schemes, in which we achieve a 33% bandwidth
reduction in comparison to Rabin-variants of the schemes in [24], [23] and [29].
We also note that our compression algorithms can be applied to allow shorter
identity-based secret and public keys for the Fiat-Shamir signature scheme and
Cocks’ identity-based encryption scheme.

References

1. T.M. Apostol, Modular Functions and Dirichlet Series in Number Theory,
Springer-Verlag (1976).

2. K. Barr and K. Asanović, Energy Aware Lossless Data Compression, in Proc. of
MobiSys 2003.

3. M. Bellare and P. Rogaway, The Exact Security of Digital Signatures – How to
Sign with RSA and Rabin, in Proc. of Eurocrypt 1996, LNCS 1070, pages 399–416.
Springer-Verlag, 1996.

4. M. Bellare and P. Rogaway, Optimal Asymmetric Encryption – How to Encrypt
with RSA, in Proc. of Eurocrypt 1994, LNCS 950, pages 92–111. Springer-Verlag,
1994.

5. D.J. Bernstein, A Secure Public-Key Signature System with Extremely Fast Veri-
fication, 2000. Available at http://cr.yp.to/djb.html.

6. D.J. Bernstein, Proving Tight Security for Standard Rabin-Williams Signatures,
2003. Available at http://cr.yp.to/djb.html.

7. D.J. Bernstein, Reducing Lattice Bases to Find Small-Height Values of Univariate
Polynomials, 2003. Available at http://cr.yp.to/djb.html.

8. D. Bleichenbacher, Compressed Rabin Signatures, in Proc. of CT-RSA 2004.
9. D. Boneh, Simplified OAEP for the RSA and Rabin Functions, in Proc. of Crypto

2001, LNCS 2139, pages 275–291. Springer-Verlag, 2001.
10. D. Boneh, C. Gentry, B. Lynn, and H. Shacham, Aggregate and Verifiably Encrypted

Signatures from Bilinear Maps, in Proc. of Eurocrypt 2003, LNCS 2656, pages 416-
432. Springer-Verlag, 2003.

11. D. Boneh, G. Durfee, and N. Howgrave-Graham, Factoring N = prq for Large r,
in Proc. of Crypto 1999, LNCS 1666, pages 326–337. Springer-Verlag, 1999.

12. D. Boneh and R. Venkatesan, Breaking RSA May Not Be Equivalent to Factoring,
in Proc. of Eurocrypt 1998, LNCS 1233, pages 59–71. Springer-Verlag, 1998.

13. C. Cocks, An Identity Based Encryption Scheme Based on Quadratic Residues, in
Proc. of Cryptography and Coding 2001, LNCS 2260, Springer (2001). Available
at http://www.cesg.gov.uk/technology/id-pkc/media/ciren.pdf.

14. H. Cohen, A Course in Computational Algebraic Number Theory, 4th ed., Graduate
Texts in Mathematics, Springer, 2000.

15. J.S. Coron, On the Exact Security of Full Domain Hash, in Proc. of Crypto 2000,
LNCS 1880, pages 229-235. Springer-Verlag, 2000.

16. J.-S. Coron, Security Proof for Partial-Domain Hash Signature Schemes, In Proc.
of Crypto 2002, LNCS 2442, pages 613–626. Springer-Verlag, 2002.

17. D. Coppersmith, Finding a Small Root of a Univariate Modular Equation, in Proc.
of Eurocrypt 1996, LNCS 1070, pages 155-165. Springer-Verlag, 1996.

18. U. Feige, A. Fiat, A. Shamir, Zero-Knowledge Proofs of Identity, in Jour. of Cryp-
tology (1), pp. 77–94 (1988).

19. A. Fiat, A. Shamir, How to Prove Yourself: Practical Solutions to Identification
and Signature Problems, in Proc. of Crypto 1986, LNCS 263, pp. 186-194. Springer
(1986).

20. G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, Oxford
Science Publications (5th edition).

21. J. Jonsson, A OAEP Variant with a Tight Security Proof, 2003. Available at
http://www.math.kth.se/~jakobj/crypto.html.

22. A.K. Lenstra and E.R. Verheul, The XTR Public Key System, In Proc. of Crypto
2000, LNCS 1880, pages 1–20. Springer-Verlag, 2000.

23. A. Lysyanskaya, S. Micali, L. Reyzin, and H. Shacham, Sequential Aggregate Sig-
natures from Trapdoor Homomorphic Permutations, in Proc. of Eurocrypt 2004,
LNCS 3027, pages 74–90. Springer-Verlag, 2004.

24. J. Malone-Lee and W. Mao, Two Birds One Stone: Signcryption Using RSA, 2002.
Available at http://www.hpl.hp.com/techreports/2002/HPL-2002-293.html.

25. A. Menezes, P. van Oorschot and S. Vanstone, Handbook of Applied Cryptography,
CRC Press, 1996.

26. S. Micali, A. Shamir, An Improvement of the Fiat-Shamir Identification and Sig-
nature Scheme, in Proc. of Crypto 1988, LNCS 403, pp. 244–247. Springer-Verlag
(1990).

27. H. Ong, C.P. Schnorr, Fast Signature Generation with a Fiat Shamir - Like Scheme,
in Proc. of Eurocrypt 1990, LNCS 473, pp. 432–440. Springer-Verlag (1990).

28. M.O. Rabin, Digitalized Signatures and Public-Key Functions as Intractable as
Factorization, MIT/LCS/TR-212, MIT Laboratory for Computer Science, 1979.

29. R.L. Rivest, A. Shamir, and Y. Tauman, How to Leak a Secret, in Proc. of Asiacrypt
2001, LNCS 2248, pages 552–565. Springer-Verlag, 2001.

30. K. Rubin and A. Silverberg, Torus-based Cryptography, in Proc. of Crypto 2003,
LNCS 2729, pages 349–365. Springer-Verlag, 2003.

31. V. Shoup, OAEP Reconsidered, in Proc. of Crypto 2001, LNCS 2139, pages 239-
259. Springer-Verlag, 2001.

32. A.K. Lenstra, A. Shamir, J. Tomlinson and E. Tromer, Analysis of Bernstein’s
Factorization Circuit, in Proc. of Asiacrypt 2002, LNCS 2501, pages 1–26. Springer-
Verlag, 2002.

33. B. Vallée, Provably Fast Integer Factoring with Quasi-Uniform Small Quadratic
Residues, In Proc. of STOC 1989, pages 98–106.

34. B. Vallée, Generation of Elements with Small Modular Squares and Provably Fast
Integer Factoring Algorithms, Mathematics of Computation, vol. 56, no. 194, pages
823–849, 1991.

A Security Proof for Improved Rabin-PDH

To prove our scheme secure against existential forgery under chosen-message
attacks, we construct the following game:

Setup: B gives A the public key N , retaining H1 for use as a random oracle.

Hash Queries: A can make a query Mi to the H1-oracle at any time. If B
has received an identical query before, it responds as it did before. Other-
wise, B responds by first generating a random value ci ∈ {−2,−1, 1, 2} with
uniform distribution. It then generates a number si ∈ BN,cih,cih′ with uni-
form distribution and sets H1(Mi) = s2

i /ci(modN). It logs (Mi, si) into its
H1-list. (When ci = ±2, there is a small complication – namely, si must be cho-
sen s.t. not only cih(modn) ≤ s2

i (modn) < cih
′(modn), but also s2

i (modn) ∈
{cih(modn), . . . , ci(h′ − 1)(modn)}. The simulator can accomplish this easily
simply by discarding the sampled si’s that don’t satisfy the latter inequality
(50% of them for |ci| = 2).)

Signature Queries: A can make a query Mi to the H1-oracle at any time. B
responds by using Mi to recover si from its H1-list; it then sends si.

Forgery: Eventually, the adversary either aborts or outputs a signature s on a
message M for which it has not made a signature query.

One can easily confirm that B’s H1-query responses, as well as its signature
responses, are indistinguishable from uniform; in fact, they are perfectly uniform.

Any forgery that A manages to generate for message M must satisfy s2 ≡
±H1(M)(modN) or s2 ≡ ±2 · H1(M)(modN). If A made no H1-query at M ,
then its probability of success is at most 1/h′′. If A did make an H1-query at M ,
then B recovers the value s′ associated to M from its H1-list. With probability
1
2 , gcd(s − s′, N) gives a nontrivial factor of N . Thus, ε′ ≥ 1

2ε(1 − 1
h′′), and

t′ = O(t + qH log2 N).

B Details of the π Quasi-Bijection

Let x ∈ [0, h′′], where h′′ is a parameter whose value will be calibrated later.
The π quasi-permutations sends x to an element of BN,h,h′ , as follows.

Computing π(x, d):

1. Compute x · N
h′′ , and determine (ai, bi) for which the result is in J(ai, bi).

2. Compute xleft, the smallest integer in [0, h′′] with (xleft +1) · N
h′′ in I(ai, bi),

and xright, the largest integer in [0, h′′] with xright · N
h′′ in I(ai, bi).

3. Compute nc+f , the number of lattice points in the chest and feet of P (ai, bi),
and nl, a lower bound for the number of points in the legs.

4. Using Vallée’s enumeration, select one lattice point (u,w) (there may be
several) that corresponds to x− xleft. More specifically:
– Pick an integer in c ∈ ((nc+f + nl)

x−xleft−1
xright−xleft

, (nc+f + nl)
x−xleft

xright−xleft
]

– If c ≤ nc + nf , pick the lattice point (u,w) that has enumeration c in the
chest or feet.
– Otherwise, let sv be Vallée’s lower-bound for the number of leg lattice
points on quasi-horizontal lines with index at most v. Compute v such that
sv−1 < c − nc+f ≤ sv. Let nv be the number of lattice points on the line
with index v and let n′v be Vallée’s lower-bound estimate. Pick an integer
c′ ∈ (nv(c−nc+f−sv−1−1

n′v
), nv(c−nc+f−sv−1

n′v
)], and set (u,w) to be the c′th point

in P (ai, bi) on the line.
5. Set x′ = x0 + u, where x0 = baiN

bi
e. Output x′.

We omit the description of π−1(x′), since it should be clear from the above. Now,
we mention some of the properties of the π quasi-permutation.

Choosing the parameters such that 0 < xright − xleft ≤ nc+f + nl – i.e.,
such that the lower bound on the number of points in P (ai, bi) is greater than
the number of bit strings associated to I(ai, bi) – ensures that l1 is at least 1,
since one can always find a value for c in the computation of π. Notice that
(xright − xleft − 1) N

h′′ < h′−h
2bi

, where the latter term is the diameter of I(ai, bi).

This implies that xright−xleft−1 < h′′(h′−h)
2biN

. Now, consider the parameters used
by Vallée. Vallée considered the case −h = h′ = 4N2/3, so that h′ − h = 8N2/3.

For this value of h′ − h, Vallée proved a lower bound of nc+f + nl ≥ (h′−h)2

10biN

(see [33]). Thus, if h′′ ≤ (h′−h)
5 , then xright − xleft − 1 < nc+f + nl. As long

as the nl estimate is an integer, this implies that xright − xleft ≤ nc+f + nl, as
desired. To ensure that xright − xleft is never zero, we want that N

h′′ ≤ N
k2 ⇒

h′′ ≥ k2 = N2/3/16 = (h′−h)
128 , where the latter is the diameter of the narrowest

Farey interval. So, we can set h′′ to be anything between (h′−h)
128 and (h′−h)

5 ;
values closer to the latter involve less ciphertext expansion.

On the other hand, we would like l2 and l4 to be small positive constants.
This ensures that picking x (and d) uniformly and outputting π(x, d) is a quasi-
uniform drawing algorithm for BN,h,h′ (this helps get a tight security proof for
the encryption scheme). The computation of π−1(x′) outputs up to two values
of x, exactly one for each Farey interval that contains x′; thus l4 = 2. We
use Vallée’s upper bounds to bound l2. Specifically, Vallée’s computations allow
nc+f + nl to be upper bounded by (1.004 + 0.125 + 4−√5

8) (h′−h)2

2biN
< .7(h′−h)2

biN
,

allowing us to upper bound the number of possible values of c by 4, for h′′. Also,
there are at most d 7

2e = 4 (see Vallée’s Leg Theorem) possible values of c′, so l2

is at most 4 × 4 = 16. Accordingly, for h′ − h = 8N2/3 and h′′ = b (h′−h)
5 c, one

gets a (1, 16, 1, 2) quasi-bijection.

C Security Proof for Compressed Rabin-OAEP+

Recall the standard definition of security against adaptive chosen-ciphertext at-
tack. An algorithm A “breaks” the encryption scheme if, in the following game,
it outputs the correct value of b in the final stage with more than negligible
advantage:
Setup: The challenger generates a Rabin modulus N and hash functions G, H ′

and H, defined as above. It sends (N, G, H ′,H) to A.
Phase 1: A requests the challenger to decrypt ciphertexts of A’s choosing.
Challenge: A chooses two plaintexts M0 and M1 and sends them to the chal-
lenger. The challenger randomly chooses bit b ∈ {0, 1}, encrypts Mb, and sends
the ciphertext c to A.
Phase 2: A again requests the challenger to decrypt ciphertexts of A’s choosing,
other than the Challenge ciphertext.
Output: Finally, A outputs a bit b′ ∈ {0, 1}.
We define A’s advantage as: Adv(A) = |Pr[b′ = b]− 1

2 |.
In the game above, algorithm B plays the part of the challenger, using its

its control over the random oracles G, H ′ and H to respond to A’s decryption
queries. We say that the system is (t, ε, qD, qG, qH′ , qH)-secure if no attacker
limited to time t, to qD decryption queries, to qG G-queries, to qH′ H ′-queries,
and to qH H-queries, has advantage more than ε. Now, we define aspects of the
game more precisely.
Hash queries: A can query G, H ′ or H at any time. In responding to these
queries, B maintains a G-list, H ′-list and H-list logging queries and responses. If

A makes a query that is contained in one of B’s lists, B responds the same way
it did before. Otherwise, for G, it generates a random m-bit string with uniform
distribution, sends this to A as its G-query response, and logs A’s G-query and
its response on its G-list. It responds similarly to H ′-queries and H-queries. We
use the convention that before A makes an H ′-query on (ri,Mi), it makes a
G-query on ri and an H-query on si = (G(ri)⊕Mi)‖H ′(ri‖Mi).

Challenge: At some point, A produces two plaintexts M0,M1 ∈ {0, 1}m on
which it wishes to be challenged. B picks a random b ∈ {0, 1} and encrypts Mb

in the usual way. Let c∗ be the resulting ciphertext, and let s′∗,s′′∗,t∗,r∗, and
M∗ denote the values corresponding to c∗ that would be obtained through the
decryption process.

Decryption queries and Probability Analysis: A can make decryption
queries at any time, subject to the constraint that it cannot query the Challenge
ciphertext in Phase 2. Our treatment of decryption queries closely tracks Shoup’s
analysis for trapdoor permutations encoded using OAEP+. Shoup’s analysis con-
sists of a sequence of games Gi for 0 ≤ i ≤ 5, each game a slight modification
of the previous one, where G0 represents the attack on the encryption scheme,
and G5 is a certain attack in which an adversary obviously has no advantage.
Shoup bounds |Pr[Si−1] − Pr[Si]| for 1 ≤ i ≤ 5, where Pr[Si] is an adversary’s
probability of success in game Gi, thereby bounding an adversary’s advantage
in G0. To reduce space, our proof draws heavily from Shoup’s proof.

In game G1, the decryption oracle decrypts ciphertext ci as usual, recovering
s′i,s

′′
i ,ti,ri, and Mi in the process. The decryption oracle is identical to G0 (e.g.,

it can find modular square roots) except that the decryption oracle in G1 rejects
whenever ri is not on its G-list. Let F1 be the event that a ciphertext rejected in
G1 would not have been rejected in G0. Consider a ciphertext c 6= c∗ submitted
to the decryption oracle. If r = r∗ and M = M∗, then since there is only a
single legitimate ciphertext generated from r∗ and M∗ (recall that we use r
as the random bits in the π quasi-bijection), G0 would also have rejected. Our
analysis of the case of ri 6= r∗ or Mi 6= M∗ is identical to Shoup’s, leading to
the conclusion that |Pr[S0]− Pr[S1]| ≤ qD/2k1 .

In game G2, the decryption oracle is identical to that of G1, except it rejects
when si is not on its H-list. Let F2 be the event that a ciphertext rejected in G2

would not have been rejected in G1. For ciphertext ci 6= c∗ with si not on the
H-list, we consider two cases:
Case 1: si = s∗. Now, si = s∗ and ci 6= c∗ implies ti 6= t∗ (again because we
made π deterministic given r). Shoup’s remaining analysis of this case also works
for our situation.
Case 2: si 6= s∗. Our analysis here is again identical.
Like Shoup, we obtain |Pr[S1]− Pr[S2]| = Pr[F2] ≤ qH′/2k1 + qDqG/2k0 .

In game G3 the decryption oracle does not have access to a trapdoor, but
instead maintains a ciphertext-list. After receiving an H ′-query (ri,Mi), it com-
putes all possible values of x′i = πN,h,h′(si‖ti, ri) and ci = x′2i,j − h(modN). It
logs these ciphertexts in its ciphertext-list. Shoup’s probability analysis applies
to our case: Pr[S2] = Pr[S3]. His time-complexity analysis also applies: over the

course of G3, the decryption oracle’s complexity is O(min(qH′ , qH))Tf + (qG +
qH′ + qH + qD) log N), where Tf is the complexity of the encryption function.

Game G4, in which Shoup replaces the original random oracles with different
but identically distribute variables, also works in our case. (See [31] for details
of G4.) Note the new encryption oracle in G4 is identically distributed to the old
one, even though “f” is not a permutation in our case, since Shoup’s changes
only affect f ’s input, not f itself. Pr[S3] = Pr[S4].

Game G5 is the same as G3 (we skipped describing G4) except that the
encryption oracle chooses random strings r+ ∈ {0, 1}k0 and g+ ∈ {0, 1}m, and
it uses these values in the computation of the ciphertext, as described in [31].
Since g+ is only used to mask M∗, Pr[S5] = 1

2 . Like Shoup, we also obtain in
our case that Pr[S4] − Pr[S5] ≤ Pr[F5], where F5 is the event that A queries
G at r∗. However, our proofs finally diverge significantly at this point. Shoup
describes an auxiliary game G′5 in which the encryption oracle is modified again
to simply output a random number c+ in the ciphertext space (in our case,
BN,h,h′ ∩ [0, N/2)), and then he uses the fact that, for a permutation, c+ comes
from a distribution identical to c∗. We cannot do this, since the π quasi-bijection
chooses from BN,h,h′∩[0, N/2) – and thus from the ciphertext space – only quasi-
uniformly.

Instead, we define our c+ as f(w) for w ∈ {0, 1}n chosen randomly with
uniform distribution, and (as always) r∗ and s∗ are defined with respect to this
ciphertext. Then, for reasons analogous to those used by Shoup, if we define F ′5
to be the event that A queries G at r∗ in game G′5, we have Pr[F5] = Pr[F ′5].
Letting F ′′5 be the event that A queries H at s∗ in game G′5, we have that
Pr[F ′5] = Pr[F ′5 ∧ F ′′5] + Pr[F ′5 ∧ ¬F ′′5].

Now, we claim that, if π is an (l1, l2, l3, l4) quasi-bijection, then Pr[F ′5∧F ′′5] ≤
l2
l1

Adv(B). For brevity, denote the probability Pr[F ′5∧F ′′5 |w′] – i.e., the probability
F ′5 and F ′′5 occur given the value w′ = πN,h,h′(w, r) for w as chosen above – by
Pw′ , where w′ will be treated as a random variable. Notice that, for any w′,
there exists a v′ such that w′2 ≡ v′2(modN) and gcd(w′, v′, N) is a nontrivial
factor of N ; in fact, we can “pair off” the numbers in BN,h,h′ , so that each w′

corresponds to exactly one v′. Suppose that r′′ ∈ {0, 1}k0 and s′′ ∈ {0, 1}m+k1

correspond to v′. If A queries r′′ ∈ {0, 1}k0 and s′′ ∈ {0, 1}m+k1 (which occurs
with probability Pv′), then B can use w′ = f(w) to find a nontrivial factor of N
by taking every pair ri, si queried byA, deriving the corresponding t′′, computing
x′′ = πN,h,h′(si‖ti), and checking whether gcd(x′′, w′, N) is a nontrivial factor.

Overall, we have that Pr[F ′5∧F ′′5] =
∑

w′ Pr[F ′5∧F ′′5 |w′]· Pr[w′]. This proba-
bilility is less than l2

l1

∑
w′ Pr[F ′5∧F ′′5 |w′]· Pr[v′] by quasi-uniformity, where each

w′ is paired off with a v′ that gives a nontrivial factor. However, the probability∑
w′ Pr[F ′5 ∧ F ′′5 |w′]· Pr[v′] is less than B’s probability of success, which proves

the claim.
For the same reason as in [31], Pr[F ′5∧¬F ′′5] ≤ qG/2k0 . Thus, we get Pr[F ′5] ≤

l2
l1

Adv(B)+ qG/2k0 . Collecting all of the results, we get the time and complexity
stated in the theorem.

