
Multi-trapdoor Commitments and their

Applications to Proofs of Knowledge Secure

under Concurrent Man-in-the-middle Attacks?

Rosario Gennaro

IBM T.J.Watson Research Center
P.O.Box 704, Yorktown Heights NY 10598

rosario@watson.ibm.com

Abstract. We introduce the notion of multi-trapdoor commitments which
is a stronger form of trapdoor commitment schemes. We then construct
two very efficient instantiations of multi-trapdoor commitment schemes,
one based on the Strong RSA Assumption and the other on the Strong
Diffie-Hellman Assumption.

The main application of our new notion is the construction of a compiler

that takes any proof of knowledge and transforms it into one which is
secure against a concurrent man-in-the-middle attack (in the common
reference string model). When using our specific implementations, this
compiler is very efficient (requires no more than four exponentiations)
and maintains the round complexity of the original proof of knowledge.

The main practical applications of our results are concurrently secure
identification protocols. For these applications our results are the first
simple and efficient solutions based on the Strong RSA or Diffie-Hellman
Assumption.

1 Introduction

A proof of knowledge allows a Prover to convince a Verifier that he knows some
secret information w (for example a witness for an NP -statement y). Since w
must remain secret, one must ensure that the proof does not reveal any informa-
tion about w to the Verifier (who may not necessarily act honestly and follow the
protocol). Proofs of knowledge have several applications, chief among them iden-
tification protocols where a party, who is associated with a public key, identifies
himself by proving knowledge of the matching secret key.

However when proofs of knowledge are performed on an open network, like
the Internet, one has to worry about an active attacker manipulating the con-
versation between honest parties. In such a network, also, we cannot expect to
control the timing of message delivery, thus we should assume that the adversary
has control on when messages are delivered to honest parties.

? Extended Abstract. The full version of the paper is available at
http://eprint.iacr.org/2003/214/

The adversary could play the “man-in-the-middle” role, between honest provers
and verifiers. In such an attack the adversary will act as a prover with an honest
verifier, trying to make her accept a proof, even if the adversary does not know
the corresponding secret information. During this attack, the adversary will have
access to honest provers proving other statements. In the most powerful attack,
the adversary will start several such sessions at the same time, and interleave
the messages in any arbitrary way.

Informally, we say that a proof of knowledge is concurrently non-malleable,
if such an adversary will never be able to convince a verifier when she does not
know the relevant secret information (unless, of course, the adversary simply
relays messages unchanged from an honest prover to an honest verifier).

Our Main Contribution. We present a general transformation that takes any
proof of knowledge and makes it concurrently non-malleable. The transformation
preserves the round complexity of the original scheme and it requires a common
reference string shared by all parties.

The crucial technical tool to construct such compiler is the notion of multi-
trapdoor commitments (MTC) which we introduce in this paper. After defining
the notion we show specific number-theoretic constructions based on the Strong
RSA Assumption and the recently introduced Strong Diffie-Hellman Assump-
tion. These constructions are very efficient, and when applied to the concurrent
compiler described above, this is the whole overhead.

Multi-Trapdoor Commitments. Recall that a commitment scheme consist
of two phases, the first one in which a sender commits to a message (think of it
as putting it inside a sealed envelope on the table) and a second one in which
the sender reveals the committed message (opens the envelope).

A trapdoor commitment scheme allows a sender to commit to a message with
information-theoretic privacy. I.e., given the transcript of the commitment phase
the receiver, even with infinite computing power, cannot guess the committed
message better than at random. On the other hand when it comes to open-
ing the message, the sender is only computationally bound to the committed
message. Indeed the scheme admits a trapdoor whose knowledge allows to open
a commitment in any possible way. This trapdoor should be hard to compute
efficiently.

A multi-trapdoor commitment scheme consists of a family of trapdoor com-
mitments. Each scheme in the family is information-theoretically private. The
family admits a master trapdoor whose knowledge allows to open any commit-
ment in the family in any way it is desired. Moreover each commitment scheme
in the family admits its own specific trapdoor. The crucial property in the def-
inition of multi-trapdoor commitments is that when given the trapdoor of one
scheme in the family it is infeasible to compute the trapdoor of another scheme
(unless the master trapdoor is known).

Concurrent Composition in Detail. When considering a man-in-the-middle
attacker for proofs of knowledge we must be careful to define exactly what kind
of concurrent composition we allow.

Above we described the case in which the attacker acts as a verifier in sev-
eral concurrent executions of the proof, with several provers. We call this left-
concurrency (as usually the provers are positioned on the left of the picture). On
the other hand right-concurrency means that the adversary could start several
concurrent executions as a prover with several verifiers.

Under these attacks, we need to prove that the protocols are zero-knowledge
(i.e. simulatable) and also proofs of knowledge (i.e. one can extract the wit-
ness from the adversary). When it comes to extraction one also has to make
the distinction between on-line and post-protocol extraction [27]. In an on-line
extraction, the witness is extracted as soon as the prover successfully convinces
the verifier. In a post-protocol extraction procedure, the extractor waits for the
end of all the concurrent executions to extract the witnesses of the successful
executions.

In the common reference string it is well known how to fully (i.e. both left and
right) simulate proofs of knowledge efficiently, using the result of Damg̊ard [16].
We use his techniques, so our protocols are fully concurrently zero-knowledge.
Extraction is more complicated. Lindell in [30] shows how to do post-protocol
extraction for the case of right concurrency. We can use his techniques as well.
But for many applications what really matters is on-line extraction. We are able
to do that only under left-concurrency1. This is however enough to build fully
concurrently secure applications like identification protocols.

Prior Work. Zero-knowledge protocols were introduced in [24]. The notion of
proof of knowledge (already implicit in [24]) was formalized in [21, 6].

Concurrent zero-knowledge was introduced in [20]. They point out that the
typical simulation paradigm to prove that a protocol is zero-knowledge fails to
work in a concurrent model. This work sparked a long series of papers culmi-
nating in the discovery of non-constant upper and lower bounds on the round
complexity of concurrent zero-knowledge in the black-box model [13, 34], unless
extra assumptions are used such as a common reference string. Moreover, in a
breakthrough result, Barak [2] shows a constant round non-black-box concurrent
zero-knowledge protocol, which however is very inefficient in practice.

If one is willing to augment the computational model with a common refer-
ence string, Damg̊ard [16] shows how to construct very efficient 3-round protocols
which are concurrent (black-box) zero-knowledge.

However all these works focus only on the issue of zero-knowledge, where one
has to prove that a verifier who may engage with several provers in a concurrent
fashion, does not learn any information. Our work focuses more on the issue
of malleability in proofs of knowledge, i.e. security against a man-in-the-middle
who may start concurrent sessions.

The problem of malleability in cryptographic algorithms, and specifically
in zero-knowledge proofs, was formalized by Dolev et al. in [19], where a non-
malleable ZK proof with a polylogarithmic number of rounds is presented. This
protocol, however, is only sequentially non-malleable, i.e. the adversary can only

1 However, as we explain later in the Introduction, we could achieve also right-
concurrency if we use so-called Ω-protocols

start sessions sequentially (and non concurrently) with the prover. Barak in [3]
shows a constant round non-malleable ZK proof in the non-black-box model (and
thus very inefficient).

Using the taxonomy introduced by Lindell [29], we can think of concurrent
composition as the most general form of composition of a protocol with itself
(i.e. in a world where only this protocol is run). On the other hand it would
be desirable to have protocols that arbitrarily compose, not only with them-
selves, but with any other “secure” protocol in the environment they run in.
This is the notion of universal composable security as defined by Canetti [11].
Universally composable zero-knowledge protocols are in particular concurrently
non-malleable. In the common reference string model (which is necessary as
proven in [11]), a UCZK protocols for Hamiltonian Cycle was presented in [12].
Thus UCZK protocols for any NP problem can be constructed, but they are
usually inefficient in practice since they require a reduction to the Hamiltonian
Cycle problem.

As it turns out, the common reference string model is necessary also to
achieve concurrent non-malleability (see [30]). In this model, the first theoretical
solution to our problem was presented in [17]. Following on the ideas presented
in [17] more efficient solutions were presented in [27, 22, 31].

Our compiler uses ideas from both the works of Damg̊ard [16] and Katz [27],
with the only difference that it uses multi-trapdoor instead of regular trapdoor
commitments in order to achieve concurrent non-malleability.

Simulation-Sound Trapdoor Commitments. The notion of Simulation-
Sound Trapdoor Commitments (SSTC), introduced in [22] and later refined and
improved in [31], is very related to our notion of MTC. The notion was introduced
for analogue purposes: to compile (in a way similar to ours) any Σ-protocol into
one which is left-concurrently non-malleable. They show generic constructions
of SSTC and specific direct constructions based on the Strong RSA Assumption
and the security of the DSA signature algorithm.

The concept of SSTC is related to ours, though we define a weaker notion
of commitment (we elaborate on the difference in Section 3). The important
contribution of our paper with respect to [22, 31] is twofold: (i) we show that
this weaker notion is sufficient to construct concurrently non-malleable proofs;
(ii) because our notion is weaker, we are able to construct more efficient number
theoretic instantiations. Indeed our Strong RSA construction is about a factor of
2 faster than the one presented in [31]. This efficiency improvement is inherited
by the concurrently non-malleable proof of knowledge, since in both cases the
computation of the commitment is the whole overhead2.

2 In [22, 31] Ω-protocols are introduced, which dispense of the need for rewinding when
extracting and thus can be proven to be left and right-concurrently non-malleable
(and with some extra modification even universally composable). It should be noted
that if we apply our transformation to the so-called Ω-protocols introduced by [22],
then we obtain on-line extraction under both left and right concurrency. However we
know how to construct efficient direct constructions of Ω-protocols only for knowl-
edge of discrete logarithms, and even that is not particularly efficient. Since for the

Remark. Because of space limitations, all the proofs of the Theorems, and
various technical details are omitted and can be found in the full version of the
paper.

2 Preliminaries

In the following we say that function f(n) is negligible if for every polynomial
Q(·) there exists an index nQ such that for all n > nQ, f(n) ≤ 1/Q(n).

Also if A(·) is a randomized algorithm, with a ← A(·) we denote the event
that A outputs the string a. With Prob[A1; . . . ; Ak : B] we denote the probability
of event B happening after A1, . . . , Ak.

2.1 One-time Signatures

Our construction requires a strong one-time signature scheme which is secure
against chosen message attack. Informally this means that the adversary is given
the public key and signatures on any messages of her choice (adaptively chosen
after seeing the public key). Then it is infeasible for the adversary to compute a
signature of a new message, or a different signature on a message already asked.
The following definition is adapted from [25].

Definition 1. (SG, Sig, Ver) is a strong one-time secure signature if for every
probabilistic polynomial time forger F , the following

Prob









(sk, vk)← SG(1n) ; M ← F(vk) ;
sig← Sig(M, sk) ; F(M, sig, vk) = (M ′, sig′) :

Ver(M ′, sig′, vk) = 1 and
(M 6= M ′ or sig 6= sig′)









is negligible in n.

One-time signatures can be constructed more efficiently than general signatures
since they do not require public key operations (see [7, 8, 28]). Virtually all the
efficient one-time signature schemes are strong.

2.2 The Strong RSA Assumption.

Let N be the product of two primes, N = pq. With φ(N) we denote the Euler
function of N , i.e. φ(N) = (p− 1)(q− 1). With Z∗

N we denote the set of integers
between 0 and N − 1 and relatively prime to N .

Let e be an integer relatively prime to φ(N). The RSA Assumption [35]
states that it is infeasible to compute e-roots in Z∗

N . I.e. given a random element
s ∈R Z∗

N it is hard to find x such that xe = s mod N .

applications we had in mind left-concurrency was sufficient, we did not follow this
path in this paper.

The Strong RSA Assumption (introduced in [4]) states that given a random
element s in Z∗

N it is hard to find x, e 6= 1 such that xe = s mod N . The
assumption differs from the traditional RSA assumption in that we allow the
adversary to freely choose the exponent e for which she will be able to compute
e-roots.

We now give formal definitions. Let RSA(n) be the set of integers N , such
that N is the product of two n/2-bit primes.

Assumption 1 We say that the Strong RSA Assumption holds, if for all prob-
abilistic polynomial time adversaries A the following probability

Prob[N ← RSA(n) ; s← Z∗
N : A(N, s) = (x, e) s.t. xe = s mod N]

is negligible in n.

A more efficient variant of our protocol requires that N is selected as the product
of two safe primes, i.e. N = pq where p = 2p′ + 1, q = 2q′ + 1 and both p′, q′

are primes. We denote with SRSA(n) the set of integers N , such that N is the
product of two n/2-bit safe primes. In this case the assumptions above must be
restated replacing RSA(n) with SRSA(n).

2.3 The Strong Diffie-Hellman Assumption

We now briefly recall the Strong Diffie-Hellman (SDH) Assumption, recently
introduced by Boneh and Boyen in [9].

Let G be cyclic group of prime order q, generated by g. The SDH Assumption
can be thought as an equivalent of the Strong RSA Assumption over cyclic
groups. It basically says that no attacker on input G, g, gx, gx2

, gx3

, . . ., for some
random x ∈ Zq , should be able to come up with a pair (e, h) such that hx+e = g.

Assumption 2 We say that the `-SDH Assumption holds over a cyclic group
G of prime order q generated by g, if for all probabilistic polynomial time adver-
saries A the following probability

Prob[x← Zq : A(g, gx, gx2

, . . . , gx`

) = (e ∈ Zq , h ∈ G) s.t. hx+e = g]

is negligible in n = |q|.

Notice that, depending on the group G, there may not be an efficient way to
determine if A succeeded in outputting (e, h) as above. Indeed in order to check

if hx+e = g when all we have is gxi

, we need to solve the Decisional Diffie-
Hellman (DDH) problem on the triple (gxge, h, g). Thus, although Assumption
2 is well defined on any cyclic group G, we are going to use it on the so-called
gap-DDH groups, i.e. groups in which there is an efficient test to determine (with
probability 1) on input (ga, gb, gc) if c = ab mod q or not. The gap-DDH property
will also be required by our construction of multi-trapdoor commitments that
uses the SDH Assumption3.

3 Gap-DDH groups where Assumption 2 is believed to hold can be constructed using
bilinear maps introduced in the cryptographic literature by [10].

2.4 Definition of Concurrent Proofs of Knowledge

Polynomial Time Relationships. Let R be a polynomial time computable
relationship, i.e. a language of pairs (y, w) such that it can be decided in polyno-
mial time in |y| if (y, w) ∈ R or not. With LR we denote the language induced
by R i.e. LR = {y : ∃w : (y, w) ∈ R}.

More formally an ensemble of polynomial time relationships PT R consists
of a collection of families PT R = ∪nPT Rn where each PT Rn is a family of
polynomial time relationships Rn. To an ensemble PT R we associate a random-
ized instance generator algorithm IG that on input 1n outputs the description of
a relationship Rn. In the following we will drop the suffix n when obvious from
the context.

Proofs of Knowledge. In a proof of knowledge for a relationship R, two
parties, Prover P and Verifier V, interact on a common input y. P also holds a
secret input w, such that (y, w) ∈ R. The goal of the protocol is to convince V
that P indeed knows such w. Ideally this proof should not reveal any information
about w to the verifier, i.e. be zero-knowledge.

The protocol should thus satisfy certain constraints. In particular it must be
complete: if the Prover knows w then the Verifier should accept. It should be
sound: for any (possibly dishonest) prover who does not know w, the verifier
should almost always reject. Finally it should be zero-knowledge: no (poly-time)
verifier (no matter what possibly dishonest strategy she follows during the proof)
can learn any information about w.

Σ-protocols. Many proofs of knowledge belong to a class of protocols called
Σ-protocols. These are 3-move protocols for a polynomial time relationship R in
which the prover sends the first message a, the verifier answers with a random
challenge c, and the prover answers with a third message z. Then the verifier
applies a local decision test on y, a, c, z to accept or not.

Σ-protocols satisfy two special constraints:

Special soundness A cheating prover can only answer one possible challenge
c. In other words we can compute the witness w from two accepting conver-
sations of the form (a, c, z) and (a, c′, z′).

Special zero-knowledge Given the statement y and a challenge c, we can pro-
duce (in polynomial time) an accepting conversation (a, c, z), with the same
distribution of real accepting conversations, without knowing the witness w.
Special zero-knowledge implies zero-knowledge with respect to the honest
verifier.

All the most important proofs of knowledge used in cryptographic applications
are Σ-protocols (e.g. [36, 26]).

We will denote with a← Σ1[y, w] the process of selecting the first message a
according to the protocol Σ. Similarly we denote c← Σ2 and z ← Σ3[y, w, a, c].

Man-in-the-middle Attacks. Consider now an adversaryA that engages with
a verifier V in a proof of knowledge. At the same time A acts as the verifier in

another proof with a prover P. Even if the protocol is a proof of knowledge
according to the definition in [6], it is still possible for A to make the verifier
accept even without knowing the relevant secret information, by using P as an
oracle. Of course A could always copy the messages from P to V, but it is not
hard to show (see for example [27]) that she can actually prove even a different
statement to V.

In a concurrent attack, the adversary A is activating several sessions with
several provers, in any arbitrary interleaving. We call such an adversary a con-
current man-in-the-middle. We say that a proof of knowledge is concurrently
non-malleable if such an adversary fails to convince the verifier in a proof in
which he does not know the secret information. In other words a proof of knowl-
edge is concurrently non-malleable, if for any such adversary that makes the
verifier accept with non-negligible probability we can extract a witness.

Since we work in the common reference string model we define a proof sys-
tem as tuple (crsG,P,V), where crsG is a randomized algorithm that on input
the security parameter 1n outputs the common reference string crs. In our def-
inition we limit the prover to be a probabilistic polynomial time machine, thus
technically our protocols are arguments and not proofs. But for the rest of the
paper we will refer to them as proofs.

IfA is a concurrent man-in-the-middle adversary, let πA(n) be the probability
that the verifier V accepts. That is

πA = Prob[Rn ← IG(1n) ; crs← crsG(1n) ; [AP(y1),...,P(yk), V](crs, y) = 1]

where the statements y, y1, . . . , yk are adaptively chosen by A. Also we denote
with View[A, P, V]crs the view of A at the end of the interaction with P and V
on common reference string crs.

Definition 2. We say that (crsG,P,V) is a concurrently non-malleable proof of
knowledge for a relationship (PT R, IG) if the following properties are satisfied:

Completeness For all (y, w) ∈ Rn (for all Rn) we have that [P(y, w), V(y)] =
1.

Witness Extraction There exist a probabilistic polynomial time knowledge ex-
tractor KE, a function κ : {0, 1}∗ → [0, 1] and a negligible function ε, such
that for all probabilistic polynomial time concurrent man-in-the-middle ad-
versary A, if πA(n) > κ(n) then KE, given rewind access to A, computes w
such that (y, w) ∈ Rn with probability at least πA(n)− κ(n)− ε(n).

Zero-Knowledge There exist a probabilistic polynomial time simulator SIM =
(SIM1, SIMP, SIMV), such that the two random variables

Real(n) = [crs← crsG(1n) , View[A, P, V]crs]

Sim(n) = [crs← SIM1(1
n) , View[A, SIMP, SIMV]crs]

are indistinguishable.

Notice that in the definition of zero-knowledge the simulator does not have the
power to rewind the adversary. This will guarantee that the zero-knowledge
property will hold in a concurrent scenario. Notice also that the definition of
witness extraction assumes only left-concurrency (i.e. the adversary has access
to many provers but only to one verifier).

3 Multi-trapdoor Commitment Schemes

A trapdoor commitment scheme allows a sender to commit to a message with
information-theoretic privacy. I.e., given the transcript of the commitment phase
the receiver, even with infinite computing power, cannot guess the committed
message better than at random. On the other hand when it comes to opening
the message, the sender is only computationally bound to the committed mes-
sage. Indeed the scheme admits a trapdoor whose knowledge allows to open a
commitment in any possible way (we will refer to this also as equivocate the
commitment). This trapdoor should be hard to compute efficiently.

A multi-trapdoor commitment scheme consists of a family of trapdoor com-
mitments. Each scheme in the family is information-theoretically private. We
require the following properties from a multi-trapdoor commitment scheme:

1. The family admits a master trapdoor whose knowledge allows to open any
commitment in the family in any way it is desired.

2. Each commitment scheme in the family admits its own specific trapdoor,
which allows to equivocate that specific scheme.

3. For any commitment scheme in the family, it is infeasible to open it in
two different ways, unless the trapdoor is known. However we do allow the
adversary to equivocate on a few schemes in the family, by giving it access
to an oracle that opens a given committed value in any desired way. The
adversary must selects this schemes, before seeing the definition of the whole
family. It should remain infeasible for the adversary to equivocate any other
scheme in the family.

The main difference between our definition and the notion of SSTC [22, 31]
is that SSTC allow the adversary to choose the schemes in which it wants to
equivocate even after seeing the definition of the family. Clearly SSTC are a
stronger requirement, which is probably why we are able to obtain more efficient
constructions.

We now give a formal definition. A (non-interactive) multi-trapdoor com-
mitment scheme consists of five algorithms: CKG, Sel, Tkg, Com, Open with the
following properties.

CKG is the master key generation algorithm, on input the security parameter
it outputs a pair PK, TK where PK is the master public key associated with the
family of commitment schemes, and TK is called the master trapdoor.

The algorithm Sel selects a commitment in the family. On input PK it outputs
a specific public key pk that identifies one of the schemes.

Tkg is the specific trapdoor generation algorithm. On input PK,TK,pk it
outputs the specific trapdoor information tk relative to pk.

Com is the commitment algorithm. On input PK,pk and a message M it
outputs C(M) = Com(PK, pk, M, R) where R are the coin tosses. To open a
commitment the sender reveals M, R and the receiver recomputes C.

Open is the algorithm that opens a commitment in any possible way given
the trapdoor information. It takes as input the keys PK,pk, a commitment C(M)
and its opening M, R, a message M ′ 6= M and a string T . If T = TK or T = tk
then Open outputs R′ such that C(M) = Com(PK, pk, M ′, R′).

We require the following properties. Assume PK and all the pk’s are chosen
according to the distributions induced by CKG and Tkg.

Information Theoretic Security For every message pair M, M ′ the distribu-
tions C(M) and C(M ′) are statistically close.

Secure Binding Consider the following game. The adversaryA selects k strings
(pk1, . . . , pkk). It is then given a public key PK for a multi-trapdoor com-
mitment family, generated with the same distribution as the ones generated
by CKG. Also, A is given access to an oracle EQ (for Equivocator), which
is queried on the following string C = Com(PK, pk, M, R), M, R, pk and a
message M ′ 6= M . If pk = pki for some i, and is a valid public key, then
EQ answers with R′ such that C = Com(PK, pk, M ′, R′) otherwise it out-
puts nil. We say that A wins if it outputs C, M, R, M ′, R′, pk such that
C = Com(PK, pk, M, R) = Com(PK, pk, M ′, R′), M 6= M ′ and pk 6= pki for
all i. We require that for all efficient algorithms A, the probability that A
wins is negligible in the security parameter.

We can define a stronger version of the Secure Binding property by requiring
that the adversary A receives the trapdoors tki’s matching the public keys pki’s,
instead of access to the equivocator oracle EQ. In this case we say that the
multi-trapdoor commitment family is strong4.

3.1 A scheme based on the Strong RSA Assumption.

The starting point for the our construction of multi-trapdoor commitments based
on the Strong RSA Assumption, is a commitment scheme based on the (regular)
RSA Assumption, which has been widely used in the literature before (e.g. [14,
15]).

The master public key is a number N product of two large primes p, q, and s
a random element of Z∗

N . The master trapdoor is the factorization of N , i.e. the
integers p, q. The public key of a scheme in the family is an `-bit prime number

4 This was actually our original definition of multi-trapdoor commitments. Phil
MacKenzie suggested the possibility of using the weaker approach of giving access to
an equivocator oracle (as done in [31]) and we decided to modify our main definition
to the weaker one, since it suffices for our application. However the strong definition
may also have applications, so we decided to present it as well.

e such that GCD(e, φ(N)) = 1. The specific trapdoor of the scheme with public
key e is the e-root of s, i.e. a value σe ∈ Z∗

N such that σe
e = s mod N .

To commit to a ∈ [1..2`−1] the sender chooses r ∈R Z∗
N and computes A =

sa · re mod N . To decommit the sender reveals a, r and the previous equation is
verified by the receiver.

Proposition 1. Under the Strong RSA Assumption the scheme described above
is a multi-trapdoor commitment scheme.

Sketch of Proof: Each scheme in the family is unconditionally secret. Given a
value A = sa · re we note that for each value a′ 6= a there exists a unique value
r′ such that A = sa′

(r′)e. Indeed this value is the e-root of A · sa−a′

. Observe,
moreover that r′ can be computed efficiently as σa−a′

e , thus knowledge of σe

allows to open a commitment (for which we know an opening) in any desired
way.

We now argue the Secure Binding property under the Strong RSA As-
sumption. Assume we are given a Strong RSA problem istance N, σ. Let’s now
run the Secure Binding game. The adversary is going to select k public keys
which in this case are k primes, e1, . . . , ek. We set s = σE where E =

∏k
i=1 ei

and return N, s as the public key of the multi-trapdoor commitment family. This
will easily allow us to simulate the oracle EQ, as we know the ei-roots of s, i.e.
the trapdoors of the schemes identified by ei.

Assume now that the adversary equivocates a commitment scheme in the
family identified by a prime e 6= ei. The adversary returns a commitment A and
two distinct openings of it (a, r) and (a′, r′). Thus

A = sare = sa′

(r′)e =⇒ sa−a′

=

(

r′

r

)e

(1)

Let δ = a− a′. Since a, a′ < e and e and the ei’s are all distinct primes we have
that GCD(δE, e) = 1. We can find integers α, β such that αδE + βe = 1. Now
we can compute (using Shamir’s GCD trick [37] and Eq.(1))

σ = σαδE+βe = (σE)αδ · σβe = (sδ)α · σβe =

(

r′

r

)αe

σβe (2)

By taking e-roots on both sides we find that σe =
(

r′

r

)α

sβ . ut

Remark: The commitment scheme can be easily extended to any message do-
main M, by using a collision-resistant hash function H from M to [1..2`−1]. In
this case the commitment is computed as sH(a)re. In our application we will use
a collision resistant function like SHA-1 that maps inputs to 160-bit integers and
then choose e’s larger than 2160.

3.2 A scheme based on the SDH Assumption

Let G be a cyclic group of prime order q generated by g. We assume that G
is a gap-DDH group, i.e. a group such that deciding Diffie-Hellman triplets is

easy. More formally we assume the existence of an efficient algorithm DDH-Test
which on input a triplet (ga, gb, gc) of elements in G outputs 1 if and only if,
c = ab mod q. We also assume that the Assumption 2 holds in G.

The master key generation algorithm selects a random x ∈ Zq which will be
the master trapdoor. The master public key will be the pair g, h where h = gx

in G. Each commitment in the family will be identified by a specific public key
pk which is simply an element e ∈ Zq . The specific trapdoor tk of this scheme is
the value fe in G, such that fx+e

e = g.
To commit to a message a ∈ Zq with public key pk = e, the sender chooses at

random φ ∈ Zq and computes he = (h·ge)φ. It then runs Pedersen’s commitment
[33] with bases g, he, i.e., it selects a random r ∈ Zq and computes A = gahr

e.
The commitment to a is the value A.

To open a commitment the sender reveals a and F = gφ·r. The receiver
accepts the opening if DDH-Test(F, h · ge, A · g−a) = 1.

Proposition 2. Under the SDH Assumption the scheme described above is a
multi-trapdoor commitment scheme.

Sketch of Proof: Each scheme in the family is easily seen to be unconditionally
secret. The proof of the Secure Binding property follows from the proof of
Lemma 1 in [9], where it is proven that the trapdoors fe can be considered
“weak signatures”. In other words the adversary can obtain several fe1

, . . . , fe`

for values e1, . . . , e` chosen before seeing the public key g, h, and still will not be
able (under the (` + 1)-SDH) to compute fe for a new e 6= ei.

The proof is then completed if we can show that opening a commitment in
two different ways for a specific e is equivalent to finding fe.

Assume we can open a committment A = gα in two ways a, F = gβ and
a′, F ′ = gβ′

with a 6= a′. The DDH-Test tells us that α − a = β(x + e) and
α− a′ = β′(x + e), thus a− a′ = (β′ − β)(x + e) or

g(a−a′) =

(

F ′

F

)(x+e)

=⇒ fe =

(

F ′

F

)(a−a′)−1

By the same reasoning, if we know fe and we have an opening F, a and we want
to open it as a′ we need to set F ′ = F · fa−a′

e . ut

4 The Protocol

In this section we describe our full solution for non-malleable proofs of knowledge
secure under concurrent composition using multi-trapdoor commitments.

Informal Description. We start from a Σ-protocol as described in Section
2. That is the prover P wants to prove to a verifier V that he knows a witness w
for some statement y. The prover sends a first message a. The verifier challenges
the prover with a random value c and the prover answers with his response z.

We modify this Σ-protocol in the following way. We assume that the parties
share a common reference string that contains the master public key PK for a

multi-trapdoor commitment scheme. The common reference string also contains
a collision-resistant hash function H from the set of verification keys vk of the
one-time signature scheme, to the set of public keys pk in the multi-trapdoor
commitment scheme determined by the master public key PK.

CNM-POK

Common Reference String: PK the master public key for a multi-trapdoor
commitment scheme. A collision resistant hash function H which maps inputs
to public keys for the multi-trapdoor commitment scheme determined by PK.

Common Input: A string y.

Private Input for the Prover: a witness w for the statement y, i.e. (y, w) ∈
R.

– The Prover computes (sk, vk)← SG(1n); pk = H(vk); a← Σ1[y, w]; r ∈R

Z∗

N ; A = Com(PK, pk,a, r)
The Prover sends A and vk to the Verifier.

P A, vk
- V

– The Verifier selects a random challenge c← Σ2 and sends it to the Prover.

P c
� V

– The Prover computes z ← Σ3[y, w, a, c] and sig = Sig
sk
(y, A, c, a, r, z). He

sends a, r, z, sig to the Verifier.

P a, r, z, sig
- V

– The Verifier accepts iff A = Com(PK, pk,a, r); Vervk(y,A, c, a, r, z) = 1 and
Acc(y, a, c, z) = 1.

Fig. 1. A Concurrently Non-malleable Proof of Knowledge

The prover chooses a key pair (sk, vk) for a one-time strong signature scheme.
The prover computes pk= H(vk) and A = Com(PK, pk,a, r) where a is the first
message of the Σ-protocol and r is chosen at random (as prescribed by the
definition of Com). The prover sends vk, A to the verifier. The crucial trick is that
we use the verification key vk to determine the value pk used in the commitment
scheme.

The verifier sends the challenge c. The prover sends back a, r as an opening
of A and the answer z of the Σ-protocol. It also sends sig a signature over the
whole transcript, computed using sk. The verifier checks that a, r is a correct
opening of A, that sig is a valid signature over the transcript using vk and also

that (a, c, z) is an accepting conversation for the Σ-protocol. The protocol is
described in Figure 1.

Theorem 1. If multi-trapdoor commitments exist, if H is a collision-resistant
hash function, and if (SG,Sig,Ver) is a strong one-time signature scheme, then
CNM-POK is a concurrently non-malleable proof of knowledge (see Definition 2).

4.1 The Strong RSA Version

In this section we are going to add a few comments on the specific implementa-
tions of our protocol, when using the number-theoretic constructions described
in Sections 3.1 and 3.2. The main technical question is how to implement the
collision resistant hash function H which maps inputs to public keys for the
multi-trapdoor commitment scheme.

The SDH implementation is basically ready to use “as is”. Indeed the public
keys pk of the multi-trapdoor commitment scheme are simply elements of Zq,
thus all is needed is a collision-resistant hash function with output in Zq.

On the other hand, for the Strong RSA based multi-trapdoor commitment,
the public keys are prime numbers of the appropriate length. A prime-outputting
collision-resistant hash function is described in [23]. However we can do better
than that, by modifying slightly the whole protocol. We describe the modifica-
tions (inspired by [32, 15]) in this section.

Modifying the One-Time Signatures. First of all, we require the one-time
signature scheme (SG,Sig,Ver) to have an extra property: i.e. that the distribution
induced by SG over the verification keys vk is the uniform one5. Virtually all the
known efficient one-time signature schemes have this property.

Then we assume that the collision resistant hash function used in the pro-
tocol is drawn from a family which is both a collision-resistant collection and a
collection of families of universal hash functions 6.

Assume that we have a randomly chosen hash function H from such a collec-
tion mapping n-bit strings (the verification keys) into k-bit strings and a prime
P > 2k/2.

We modify the key generation of our signature scheme as follows. We run
SG repeatedly until we get a verification key vk such that e = 2P · H(vk) + 1
is a prime. Notice that ` = |e| > 3

2k. Let us denote with SG′ this modified key
generation algorithm.

We note the following facts:

– H(vk) follows a distribution over k-bit strings which is statistically close to
uniform; thus using results on the density of primes in arithmetic progres-
sions (see [1], the results hold under the Generalized Riemann Hypothesis)

5 This requirement can be relaxed to asking that the distribution has enough min-
entropy.

6 This is a reasonable assumption that can be made on families built out of a collision-
resistant hash function (such as SHA-1). See also [18] for analysis of this type of
function families.

we know that this process will stop in polynomial time, i.e. after an expected
` iterations.

– Since e is of the form 2PR + 1, and P > e1/3, primality testing of all the e
candidates can be done deterministically and very efficiently (see Lemma 2
in [32]).

Thus this is quite an efficient way to associate primes to the verification keys.

Notice that we are not compromising the security of the modified signature
scheme. Indeed the keys of the modified scheme are a polynomially large fraction
of the original universe of keys. Thus if a forger could forge signature on this
modified scheme, then the original scheme is not secure as well.

On the length of the primes. In our application we need the prime e to be
relatively prime to φ(N) where N is the RSA modulus used in the protocol. This
can be achieved by setting ` > n/2 (i.e. e >

√
N). In typical applications (i.e.

|N | = 1024) this is about 512 bits (we can obtain this by setting |P | = 352 and
k, the length of the hash function output, to 160). Since the number of iterations
to choose vk depends on the length of e, it would be nice to find a way to shorten
it.

If we use safe RSA moduli, then we can enforce that GCD(e, φ(N)) = 1 by
choosing e small enough (for 1024-bit safe moduli we need them to be smaller
than 500 bits). In this case the collision-resistant property will become the limit-
ing factor in choosing the length. By today’s standards we need k to be at least
160. So the resulting primes will be ≈ 240 bits long.

4.2 Identification Protocols

The main application of our result is the construction of concurrently secure
identification protocols. In an identification protocol, a prover, associated with
a public key pk, communicates with a verifier and tries to convince her to be
the legitimate prover (i.e. the person knowing the matching secret key sk.) An
adversary tries to mount an impersonation attack, i.e. tries to make the verifier
accept without knowing the secret key sk.

The adversary could be limited to interact with the real prover only before
mounting the actual impersonation attack [21]. On the other hand a more re-
alistic approach is to consider the adversary a “man-in-the-middle” possibly in
a concurrent fashion [5]. Clearly such an attacker can always relays messages
unchanged between the prover and the verifier. In order to make a security def-
inition meaningful, one defines a successful impersonation attack as one with a
transcript different from the ones between the attacker and the real prover7.

It is not hard to see that CNM-POK is indeed a concurrently secure identifi-
cation protocol. It is important to notice that we achieve full concurrency here,

7 In [5] an even more powerful adversary is considered, one that can even reset the
internal state of the prover. The resulting notion of security implies security in the
concurrent model. We do not consider the resettable scenario, but our protocols are
more efficient than the ones proposed in [5].

indeed the extraction procedure in the proof of Theorem 1 does not “care” if
there are many other executions in which the adversary is acting as a prover.
Indeed we do not need to rewind all executions, but only one in order to extract
the one witness we need. Thus if there are other such executions “nested” inside
the one we are rewinding, we just run them as the honest verifier.

Acknowledgments. I would like to thank Hugo Krawczyk for conversations
that started the research on this paper. Thanks also to Dario Catalano, Shai
Halevi, Jonathan Katz, Dah-Yoh Lim, Yehuda Lindell and especially Phil MacKen-
zie for helpful conversations and advice.

References

1. E. Bach and J. Shallit. Algorithmic Number Theory - Volume 1. MIT Press, 1996.
2. B. Barak. How to go beyond the black-box simulation barrier. Proc. of 42nd IEEE

Symp. on Foundations of Computer Science (FOCS’01), pp.106–115, 2001.
3. B. Barak. Constant-round Coin Tossing with a Man in the Middle or Realizing

the Shared Random String Model. Proc. of 43rd IEEE Symp. on Foundations of
Computer Science (FOCS’02), pp.345–355, 2001.

4. N. Barić, and B. Pfitzmann. Collision-free accumulators and Fail-stop signa-

ture schemes without trees. Proc. of EUROCRYPT’97 (LNCS 1233), pp.480–494,
Springer 1997.

5. M. Bellare, M. Fischlin, S. Goldwasser and S. Micali. Identification Protocols

Secure against Reset Attacks. Proc. of EUROCRYPT’01 (LNCS 2045), pp.495–
511, Springer 2001.

6. M. Bellare and O. Goldreich. On defining proofs of knowledge. Proc. of
CRYPTO’92 (LNCS 740), Springer 1993.

7. D. Bleichenbacher and U. Maurer. Optimal Tree-Based One-time Digital Signature
Schemes. STACS’96, LNCS, Vol. 1046, pp.363–374, Springer-Verlag.

8. D. Bleichenbacher and U. Maurer. On the efficiency of one-time digital signatures.

Proc. of ASIACRYPT’96 (LNCS 1163), pp.145–158, Springer 1996.
9. D. Boneh and X. Boyen. Short Signatures without Random Oracles. Proc. of

EUROCRYPT’04 (LNCS 3027), pp.382–400, Springer 2004.
10. D. Boneh and M. Franklin. Identity-Based Encryption from the Weill Pairing.

SIAM J. Comp. 32(3):586–615, 2003.
11. R. Canetti. Universally Composable Security: A new paradigm for cryptographic

protocols. Proc. of 42nd IEEE Symp. on Foundations of Computer Science
(FOCS’01), pp.136–145, 2001.

12. R. Canetti and M. Fischlin. Universally Composable Commitments. Proc. of
CRYPTO’01 (LNCS 2139), pp.19–40, Springer 2001.

13. R. Canetti, J. Kilian, E. Petrank and A. Rosen. Concurrent Zero-Knowledge

requires Ω̃(log n) rounds. Proc. of 33rd ACM Symp. on Theory of Computing
(STOC’01), pp.570–579, 2001.

14. R. Cramer and I. Damg̊ard. New Generation of Secure and Practical RSA-based
signatures. Proc. of Crypto ’96 LNCS no. 1109, pages 173-185.

15. R. Cramer and V. Shoup. Signature schemes based on the Strong RSA assumption.
Proc. of 6th ACM Conference on Computer and Communication Security 1999.

16. I. Damg̊ard. Efficient Concurrent Zero-Knowledge in the Auxiliary String Model.

Proc. of EUROCYPT’00 (LNCS 1807), pp.174–187, Springer 2000.

17. A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano and A. Sahai. Robust

Non-Interactive Zero Knowledge. Proc. of CRYPTO’01, (LNCS 2139), pp.566-598,
Springer 2001.

18. Y. Dodis, R. Gennaro, J. H̊astad, H. krawczyk and T. Rabin. Randomness Ex-

traction and Key Derivation using the CBC, Cascade and HMAC Modes. This
proceedings.

19. D. Dolev, C. Dwork and M. Naor. Non-malleable Cryptography. SIAM J. Comp.
30(2):391–437, 2000.

20. C. Dwork, M. Naor and A. Sahai. Concurrent Zero-Knowledge. Proc. of 30th ACM
Symp. on Theory of Computing (STOC’98), pp.409–418, 1998.

21. U. Feige, A. Fiat and A. Shamir. Zero-Knowledge Proofs of Identity. J. of Crypt.
1(2):77–94, Springer 1988.

22. J. Garay, P. MacKenzie and K. Yang. Strengthening Zero-Knowledge Protocols

Using Signatures. Proc. of EUROCRYPT’03 (LNCS 2656), pp.177–194, Springer
2003. Final version at eprint.iacr.org

23. R. Gennaro, S. Halevi and T. Rabin. Secure Hash-and-Sign Signatures Without
the Random Oracle. Proc. of Eurocrypt ’99 LNCS no. 1592, pages 123-139.

24. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof-systems. SIAM. J. Computing, 18(1):186–208, February 1989.

25. S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Computing, 17(2):281–308, April 1988.

26. L.C. Guillou and J.J. Quisquater. A Practical Zero-Knowledge Protocol Fitted to

Security Microprocessors Minimizing both Transmission and Memory. Proc. of
EUROCRYPT’88 (LNCS 330), pp.123–128, Springer 1989.

27. J. Katz. Efficient and Non-Malleable Proofs of Plaintext Knowledge and Applica-

tions. Proc. of EUROCRYPT’03 (LNCS 2656), pp.211-228, Springer 2003.
28. L. Lamport. Constructing Digital Signatures from a One-Way Function. Technical

Report SRI Intl. CSL 98, 1979.
29. Y. Lindell. Composition of Secure Multi-Party Protocols. Lecture Notes in Com-

puter Science vol.2815, Springer 2003.
30. Y. Lindell. Lower Bounds for Concurrent Self Composition. Proc of the 1st Theory

of Cryptography Conference (TCC’04), LNCS 2951, pp.203–222, Springer 2004.
31. P. MacKenzie and K. Yang. On Simulation-Sound Trapdoor Commitments. Proc.

of EUROCRYPT’04 (LNCS 3027), pp.382–400, Springer 2004.
32. U. Maurer. Fast Generation of Prime Numbers and Secure Public-Key Crypto-

graphic Parameters. J. of Crypt. 8(3):123–156, Springer 1995.
33. T. Pedersen. Non-interactive and information-theoretic secure verifiable secret

sharing. In Crypto ’91, pages 129–140, 1991. LNCS No. 576.
34. M. Prabhakaran, A. Rosen and A. Sahai. Concurrent Zero-Knowledge with loga-

rithmic round complexity. Proc. of 43rd IEEE Symp. on Foundations of Computer
Science (FOCS’02), pp.366–375, 2002.

35. R. Rivest, A. Shamir and L. Adelman. A Method for Obtaining Digital Signature
and Public Key Cryptosystems. Comm. of ACM, 21 (1978), pp. 120–126

36. C. P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
4:161–174, 1991.

37. A. Shamir. On the generation of cryptographically strong pseudorandom se-
quences. ACM Trans. on Computer Systems, 1(1), 1983, pages 38-44.

