
Asymptotically Optimal Communication for

Torus-Based Cryptography

Marten van Dijk1,2 and David Woodruff ?1

1 MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, USA
marten@mit.edu, dpwood@mit.edu

2 Philips Research Laboratories, Eindhoven, The Netherlands

Abstract. We introduce a compact and efficient representation of ele-
ments of the algebraic torus. This allows us to design a new discrete-
log based public-key system achieving the optimal communication rate,
partially answering the conjecture in [4]. For n the product of distinct
primes, we construct efficient ElGamal signature and encryption schemes
in a subgroup of F ∗

qn in which the number of bits exchanged is only a
φ(n)/n fraction of that required in traditional schemes, while the se-
curity offered remains the same. We also present a Diffie-Hellman key
exchange protocol averaging only φ(n) log

2
q bits of communication per

key. For the cryptographically important cases of n = 30 and n = 210,
we transmit a 4/5 and a 24/35 fraction, respectively, of the number of
bits required in XTR [14] and recent CEILIDH [24] cryptosystems.

1 Introduction

In classical Diffie-Hellman key exchange there are two fixed system parameters
- a large prime q and a generator g of the multiplicative group F ∗q of the field
Fq . In [10], the idea of working in finite extension fields instead of prime fields
was proposed, but no computational or communication advantages were implied.
In [26] Schnorr proposed working in a relatively small subgroup of F ∗q of prime
order, improving the computational complexity of classical DH, but requiring
the same amount of communication.

In [4] it is shown how to combine these two ideas so that the number of bits
exchanged in DH key exchange is reduced by a factor of 3. Specifically, it is shown
that elements of an order r subgroup G of F ∗q6 can be efficiently represented

using 2 log2 q bits if r divides q2 − q + 1, which is one third of the 6 log2 q bits
required for elements of F ∗q6 . Since the smallest field containing G is F ∗q6 , one

can show [13] that with respect to attacks known today, the security of working
in G is the same as that of working in F ∗q6 for r large enough. In [14, 15] the

XTR public key system was developed using the method of [4] together with an
efficient arithmetic to achieve both computational and communication savings.
These papers also show how to reduce communication in ElGamal encryption
and signature schemes in F ∗q6 .

? Supported by an NDSEG fellowship.

In [4] it was conjectured that one can extend this technique to any n by
working in the subgroup of F ∗qn of order Φn(q), where Φn(x) denotes the nth
cyclotomic polynomial. Since the degree of Φn(x) is φ(n), where φ is the Euler
function, one could transmit a φ(n)/n fraction of the number of bits needed in
classical DH, while achieving the same level of security. For n the product of the
first k primes, φ(n)/n → 0 as k → ∞, so the savings get better and better. In
[3, 24], evidence that the techniques of [4] cannot generalize to arbitrary n was
presented, and in [3, 24], some specific versions of the conjecture in [4] made
in [3] were shown to be false. Also in [24, 25, 23] it is shown that the group
of order Φn(q) is isomorphic to the well-studied algebraic torus Tn(Fq) [30] and
that a positive answer to the conjecture in [4] is possible if one can construct
an efficient rational parameterization of Tn(Fq). However, such a construction
is only known when n is a prime power or the product of two prime powers,
although it is conjectured to exist for all n [24, 30]. In [24] a construction is
given for n = 6, which is the basis for the CEILIDH public-key cryptosystem.
CEILIDH achieves the same communication as XTR with a few computational
differences.

In this paper we finally break the “n ≤ 6 barrier” by constructing, for every
n, efficient ElGamal encryption and signature schemes in F ∗qn , which require
transmitting at most a φ(n)/n fraction of the bits required in their classical
counterparts. Further, we present an asymptotical variant of DH key exchange
in which the average number of bits exchanged per key approaches φ(n) log2 q.
The key property that we use is the fact that Tn(Fq) is stably rational (see [30],
section 5.1). Specifically, our enabling technique is the construction of efficiently
computable bijections θ and θ−1 with

θ : Tn(Fq) ×
(

×d|n, µ(n/d)=−1F
∗
qd

)

→ ×d|n, µ(n/d)=1F
∗
qd ,

where × denotes direct product, and µ is the Möbius function3. This allows
us to bypass the torus conjecture of [24], by relaxing the problem of efficiently
representing a single symbol of Tn(Fq), to the problem of efficiently representing
a sequence of symbols in Tn(Fq). Our bijections enable us to compactly represent
m elements of Tn(Fq) with (mφ(n)+

∑

d|n,µ(n/d)=−1 d) log q bits, which for large

enough m, is roughly φ(n) log q bits per element. We stress that while our key
exchange protocol achieves the optimal n/φ(n) reduction factor asymptotically,
our encryption and signature schemes achieve this even for the encrypting or
signing of a single message.

Note that the domain and range of θ need not be isomorphic. Indeed, letting
Gd denote the cyclic group of order d, if n = 2 and q = 3, then the domain
of θ is isomorphic to G4 × G2, while the range is isomorphic to G8. We show,
however, that θ can be decomposed into isomorphisms plus a map requiring a
table lookup. We show how to choose q so that constructing and querying this
table is extremely efficient.

3 For an integer n, µ(n) = 1 if n = 1, µ(n) = 0 if n has a repeated factor, and
µ(n) = (−1)k if n is a product of k distinct primes (see [11], section 16.3).

Our choice of q and r for fixed n will also affect the security of our scheme.
We give an efficient heuristic for choosing q and r for the practical cases of
n = 30 and n = 210, where we achieve a communication reduction by factors
of 15/4 and 35/8, respectively. Further, for any n, we give an efficient algorithm
for choosing q and r with a theoretical guarantee on its performance. This latter
algorithm is primarily of theoretical interest, showing how to optimally choose
q and r when n tends to infinity for a sufficiently large security requirement.

While our main focus and contribution is on the communication complexity,
we also calculate the amount of computation necessary to evaluate θ and θ−1

for general n, and we attempt to minimize the number of modular exponentia-
tions. We show that our representation enjoys some of the same computational
advantages of CEILIDH over XTR, including the ability to multiply elements
of Tn(Fq) directly. This allows us to come close to the non-hybrid version of
ElGamal encryption in [24]. Indeed, in addition to constructing a hybrid ElGa-
mal encryption scheme, we construct a scheme in which to encrypt m messages,
we form m ElGamal encryptions in Tn(Fq) plus one additional encryption us-
ing a symmetric cipher. Unfortunately, the computational complexity of our
scheme is not that practical, whereas XTR for instance, permits very efficient
computations if just exponentiation is required. For n = 30, we hand-optimize
the computation of θ and θ−1. Our analysis for general n shows that all of our
protocols and algorithms are (theoretically) efficient in n and the sizes of q and r.

Outline: Section 2 discusses the algebraic and number-theoretic tools we use. In
section 3 we construct the bijections θ and θ−1. Section 4 shows how to choose
system parameters to guarantee security and efficiency, giving both a practi-
cal algorithm for n = 30 and n = 210, and a theoretical algorithm for general
n. In section 5 we discuss our cryptographic applications. Section 6 treats the
computational complexity of our bijections, and we conclude in section 7.

2 Preliminaries

2.1 Cyclotomic Polynomials and Algebraic Tori

We first state a few facts about the cyclotomic polynomials. See [19] for more
background.

Definition 1. Let n be a positive integer and let ζn = e2πi/n. The nth cyclotomic
polynomial Φn(x) is defined by:

Φn(x) =
∏

1≤k≤n, gcd(k,n)=1

(x − ζk
n).

It is easy to see that the degree of Φn(x) is φ(n), where φ is the Euler-totient
function. We also have:

xn − 1 =
∏

d|n

Φd(x),

and using the Möbius function µ,

Φn(x) =
∏

d|n

(xd − 1)µ(n/d).

It can be shown that the cyclotomic polynomials are irreducible polynomials
over Q with integer coefficients. For q a prime power, let Fq denote the finite
field with q elements. For integers n > 0 we define the algebraic torus4 Tn(Fq):

Tn(Fq) = {α ∈ F ∗qn | αΦn(q) = 1}.

2.2 Number Theory

The following is the celebrated prime number theorem (see [11], chapter 22):

Theorem 1. For large enough n, the number of primes less than or equal to n
is n

ln n + o
(

n
ln n

)

.

We also need the fact that for any n > 6, φ(n) > n/(6 ln ln n), and for n the prod-
uct of the first k distinct primes, φ(n) = Θ(n/ log log n). We use the following
density theorem in our analysis:

Theorem 2. (Chebotarev [5, 16]) For any integer n and any a ∈ Z∗n, the
density of primes p (among the set of all primes) with p = a mod n is 1/φ(n).

3 The Bijection

Let q be a prime power, n a positive integer, F ∗qn the multiplicative group of
the field of order qn, and Tn(Fq) the φ(n)-dimensional algebraic torus over Fq .
For an integer k, let [k] = {1, 2, . . . , k}. The goal of this section is to construct
efficiently computable bijections θ and θ−1, where

θ : Tn(Fq) ×
(

×d|n, µ(n/d)=−1 F ∗qd

)

→ ×d|n, µ(n/d)=1 F ∗qd .

Our strategy is to first find efficient bijections γ and γ−1, where

γ : F ∗qn → ×d|nTd(Fq).

Note that in general F ∗qn and ×d|nTd(Fq) need not be isomorphic. Let Gm de-
note the cyclic group of order m. We first need a few lemmas. The following is
an immediate consequence of the structure theorem of abelian groups, but for
completeness and to exhibit the efficient isomorphisms, we include it:

Lemma 1. Suppose n = r1 · r2 · · · rk for pairwise relatively prime positive inte-
gers r1, . . . , rk. Then there exist efficiently computable isomorphisms ρ : Gn →
×i∈[k]Gri

and σ : ×i∈[k]Gri
→ Gn.

4 Technically, Tn(Fq) just refers to the Fq points of the algebraic torus rather than
the torus itself (see [24, 30]).

Proof. For i ∈ [k], put di = n/ri. Since the ri are pairwise relatively prime,
gcd(d1, d2, . . . , dk) = 1, so there exist integers ei for which

∑

i∈[k] eidi = 1. For

α ∈ Gn, define ρ(α) = (αdi)i∈[k]. Since (αdi)ri = 1, ρ maps elements of Gn

to elements in the product group ×i∈[k]Gri
. For (αi)i∈[k] ∈ ×i∈[k]Gri

, define
σ((αi)i∈[k]) =

∏

i∈[k] α
ei

i , where multiplication occurs in Gn.

The claim is that ρ and σ are inverse isomorphisms between Gn and ×i∈[k]Gri
.

For α ∈ Gn, we have σ(ρ(α)) = σ((αdi))i∈[k] =
∏

i∈[k] α
diei = α. Similarly, for

(αi)i∈[k] ∈ ×i∈[k]Gri
, we have ρ(σ((αi)i∈[k])) = ρ(

∏

i∈[k] α
ei

i) = (
∏

j∈[k] α
ejdi

j)i∈[k].

Now, rj | di if j 6= i, so in this case α
ejdi

j = 1. Also, αeidi

i = α
1−

P

j 6=i ejdj

i = α1−kri

i

for an integer k, so αeidi

i = αi. Hence, ρ(σ((αi)i∈[k])) = (αi)i∈[k], which shows

ρ and σ are inverses. Observe that ρ(α1 · α2) = ((α1 · α2)
di)i∈[k] = (αdi

1)i∈[k] ·
(αdi

2)i∈[k] = ρ(α1)·ρ(α2), and similarly σ((αi)i∈[k] ·(α′i)i∈[k]) =
∏

i∈[k](αi ·α′i)ei =
∏

i∈[k](αi)
ei

∏

i∈[k](α
′
i)

ei = σ((αi)i∈[k]) ·σ((α′i)i∈[k]), which shows that the maps
are isomorphisms. Computing ρ and σ just requires multiplication and exponen-
tiation, which can be made efficient by repeated squaring.

Let U = U(n, q) be the smallest positive integer for which gcd(Φd(q), Φe(q),
qn−1

U) =
1 for all d 6= e with d | n and e | n.

Lemma 2. For d | n, let yd = gcd(Φd(q),
qn−1

U). Then F ∗qn
∼= GU ×

(

×d|nGyd

)

.
Furthermore, the isomorphisms are efficiently computable.

Proof. By lemma 1 it suffices to show (1) qn − 1 = U
∏

d|n yd, (2) for all d,

gcd(U, yd) = 1, and (3) for all d 6= e, gcd(yd, ye) = 1.

Using the fact that qn − 1 =
∏

d|n Φd(q), the following establishes (1):

qn − 1

U
= gcd

∏

d|n

Φd(q),
qn − 1

U

 =
∏

d|n

gcd

(

Φd(q),
qn − 1

U

)

=
∏

d|n

yd,

where the second equality follows from the definition of U . For (2), observe that

gcd(U, yd) = gcd

(

U, Φd(q),
qn − 1

U

)

| gcd

(

U,
qn − 1

U

)

= 1,

since if prime p | U , by minimality of U there exist d 6= e for which p |
gcd(Φd(q), Φe(q)), so if p | qn−1

U , then p | gcd(Φd(q), Φe(q),
qn−1

U), a contra-

diction. To see (3), note that gcd(yd, ye) = gcd(Φd(q), Φe(q),
qn−1

U) = 1 by the
definition of U .

We use the following bijections with complexity proportional to U , which we
later show to be negligible for an appropriate choice of q.

Lemma 3. For d | n, let zd = gcd(Φd(q), U). There exist bijections between
GU and ×d|nGzd

requiring O(log U + log n + log log q) time to evaluate and
O(Un1+ε log q) space for any ε > 0.

Proof. Using the definition of U ,

∏

d|n

|Gzd
| =

∏

d|n

gcd(Φd(q), U) = gcd

∏

d|n

Φd(q), U

 = gcd(qn − 1, U) = U,

so there exists a bijection between the two groups. Choose a generator g of
GU and generators gd of Gzd

. For each i ∈ [U], make a table entry mapping
gi to a unique tuple (gid

d)d|n. Since the sum of the divisors of n is less than
O(n1+ε) for any ε > 0 ([11], section 18.3), the table consumes O(Un1+ε log q)
space. We sort the entries in both directions so that both bijections are efficient.
Evaluations of either bijection can then be performed with a binary search in
O(log U + log n + log log q) time.

We need another auxiliary map:

Lemma 4. Let yd and zd be as in the previous two lemmas. Then, ×d|nTd(Fq) ∼=
(

×d|nGyd

)

×
(

×d|nGzd

)

. Furthermore, the isomorphisms are efficiently com-
putable.

Proof. It suffices to show for any d | n, Td(Fq) ∼= Gyd
×Gzd

, and that this isomor-

phism is efficiently computable. Note that ydzd = gcd(Φd(q),
qn−1

U) gcd(Φd(q), U) =

Φd(q) since gcd(U, qn−1
U) = 1 by the definition of U . By the same observation,

gcd(yd, zd) = 1. Lemma 1 establishes the claim.

The following is immediate from the previous 3 lemmas:

Lemma 5. Assuming the maps of lemma 3 are efficient, there exist efficiently
computable bijections γ and γ−1, where γ : F ∗qn → ×d|nTd(Fq).

We now have the bijection claimed at the beginning:

Theorem 3. Assuming the maps of lemma 3 are efficient, there exist efficiently

computable bijections θ and θ−1, where θ : Tn(Fq) ×
(

×d|n, µ(n/d)=−1 F ∗qd

)

→
×d|n, µ(n/d)=1 F ∗qd .

Proof. Lemma 5 gives efficient bijections between Tn(Fq) ×
(

×d|n, µ(n/d)=−1F
∗
qd

)

and Tn(Fq) ×
(

×d|n, µ(n/d)=−1

(

×e|dTe(Fq)
))

, and also between ×d|n, µ(n/d)=1F
∗
qd

and ×d|n, µ(n/d)=1

(

×e|dTe(Fq)
)

. By permuting coordinates, the theorem will fol-
low if we show the multiset equality

{n} ∪
⊔

d|n, µ(n/d)=−1

{e s.t. e | d} =
⊔

d|n, µ(n/d)=1

{e s.t. e | d}.

From section 2, Φn(x)
∏

µ(n/d)=−1(x
d − 1) =

∏

µ(n/d)=1(x
d − 1) in the polyno-

mial ring Q[x]. Decomposing this equation into irreducible polynomials, we have
Φn(x)

∏

µ(n/d)=−1

∏

e|d Φe(x) =
∏

µ(n/d)=1

∏

e|d Φe(x), and since Q[x] is a unique
factorization domain, the irreducible polynomials on the left must be the same
as those on the right. This gives the desired multiset equality.

4 Parameter Selection

The two constraints on choosing q and r for fixed n are security and efficiency
constraints, the latter measured by the size U(n, q) of the tables needed in our
bijections. We first discuss the role of security in parameter selection:

4.1 Security measures

Our schemes derive their security from the same assumptions of XTR and
CEILIDH. That is, if there is a successful attack against one of our crypto-
graphic primitives, then there is a successful attack against the corresponding
primitive in the underlying group we use, which we assume is impossible. Let
〈g〉 ⊂ F ∗qn be a multiplicative group of order r with generator g. The security of
our applications relies on the hardness of both the Computational Diffie-Hellman
problem (CDH) and the Decisional Diffie-Hellman problem (DDH) in 〈g〉. The
former is the problem of computing gxy given gx and gy and the latter is that
of distinguishing triples of the form (ga, gb, gab) from (ga, gb, gc) for random a, b,
and c. The hardness of both of these problems implies the hardness of the dis-
crete logarithm problem (DL) in 〈g〉: find x given gx. Due to the Pohlig-Hellman
algorithm [21], the DL problem in 〈g〉 can be reduced to the DL problem in all
prime order subgroups of 〈g〉, so we might as well assume that r is prime.

There are two known approaches to solving the DL problem in 〈g〉 [1, 7, 9, 13,
20, 27, 28], one which attacks the full multiplicative group of Fqn itself using the
Discrete Logarithm variant of the Number Field Sieve, and one which concen-
trates directly on the subgroup 〈g〉 using Pollard’s Birthday Paradox based rho
method [22]. Let s be the smallest divisor of n for which 〈g〉 can be embedded in
F ∗qs . The heuristic expected running time of the first attack is L[qs, 1/3, 1.923],
where L[n, v, u] = exp((u+o(1))(ln n)v(ln ln n)1−v). If q is small, e.g. q = 2, then
the constant 1.923 can be replaced with 1.53. The second attack, due to Pollard,
takes O(

√
r) operations in 〈g〉.

Hence we see that the difficulty of solving the DL problem in 〈g〉 depends
on both the size of the minimal surrounding subfield and on the size of its
prime order r. If Fqn is itself the minimal surrounding subfield, as is the case
if we choose r | Φn(q) with r > n, then for sufficiently large r the DL, CDH,
and DDH problems in 〈g〉 are widely believed to be just as hard as solving
their classical counterparts w.r.t. an element of prime order ≈ r in the prime
field of cardinality ≈ qn [14]. As mentioned in [14], when n log2 q ≈ 1024 and
log2 r ≈ 160, solving the DL problem in 〈g〉 is generally believed to be harder
than factoring an 1024-bit RSA modulus provided q is not too small.

4.2 Practical algorithm for n = 30 and n = 210

Based on our security discussion, it is shown in [4] that, assuming an RSA key
length between 1024 and 2048 bits gives adequate security, for n = 30 we should
choose q to be a prime between 35 and 70 bits long, and for n = 210 we should
choose q to be a prime between 5 and 10 bits long. Note that for the next value

of n for which we achieve a communication savings, n = 2310 = 2 ·3 ·5 ·7 ·11, the
field size will have to be at least 2310 bits, so any setting of q already exceeds
the 2048 bits needed for adequate security.

In [13] it is shown how to quickly find a q and an r meeting these requirements
for fixed n. The algorithm is heuristic, and involves choosing random q of a
certain size and checking if Φn(q) contains a sufficiently large prime factor r
by trial division with the primes up to roughly 105. On a 166MHz processor,
for n = 30 it was shown that it takes 12 seconds to find an r of size between
214 and 251 bits for q of size 32 bits. Note that for n = 30 we actually need
r to be slightly smaller, as claimed in the previous paragraph. This way we
can achieve the largest efficiency gain for a fixed security guarantee. Using the
algorithm of [13], fixing the size of r to be approximately 161 bits and searching
for an appropriate q took three hours instead of the 12 seconds needed previously.
However, there are three reasons we do not consider this to be problematic. First,
CPU speeds are easily ten times as fast these days. Second, we don’t need to fix
the size of r to be exactly 161 bits; we just need to find an r of approximately
this size. And third, finding the system parameters is a one-time cost and can
be done offline, or even by a trusted third party.

From the efficiency analysis in the next section and lemma 6, one can show
that the table size U(n, q) resulting from choosing q at random subject to the
above constraints is likely to be small with good probability. Hence, this heuristic
algorithm is likely to find a q and an r so that both security and efficiency
constraints are met in a reasonable amount of time.

4.3 Theoretical algorithm for general n with probabilistic
guarantees

In this section we use properties of the density of primes to design a parame-
ter selection algorithm and rigorously analyze its performance. Unfortunately,
since the factorization of Φn(q) for random primes q does not seem to be well-
understood, we are forced to choose q > r, which with respect to attacks known
today, doesn’t allow for choosing the optimal q and r for n = 30 and n = 210
if we just want 2048 bit RSA security. A straightforward calculation shows that
for n = 30, the following algorithm gives us the largest efficiency gain for a fixed
security guarantee if and only if q is at least 558 bits. Hence, we should view
the algorithm as theoretical in nature, and apply the heuristic of the previous
section for small n.

Let k be a positive integer tending to infinity and let n be the product of the
first k primes. We want to choose q so that:

1. n log q is sufficiently large.
2. There exists a large prime factor r of Φn(q).
3. U = U(n, q) is small.

We say an integer is squarefree if it contains no repeated factors. The selection
algorithm is as follows:

Parameter Selection Algorithm PSA(n = p1 · · · pk, Q, R):

1. Let S be the subset of the first k primes p for which p− 1 is squarefree, and
put T = {p1, . . . , pk} \ S.

2. Find an R-bit prime r for which r = 1 mod n, and find a z ∈ Z∗r of order n.
3. Find a Q-bit prime q = z + kr > n, for some integer k, such that:

(a) For all p ∈ S, qpOp(q) 6= 1 mod p3, where Op(q) denotes the order of q
in Z∗p .

(b) For all p ∈ T , Op(q) = p − 1.
4. Find a generator g of the subgroup of order r of F ∗qn . Output r, q, and g.

We first claim that if the PSA algorithm terminates, then r and q meet the
aforementioned properties. By setting Q large enough, the first property holds.
We have Φn(q) = Φn(z + kr) = Φn(z)+ sr for some integer s, and since Or(z) =
n, Φn(z) + sr = 0 mod r. Hence by choosing R sufficiently large, the second
property holds. To show U = U(n, q) is small, we need the following lemma:

Lemma 6. Let p be a prime and q an integer such that p 6 | q. Then p | U if and
only if pOp(q) | n. In case of the latter, pi | U if and only if pi | (qpOp(q) − 1).

Proof. By minimality of U , p | U if and only if there exist divisors d < e of n
for which p | gcd(Φd(q), Φe(q)). Fix two such divisors d and e, let f = gcd(d, e),
and suppose f < d. Since f < d, p | Φd(q) | (qd − 1)/(qf − 1) = 1 + qf + q2f +
· · · + q(d/f−1)f . Since p | gcd(Φd(q), Φe(q)) | gcd(qd − 1, qe − 1) = qf − 1, we
have qf = 1 mod p, so d/f = 0 mod p, or p | d/f . Similarly, p | e/f . But then
p | gcd(d/f, e/f), contradicting our choice of f . Hence, d = f which means d | e
and p | e/d | n.

Suppose there is another divisor c < d of n for which p | Φc(q). Then by the
above, c | d and p | (d/c), and since p | (e/d), p2 | e | n, contradicting the fact
that n is squarefree. This means that (d, e) is the unique pair of divisors for which
p | gcd(Φd(q), Φe(q)). Since p | qn − 1, Op(q) | n, and since gcd(Op(q), p) = 1,
pOp(q) | n. Put d = Op(q) and e = pOp(q). Then d is the smallest positive
integer for which qd = 1, so p | Φd(q). Also, Φe(q) = (qe − 1)/(qd − 1) =
1+ qd + · · ·+ q(e/d−1)d = e/d mod p = 0 mod p. Hence if p | gcd(Φd(q), Φe(q)),
then d = Op(q) and e = pOp(q). Conversely, if pOp(q) | n, then p | U for these
d, e.

We have shown p | U if and only if pOp(q) | n. The above shows that if
pi | U , then pi | (ΦOp(q)(q) · ΦpOp(q)(q)) | (qpOp(q) − 1), and conversely if

pi | (qpOp(q) − 1) | (qn − 1), then pi | gcd(Φd(q), Φe(q)) | U .

Remark 1. Note that p2 | (qpOp(q) − 1), since on the one hand we have p |
(qOp(q) − 1), and on the other hand we have (qn − 1)/(qOp(q) − 1) = 1+ qOp(q) +
q2Op(q) + · · · + q(p−1)Op(q) = 1 + 1 + · · · + 1 = 0 mod p. Hence if p | U , then
(qpOp(q) − 1) | (qn − 1), so it follows that p2 | U .

The following lemma provides tight asymptotic bounds on U = U(n, q):

Lemma 7. If the PSA algorithm terminates, U = Θ(n2C), where C ≈ .374 is
Artin’s constant.

Proof. By the previous lemma, if p | U , then p | n, so p ∈ {p1, . . . , pk}. Now if
p ∈ T , p − 1 is not squarefree, so Op(q) 6 | n by step 3b, so p 6 | U . On the other
hand, if p ∈ S, p− 1 is a product of distinct primes in {p1, . . . , pk}, so Op(q) | n
and hence p | U . Combining this with the remark above, step 3a of the PSA
algorithm, and the previous lemma, we conclude that U is exactly the square of
the product of primes in S and that the PSA algorithm chooses q so that U is
minimal.

To obtain the bound on U it suffices to show that the density of primes p
for which p − 1 is squarefree is C, where C is Artin’s constant [8]. The bound
will then hold for large enough k. For a prime p, p − 1 is not squarefree if and
only if p = 1 mod q2 for a prime q. By the inclusion-exclusion principle, the
multiplicativity of φ(·), and theorem 2, the density of primes p for which p − 1
is squarefree is:

1 −
∑

primes p

1

φ(p2)
+

∑

primes p,q

1

φ(p2q2)
− · · · =

∏

primes p

(

1 − 1

φ(p2)

)

= C.

By theorem 1, for sufficiently large k, pk ≈ k log k and k ≈ log k
log log k , where the

approximation is up to low order terms. Hence, U ≤ p2Ck
k ≈ (k log k)2Ck ≈

(log n)2C log n
log log n ≈ n2C .

Finally, we show the PSA algorithm terminates quickly in expectation:

Efficiency Analysis: By theorem 1, k ≈ log n
log log n and pk ≈ log n. Determin-

ing S and T in step 1 can therefore be done by trial division in O(log2 n)
time. We can perform step 2 by choosing a random R-bit number r, efficiently
checking if r is prime, and checking if r = 1 mod n. This requires an expected

φ(n)R = O
(

Rn
log log n

)

samples r. To find z, we choose a random α ∈ Z∗r , set

β = α
q−1

n , and check that βd 6= 1 mod r for all proper divisors d of n. In ex-
pectation, after O(log R) trials one such α will be a generator of Z∗r , for which

setting z = β = α
q−1

n gives z with Or(z) = n. Conversely, if for all proper divisors
d of n we have βd 6= 1 mod r, then Or(β) = n. Since the number of proper divi-
sors of n is O(nε) for any ε > 0 ([11], section 18.1), the check in step 2 is efficient.

For step 3, for each p ∈ T , we can find an element ap ∈ Z∗p with Op(ap) = p− 1
by simply trying each of the p − 1 = O(log n) elements of Z∗p until we succeed.
We then choose a random integer k for which q = z + kr is a Q-bit number and
efficiently check if q is prime. If so, then for each p ∈ S, we can compute Op(q) in
O(log n) time, then check if qpOp(q) 6= 1 mod p3 by repeated squaring. For each

p ∈ T we check if q = ap mod p.

The claim is that the number of random samples k needed in step 3 is only
O(Qn1−C). Using the fact that the density of primes amongst integers of the

form z +kr is O
(

1
log(z+kr)

)

, an integer k for which z +kr is prime can be found

with O(Q) samples in expectation. By independence, the density of primes q

which are ap mod p for every p ∈ T is
∏

p∈T
1

φ(p) = Ω
(

log log n
n1−C

)

, where C is

Artin’s constant. Fix any p ∈ S. By theorem 2, for all but a negligible fraction
of primes q, q = gi mod p3 for g a generator of Z∗p3 . Since g is a generator,

qpOp(q) = 1 mod p3 if and only if i is a multiple of φ(p3)
pOp(q) , and there are only

pOp(q) ≤ p(p − 1) such multiples. By theorem 2, it is equally likely that q = gi

for any i ∈ [φ(p3)], so the density of primes q for which qpOp(q) 6= 1 mod p3 is at
least 1 − 1/p. By independence, the density of q for which qpOp(q) 6= 1 mod p3

for all p ∈ S is at least
∏

p∈S(1 − 1/p) =
∏

p∈S = Ω
(

1
log log n

)

. Applying in-

dependence one last time, we conclude that q can be found with an expected
O(Qn1−C) samples k.

Finally, step 4 can be implemented by choosing a random g ∈ F ∗qn and making
sure that (qn − 1)/r 6= 1. The number of generators of F ∗qn is φ(qn − 1) which is

Ω
(

qn

log n+log Q

)

, so the expected number of samples g needed is O(log n+log Q).

5 Cryptographic Applications

Let n be the product of the first k primes, and let r, q, and g be public param-
eters generated as in section 4. Define σ−(n) =

∑

d|n, µ(n/d)=−1 d and σ+(n) =
∑

d|n, µ(n/d)=1 d, and observe that φ(n) + σ−(n) = σ+(n). From section 3,

we have an efficiently computable bijection θ and its inverse θ−1, with θ :

Tn(Fq) ×
(

×d|n, µ(n/d)=−1 F ∗qd

)

→ ×d|n, µ(n/d)=1 F ∗qd .

From the proof of theorem 3, we see that there are a number of choices
for θ depending on which coordinate permutation is chosen. While this choice
does not affect the communication of our protocols or the size of our encryp-
tions/signatures, it can affect the computational costs. In section 6 we choose a
specific permutation and analyze the computational requirements for n = 30.

We will think of θ and θ−1 as efficiently computatble maps between Tn(Fq) ×
F

σ−(n)
q and F

σ+(n)
q by fixing polynomial representations of Fqd with d | n. An ele-

ment of F
σ−(n)
q is then just a list of σ−(n) q-ary coefficients with respect to these

polynomials, and can be treated as an element of ×d|n, µ(n/d)=−1 F ∗qd . Let id, id+

1, . . . , id + d− 1 denote the coordinates of an element x ∈ F
σ−(n)
q corresponding

to the coefficients of x with respect to the irreducible polynomial for Fqd . Our
map may not be well-defined because we may have (xid

, xid+1, . . . , xid+d−1) = 0.

However, if y ∈ F
σ−(n)
q is chosen randomly, the probability that some coordinate

of y is zero is less than σ−(n)/q = O(nε/q) for any ε > 0, which is negligible.

The same is true of a randomly chosen element of F
σ+(n)
q . Hence, if we apply θ

and θ−1 to random (x1, x2) ∈ Tn(Fq) × F
σ−(n)
q and y ∈ F

σ+(n)
q , θ(x1, x2) and

θ−1(y) are well-defined with overwhelming probability.
It is possible to modify θ and θ−1 if one wants more than a probabilistic

guarantee. Define d−(n) =
∑

d|n, µ(n/d)=−1 1 and d+(n) =
∑

d|n, µ(n/d)=1 1. We

can efficiently extend θ to the well-defined map θ̃,

θ̃ : Tn(Fq) × F σ−(n)
q →

(

×d|n, µ(n/d)=1 F ∗qd

)

× {0, 1}d−(n),

where for each (x, y) ∈ Tn(Fq) × F
σ−(n)
q and for each d | n with µ(n/d) = −1,

if (yid
, . . . , yid+d−1) = 0, we replace yid+d−1 with 1, obtaining a new string y′,

and define θ̃(x, y) = θ(x, y′) ◦ b, where for all j ∈ [d−(n)], bj = 1 if and only

if (yid
, . . . , yid+d−1) = 0 for the jth divisor d. Note that θ̃←, the inverse of θ̃

restricted to the image of θ̃, is also well-defined. Similarly, letting β denote θ−1,

we can extend β to a well-defined map β̃ : F
σ+(n)
q → Tn(Fq) × F

σ−(n)
q ×

{0, 1}d+(n) and construct β̃←.
The next sections describe our cryptographic applications. For simplicity,

in our security analyses we assume θ and θ−1 are actually bijections between

Tn(Fq) × F
σ−(n)
q and F

σ+(n)
q , although it should be understood that our pro-

tocols can be slightly modified so that θ̃ or β can be used without affecting
the security. The only application where this is not immediately obvious is the
non-hybrid ElGamal encryption, but step 3 of that protocol can be modified to
additionally encrypt the “extra bits” from β̃ using, say, the same key used in
step 3.

5.1 Diffie-Hellman Key Agreement

For Alice and Bob to agree on a sequence of m secret keys Ki, they engage in
the following protocol:

1. Alice and Bob choose random S0 and T0 in ×d|n, µ(n/d)=−1 F ∗qd , respectively,

and treat them as elements of F
σ−(n)
q .

2. For i = 1 to m,

(a) Alice selects a random integer xi with 1 ≤ xi ≤ r, sets Ai = gxi , com-

putes θ(Ai, Si−1) = (ai, Si) ∈ F
φ(n)
q × F

σ−(n)
q and transmits ai to Bob.

(b) Bob selects a random integer yi with 1 ≤ yi ≤ r, sets Bi = gyi , computes

θ(Bi, Ti−1) = (bi, Ti) ∈ F
φ(n)
q × F

σ−(n)
q and transmits bi to Alice.

3. Alice sends Sm to Bob and Bob sends Tm to Alice.
4. For i = m to 1,

(a) Alice computes θ−1(bi, Ti) = (Bi, Ti−1), and sets Ki = Bxi

i = gxiyi .
(b) Bob computes θ−1(ai, Si) = (Ai, Si−1), and sets Ki = Ayi

i = gxiyi .

The number of bits sent from Alice to Bob (and from Bob to Alice) is about
(mφ(n)+σ−(n)) log q, so the rate approaches the optimal φ(n) log q bits per key
as m gets large. This beats all known schemes for n ≥ 30. In particular, for
n = 30, our scheme requires only 8 log q bits per shared key while generalizing
the scheme in section 4.11 of [14] to n = 30 gives a scheme requiring 10 log q bits
per key exchange. The scheme in [24] would also achieve our rate, but needs an
unproven conjecture concerning the rationality of T30(Fq).

Observe that (A1, S0) and (B1, T0) are random, and since θ is a bijection, the
last σ−(n) coordinates of θ(A1, S0) are of a random element in ×d|n, µ(n/d)=1F

∗
qd .

Hence the probability that some coordinate of S1 is zero is even less than that

for a random element in F
σ+(d)
q , which is negligible. One can then verify that

every application of θ or θ−1 is on a random element. It follows from the fore-
going discussion and the union bound that the probability of either Alice or
Bob ever attempting to apply θ or θ−1 on an element outside of the domain is
negligible. For deterministic guarantees, one can replace θ and θ−1 with θ̃ and
θ̃←, negligibly changing the rate to φ(n) log q + O(nε) for any ε > 0. Given the
overwhelming probability guarantees for θ and θ−1, this does not seem necessary.

Security: An eavesdropper obtains a1, . . . , am, b1, . . . , bm, Sm, and Tm. Since
θ and θ−1 are efficient bijections, this is equivalent to obtaining A1, . . . , Am,
B1, . . . , Bm, S0, and T0. Since S0 and T0 are random, determining a shared secret
Ki is equivalent to solving the CDH problem in 〈g〉, given A1, . . . , Am, B1, . . . , Bm.

5.2 ElGamal Signature Schemes

Suppose the message M to be signed is at least σ−(n) log q − log r bits long. If
this is not the case, one can wait until there are m > 1 messages Mi to be signed
for which

∑

i |Mi| ≥ σ−(n) log q − log r, then define M to be the concatenation
M1 ◦ · · · ◦ Mm and sign M . For a random a, 1 ≤ a ≤ r − 1, let a be Alice’s
private key and A = ga her public key. Let h : {0, 1}∗ → Zr be a cryptographic
hash function. We have the following generalized ElGamal signature scheme (see
p.458 of [18] for background):

Signature Generation (M):

1. Alice selects a random secret integer k, 1 ≤ k ≤ r, and computes d = gk.
2. Alice then computes e = k−1(h(M) − ah(d)) mod r.

3. Alice expresses M ◦ e as (R, S) ∈ F
σ−(n)
q × {0, 1}∗, computes θ(d, R) = T ,

and outputs (S, T) as her signature.

Signature Verification (M, S, T):

1. Bob computes θ−1(T) = (d, R) and constructs M and e from R and S.
2. Bob accepts the signature if and only if Ah(d)de = gh(M).

The communication of this scheme is at the optimal |M |+ log r + φ(n) log q for
ElGamal signature schemes, even for one message (as long as M is large enough).

This beats the |M | + log r + (n/3) log q communication of the scheme in [4, 17]
when n ≥ 30, in particular for the practical values n = 30 and n = 210. Our
communication is the same as that in [24], but we do not rely on any conjectures.

Note that our map θ may fail since M need not be random. One can avoid
this by excluding the negligibly few M for which θ is not defined (as in RSA
or the schemes of [24]), or one can replace θ with θ̃, as defined above, and
communicate an additional O(nε) bits of overhead. Alternatively Alice can use
a pseudorandom generator to randomize M and communicate the small seed
used to Bob, requiring even less communication than the already asymptotically
negligible O(nε) bits.

We note that a simple modification of our protocol, making it similar in spirit
to our key exchange protocol, can allow Alice to sign each Mi individually, al-
lowing for incremental verification.

Security: In this scheme the verifier obtains (S, T), which is equivalent to ob-
taining M, d, and e. Thus, the security of this scheme reduces to the security of
the generalized ElGamal signature scheme in 〈g〉.

5.3 ElGamal Encryption

We present two flavors of ElGamal encryption. The first is a hybrid scheme with
shorter encryptions than the one in [14], while the second is essentially a non-
hybrid analogue of ElGamal in Tn(Fq). In the second, to encrypt a sequence of
m messages, m+1 encryptions are created and m of them are performed directly
in Tn(Fq). The first scheme achieves optimal communication, while the second
is asymptotically optimal.

Hybrid ElGamal For random b, 1 ≤ b ≤ r − 1, let b be Bob’s private key and

B = gb his public key. Suppose Alice wants to encrypt the message M ∈ F
σ−(n)
q

with Bob’s public key. Let E be an agreed upon symmetric encryption scheme

with domain F
σ−(n)
q . We have the following protocol:

Encryption (M):

1. Alice selects a random secret integer k, 1 ≤ k ≤ r, and computes d = gk.
2. From B Alice computes e = Bk = gbk.
3. From e Alice derives a key Q for E and computes the encryption of M ,

E(M), under key Q. Alice writes E(M) as (R, S) ∈ F
σ−(n)
q × {0, 1}∗.

4. Alice computes θ(d, R) = T and outputs her encryption (S, T).

Decryption (S, T):

1. Bob computes θ−1(T) = (d, R).
2. From d and b Bob computes e = gbk.
3. From e Bob derives Q and decrypts E(M) = (R, S) to obtain and output

M .

The communication of this scheme is at the optimal |E(M)| + φ(n) log q bits
for hybrid ElGamal encryption. As in our protocol for signature schemes, we
achieve this rate even for a single message. This beats the |E(M)|+ (n/3) log q
bit scheme in [14] for n ≥ 30.

It is unlikely that θ or θ−1 is applied to an element with any zero coordinates
since d is random and E(M) is likely to “look random” in practice, so θ(d, R) is

likely to be a random element of F
σ+(n)
q for which it is extremely unlikely that

any coordinates are zero. An exact analysis, though, depends on one’s choice
of E. As in our protocol for signature schemes, one can randomize E(M) to
decrease the error probability or replace θ with θ̃ for a deterministic guarantee
at the cost of a few bits of communication.

Security: An adversary learns (S, T), which is equivalent to learning d and
E(M). Assuming the CDH problem is hard in 〈g〉, the security of this scheme
is just that of the symmetric scheme E, assuming the key Q to E is chosen
reasonably from e. To derive Q from e, one can extract bits that are hard to
compute by an eavesdropper, see [2].

Almost Non-Hybrid ElGamal In the following, Alice will encrypt a sequence

of m messages M1, . . . , Mm, each in F
φ(n)
q . She will form m + 1 encryptions, m

of which are encryptions in Tn(Fq), and one requiring the use of an agreed upon
symmetric encryption scheme E.

In the encryption phase of our scheme we will apply θ−1 to (Mi ◦R) for some

R ∈ F
σ−(n)
q . For semantic security, for all i it must hold that θ−1(Mi ◦ R) ∈

〈g〉 × F
σ−(n)
q , which in general may be strictly contained in Tn(Fq) × F

σ−(n)
q .

For this we adopt the technique in section 3.7 of [25]. Namely, by reserving a
few bits of each Mi to be “redundancy bits”, if 〈g〉 has small enough index in
Tn(q), then for any R we need only try a few random settings of these bits until

θ−1(Mi◦R) ∈ 〈g〉×F
σ−(n)
q = (c, d) ∈ 〈g〉×F

σ−(n)
q , which we can test by checking

if cr = 1. In the following protocol description we ignore this issue and assume

whenever θ−1 is applied, its image is in 〈g〉 × F
σ−(n)
q .

For random b1, b2, 1 ≤ b1, b2 ≤ r − 1, let b1, b2 be Bob’s private keys and
B1 = gb1 , B2 = gb2 be his public keys. We have the following scheme:

Encryption (M):

1. Alice chooses a random R0 ∈ F
σ−(n)
q .

2. For i = 1 to m,

(a) Alice computes θ−1(Mi ◦ Ri−1) = (ci, Ri) ∈ 〈g〉 × F
σ−(n)
q .

(b) Alice chooses a random secret integer ki, 1 ≤ ki ≤ r, and forms the
encryption (di, ei) = (gki , ciB

ki

1).
3. Alice uses the hybrid ElGamal encryption scheme with symmetric cipher

E and public key B2 to encrypt Rm as (Tm, S) with Tm ∈ F
σ−(n)
q and

S ∈ {0, 1}∗.

4. For i = m to 1,

(a) Alice computes θ(di, Ti) = (xi, Wi) ∈ F
φ(n)
q × F

σ−(n)
q .

(b) Alice computes θ(ei, Wi) = (yi, Ti−1) ∈ F
φ(n)
q × F

σ−(n)
q .

5. Alice outputs x1, . . . , xm, y1, . . . , ym, T0, S as her encryption of M1, . . . , Mm.

Decryption (x1, . . . , xm, y1, . . . , ym, T0, S):

1. For i = 1 to m,

(a) Bob computes θ−1(yi ◦ Ti−1) = (ei, Wi).
(b) Bob computes θ−1(xi ◦ Wi) = (di, Ti).
(c) Bob computes ci = ei/db1

i .
2. Bob uses Tm and S, together with b2, in the decryption procedure of the

hybrid ElGamal scheme to recover Rm.
3. For i = m to 1, Bob computes θ(ci, Ri) = Mi ◦ Ri−1.
4. Bob outputs M1, . . . , Mm.

The communication of this scheme is 2mφ(n) log q + |E(Rm)| + φ(n) log q bits.
Hence, as m grows, the rate of this scheme approaches 2φ(n) log q, which is
optimal for ElGamal type encryption.

Note that the Mi’s need not be random, and consequently θ−1(Mi, Ri−1)
may not be well-defined. Choosing random R0 will increase the chances that
θ−1(Mi, Ri−1) is always defined. Alternatively, one can use the ideas of section
5.2 to randomize Mi, or one can use β instead of θ−1. Again, since E(Rm) =
(S, Tm) needn’t be random even if E is semantically secure, one may want to
use θ̃ in place of θ. This adds a negligible amount to the communication, and as
stated earlier, encrypting the extra bits of β̃ can be done in step 3.

Security: An adversary learns x1, . . . , xm, y1, . . . , ym, T0, S, which is equivalent
to learning E′(Rm), d1, . . . , dm, e1, . . . , em, where E′ is the semantically secure
hybrid encryption scheme. Assuming DDH is hard in 〈g〉, (di, ei) is a semantically
secure encryption E′′(ci) of ci for all i. The security of the scheme then follows
from the fact that the keypairs (b1, B1) and (b2, B2) of E′, E′′ are independent.

6 Computational Complexity

In this section we present efficient algorithms for computing θ and θ−1, analyze
their complexity, and suggest an alternative way of improving computational
costs with slightly more communication. Each of these is described in turn.

6.1 Algorithm

Before describing θ and θ−1, we need some notation:

– For d | n, let Ud be the smallest integer for which gcd(Φe(q), Φf (q), qd−1
Ud

) = 1

for all e 6= f with e | d and f | d.

– For e | d | n, we define yd,e = gcd(Φe(q),
qd−1
Ud

) and zd,e = gcd(Φe(q), Ud).

Generalizing section 3, we can find wd and wd,e s.t. qd−1
Ud

wd+
∑

e|d
qd−1
yd,e

wd,e =

1. Further, we can find ud,e and vd,e for which Φe(q)
yd,e

ud,e + Φe(q)
zd,e

vd,e = 1.

– Let ρe(d) : {d : e | d | n, µ(n/d) = −1} → {d : e | d | n, µ(n/d) = +1} for
e | n, e 6= n, be a bijective mapping and define ρn(n) = n.

A naive implementation of θ consists of the following steps:

1. We first use an isomorphism

Tn(Fq) ××µ(n/d)=−1Fqd −→ Tn(Fq) ××µ(n/d)=−1GUd
× G(qd−1)/Ud

.

2. By using a table lookup we map ×µ(n/d)=−1GUd
−→ ×µ(n/d)=−1 ×e|d Gzd,e

and we use an isomorphism ×µ(n/d)=−1G(qd−1)/Ud
−→ ×µ(n/d)=−1×e|dGyd,e

.
By the structure theorem of Abelian groups there is an isomorphism Gzd,e

×
Gyd,e

−→ Te(Fq) for each d|n with µ(n/d) = −1 and e | d.
3. By using a permutation we obtain a mapping

Tn(Fq) ××µ(n/d)=−1 ×e|d Te(Fq) −→ ×µ(n/d)=+1 ×e|d Te(Fq).

4. By the structure theorem of Abelian groups there is, for each d|n with
µ(n/d) = +1 and e | d, an isomorphism Te(Fq) −→ Gzd,e

×Gyd,e
. By using a

table lookup we map ×µ(n/d)=+1 ×e|d Gzd,e
−→ ×µ(n/d)=+1GUd

and we use
an isomorphism ×µ(n/d)=+1 ×e|d Gyd,e

−→ ×µ(n/d)=+1G(qd−1)/Ud
.

5. In the last step we use an isomorphism

×µ(n/d)=+1GUd
× G(qd−1)/Ud

−→ ×µ(n/d)=+1Fqd .

Each of the isomorphisms are defined by taking simultaneous exponentiations.
An improved implementation combines different isomorphisms in a single simul-
taneous exponentiation. Each table lookup followed by an exponentiation can
be implemented as a single table lookup. This reduces the number of exponen-
tiations and multiplications.

Computation of θ(x, (xd)d|n,µ(n/d)=−1) for (xd)d|n,µ(n/d)=−1 ∈ ×d|n,µ(n/d)=−1F
∗
qd

and x ∈ Tn(Fq):

1. For d | n, µ(n/d) = −1,

(a) Compute x
(qd−1)/Ud

d ∈ GUd
and map it to (Zd,e)e|d ∈ ×e|dGzd,e

by using
a table look up.

(b) Compute (Zρe(d),e = (Z
vd,e

d,e x
(qd−1)ud,e/yd,e

d)Φe(q)/zρe(d),e)e|d ∈ ×e|dGzρe(d),e
.

2. Compute Zn,n = xΦn(q)/zn,n ∈ Gzρn(n),n
.

3. For d | n, µ(n/d) = +1,
(a) Map (Zd,e)ρe(d′)=d,e|d ∈ ×e|dGzd,e

to Zd ∈ GUd
by using a table look up.

(b) Compute xd = Zwd

d ·∏ρe(d′)=d,e|d,e6=n(Z
vd′,e

d′,e x
(qd′
−1)ud′,e/yd′,e

d′)Φe(q)wd,e/yd,e

which is in GUd
· G(qd−1)/Ud

= F ∗qd .

4. Multiply xn with xΦn(q)wn,n/yn,n .

5. θ(x, (xd)d|n,µ(n/d)=−1) = (xd)d|n,µ(n/d)=+1.

The ideas in section 3 can be used to show the algorithm above is well-defined.
The improved computation of θ−1 is similar, where we make sure to use the
inverse of the coordinate permutation used in θ.

6.2 Complexity

For background on efficient computations in fields and subgroups, see [6, 12, 29].
Consider the algorithm for θ. In step 1, for d | n, µ(n/d) = −1, we perform 1 +
∑

e|d 1 exponentiations in Fqd . Notice that, in step 1b we do not need to compute

Z
vd,e

d,e since it can be combined with the table lookup in step 1a (there is an entry
in the table corresponding to Zv

d,e for every v). Step 2 costs 1 exponentiation in
Fqn .

For d | n, µ(n/d) = −1 or d = n, we precompute x2i

d , 0 ≤ i ≤ d log q. This
costs d log q multiplications in Fqd . By using the results of the precomputation, an
exponentiation xt

d, for some t, in Fqd costs on average (d log q)/2 multiplications
in Fqd (the bit length of the exponent t is (d log q) and roughly half the time a
bit is equal to 1). Each multiplication in Fqd costs f(d) ≤ d2 multiplications in
Fq . Summarizing, steps 1 and 2 cost about

C1 =

3f(n)n +
∑

d|n,µ(n/d)=−1

(3 +
∑

e|d

1)f(d)d

log q

2

multiplications in Fq .

In step 3, for d | n, µ(n/d) = +1, we need to perform, for each e | d with
ρe(d

′) = d, one exponentiation in Fqd′ . We do not need to compute Z
vd′,e

d′,e which
can be combined with the table lookup in step 1a.

The cost of step 3, measured in multiplications in the base field Fq , is on
average approximately

∑

d|n,µ(n/d)=+1

∑

e|d f(ρ−1
e (d))ρ−1

e (d)(log q)/2. Since ρe

defines a permutation, this expression is equal to

C2 =

f(n)n +
∑

d|n,µ(n/d)=−1

(
∑

e|d

1)f(d)d

log q

2
.

The total cost is C1+C2 multiplications in Fq , where we neglect the cost of table
lookups, addition, and multiplication modulo an integer. Since

∑

e|d 1 = O(dε),

we have
∑

d|n,µ(n/d)=−1(3+2
∑

e|d 1)f(d)d = O(
∑

d|n d3+ε) = O((
∑

d|n d)3+ε) =

O(n3+ε), since the sum of divisors of n is O(n1+ε) for any ε > 0. This proves
C1 + C2 = O(n3+ε log q).

The same techniques show θ−1 requires O(n3+ε log q) multiplications in Fq .

6.3 Efficiency Improvements

To improve the efficiency we may use exponentiation algorithms for fixed expo-
nents using vector addition chains. Also, we may group several exponentiations
of xd together into one exponentiation by appropriately choosing the bijections
ρe. If n is not too large, we may use simultaneous exponentiation to speed up
the computations. Full simultaneous exponentiations in every step requires a
precomputation of 2n multiplications. We may optimize by using simultaneous
exponentiation to compute intermediate results which we multiply together to
compute the full exponentiation. Finally, we may combine the exponentiations
required in our applications with the evaluation of θ.

Notice that θ is much more efficient if, for d | n with µ(n/d) = −1, xd ∈
G(qd−1)/Ud

. Then, for e | d | n with µ(n/d) = −1, Zd,e = 1 and Zd = 1. Table
lookups can be avoided. Therefore each xd, for d | n with µ(n/d) = +1, can
be computed by a single simultaneous exponentiation of x, xd ∈ G(qd−1)/Ud

, d |
n, µ(n/d) = −1, with fixed exponents in step 3. To make use of this, we define
a new map τ which maps (x, (xd)d|n,µ(n/d)=−1) into θ(x, (xUd

d)d|n,µ(n/d)=−1) and

the table entries of (x
(qd−1)/Ud

d)d|n,µ(n/d)=−1. This increases the communication
cost by

∑

d|n,µ(n/d)=−1

log2 Ud

bits which in practice is much less than log2 q. So at the cost of a small increase
in communication we improve the computational efficiency.

Computation of τ(x, (xd)d|n,µ(n/d)=−1) and τ←:

1. For d | n, µ(n/d) = −1, compute (x′d = x
(qd−1)/Ud

d)d|n,µ(n/d)=−1.
2. Compute

xd =
∏

ρe(d′)=d,e|d,e6=n

(x
Ud′ (qd′

−1)ud′,e/yd′,e

d′)Φe(q)wd,e/yd,e ∈ G(qd−1)/Ud
⊆ F ∗qd ,

for d | n with µ(n/d) = +1. Multiply xn with xΦn(q)wn/zn,n+Φn(q)wn,n/yn,n .
3. τ(x, (xd)d|n,µ(n/d)=−1) = ((xd)d|n,µ(n/d)=+1, (x

′
d)d|n,µ(n/d)=−1).

4. Compute x
(qn−1)vn,n/Un+(qn−1)un,n/yn,n
n = x.

5. Compute

x′
ad′

d′ (
∏

d=ρe′ (d
′),e′|d′

(x
(qd−1)ud,e′/yd,e′

d)Φe′ (q)wd′,e′/yd′,e′)bd′ = x′
ad′

d′ x
Ud′ bd′

d′ = xd′ ,

for d′ | n with µ(n/d′) = −1, where qd′
−1

Ud′
ad′ + Ud′bd′ = 1.

6. τ←((xd)d|n,µ(n/d)=+1, (x
′
d)d|n,µ(n/d)=−1) = (x, (xd)d|n,µ(n/d)=−1).

For n = 30, {d | n : µ(n/d) = −1} = {15, 10, 6, 1} and {d | n : µ(n/d) =
+1} = {30, 5, 3, 2}. We define ρ1(15) = 5, ρ3(15) = 30, ρ5(15) = 5, ρ15(15) =

30, ρ1(10) = 2, ρ2(10) = 2, ρ5(10) = 30, ρ10(10) = 30, ρ1(6) = 3, ρ2(6) = 30,
ρ3(6) = 3, ρ6(6) = 30, ρ1(1) = 30, ρ30 = 30. We use f(30) = 234, f(15) = 78,
f(10) = 45, f(6) = 18, f(5) = 15, f(3) = 6, and f(2) = 3 [31]. In step 1, we
compute x′15, x′10, x′6, and x′1 using single exponentiations by using the square
and multiply method [18, p. 614]. This costs in total 3(78 · 15 + 45 · 10 + 18 · 6 +
1)(log q)/2 = 2593.5 log q multiplications in Fq .

In step 2, x30 is computed as a simultaneous exponentiation [18, p. 618]in
x ∈ Fq30 , x15 ∈ Fq15 , x10 ∈ Fq10 , x6 ∈ Fq6 , x1 ∈ Fq . In a precomputation we
compute for each of the 25 possible sets S ⊂ {x, x15, x10, x6, x1} the product
∏

w∈S w. The whole precomputation costs at most 25 multiplications in Fq30 . In
the computation of x30 the exponents of x, x15, x10, etc., have bit lengths 30 log q,
15 log q, 10 log q, etc. This means that in the second half of the simultaneous
exponentiation (the last 30 log q−15 log q bits of the exponents) we only need to
square or square-and-multiply with x ∈ Fq30 . So the average costs in the second
half of the simultaneous multiplication is equal to 3(15 log q)/2 multiplications
in Fq30 . The simultaneous exponentiation corresponding to the bits ranging from
position 10 log q to 15 log q involves square or square and multiply with x, x15,
or x · x15. This costs on average 7(5 log q)/4 multiplications (5 is the difference
between 15 and 10, on average we need 1 multiplication in 1 out of 4 cases
and 2 multiplications in 3 out of 4 cases). Notice that we treat squaring as a
single multiplication in this excersise. Continuing this argument we need in total
234(25 +15(3/2)+5(7/4)+4(15/8)+5(31/16)+1(63/32))(logq) = 19283.1 logq
multiplications in Fq (25 comes from preprocessing).

The outputs x5, x3 and x2 are single multiplications in x15, x6, and x10,
respectively costing a total of 3(78 ·15+18 ·6+45 ·10)(logq)/2 = 2592 log q mul-
tiplications. Concluding, the computation of τ costs approximately 24468.6 logq
multiplications in Fq . A single exponentiation in Fq30 costs 234 · 30(log q)3/2 =
10530 log q multiplications. Hence, τ costs about 2.32 exponentiations in Fq30 .

In the implementation of τ← we compute x as a single exponentiation in x30,
costing 234 · 30(log q)3/2 = 10530 logq multiplications. In step 5, x15 is a simul-
taneous exponentiation in x30 and x5 (and a table look up for the exponentiation
in x′15). This costs 78(22+25(3/2)+5(7/4))(logq) = 3919.5 log q multiplications.
Similarly, x10 costs 45(22 + 28(3/2) + 2(7/4))(log q) = 2227.5 logq and x6 costs
18(22 +27(3/2)+3(7/4))(log q) = 895.5 log q multiplications. We compute x1 as
a single exponentiation in x30, costing 234 · 30(log q)3/2 = 10530 logq multipli-
cations. Concluding, the computation of τ← costs approximately 28102.5 logq
multiplications, which is equivalent to 2.67 exponentiations in Fq30 .

7 Conclusions and Open Problems

Our fundamental contribution is a compact and efficient representation of ele-
ments of Tn(Fq), namely, the construction of bijections θ and θ−1 of section 3.
This allows us to construct ElGamal signature and encryption schemes meeting
the optimal rate of communication, as well as a secret key exchange protocol
meeting this rate asymptotically. If the torus conjecture of [24] is proven, the

schemes in that paper will also achieve this rate, and moreover, their scheme for
DH key exchange will meet the optimal rate even for a single key exchanged.
Hence, resolving their conjecture is an important problem. Another important
question is whether the computational cost of our schemes can be reduced to
a more practical level. Finally, our representation of Tn(Fq) may have other
applications.

References

[1] L. M. Adelman, J. DeMarrais, A Subexponential Algorithm for Discrete Loga-
rithms over All Finite Fields, in Advances in Cryptology – Crypto ’93, LNCS
773, Springer-Verlag 1994, 147-158.

[2] D. Boneh and R. Venkatesan, Rounding in lattices and its cryptographic applica-
tions, Proc. 8-rd Annual ACM-SIAM Symposium on Discrete Algorithms, ACM,
NY, 1997, 675– 681.

[3] W. Bosma, J. Hutton, and E. R. Verheul, Looking Beyond XTR, in Advances in
Cryptology – Asiacrypt ’02, LNCS 2501, Springer, Berlin, 2002, 46 - 63.

[4] A. E. Brouwer, R. Pellikaan, and E. R. Verheul, Doing More with Fewer Bits, In
Advances of Cryptology – Asiacrypt ’99, LNCS 1716, Springer, 321-332.

[5] N. G. Chebotarev, Die Bestimmung der Dichtigkeit einer Menge von Primzahlen,
welche zu einer gegebenen Substitutionsklasse gehören. Math. Ann. 95, 191-228
(1926).

[6] H. Cohen and A. K. Lenstra, Supplement to Implementation of a New Primality
Test, Mathematics of Computation, volume 48, number 177, 1987.

[7] D. Coppersmith, Fast Evaluation of Logarithms in Fields of Characteristic Two,
IEEE Trans. Inform. Theory 30 (1984), 587-594.

[8] S. R. Finch, Artin’s Constant, 2.4 in Mathematical Constants, Cambridge, Eng-
land: Cambridge University Press (2003), 104-110.

[9] D. Gordon, Discrete Logarithms in GF(p) Using the Number Field Sieve, SIAM
J. Discrete Math. 6 (1993), 312-323.

[10] T. ElGamal, A Public Key Cryptosystem and a Signature Scheme Based on Dis-
crete Logarithms, IEEE Transactions on Information Theory 31(4), 1985, 469-472.

[11] G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, 5th
edition, Oxford University Press, 1979.

[12] A. Karatsuba and Y. Ofman. Multiplication of Multidigit Numbers on Automata,
Soviet Physics Doklady, volume 7, 1963, 595-596.

[13] A. K. Lenstra, Using Cyclotomic Polynomials to Construct Efficient Discrete Log-
arithm Cryptosystems over Finite Fields, Proceedings of ACISP 97, LNCS 1270,
Springer-Verlag 1997, 127-138.

[14] A. K. Lenstra and E. R. Verheul, The XTR Public Key System, In Advances of
Cryptology – Crypto 2000, LNCS 1880, Springer, 1-19.

[15] A. K. Lenstra and E. R. Verheul, An Overview of the XTR Public Key System, in
Public-key cryptography and computational number theory (Warsaw, 2000), de
Gruyter, Berlin, 2001, 151-180.

[16] H. W. Lenstra, The Chebotarev Density Theorem, URL:
http://math.berkeley.edu/ jvoight/notes/oberwolfach/Lenstra-Chebotarev.pdf

[17] Seongan Lim, Seungjoo Kim, Ikkwon Yie, Jaemoon Kim, Hongsub Lee, XTR
Extended to GF (p6m), Selected Areas in Cryptography, 8th Annual International
Workshop, SAC 2001, 301-312, Springer Verlag, 2001.

[18] A. J. Menezes, P. C. van Oorschot, S. A. Vanstone, Handbook of Applied Cryp-
tography, CRC Press, Boca Raton, FL, 1997.

[19] T. Nagell, “The Cyclotomic Polynomials” and “The Prime Divisors of the Cy-
clotomic Polynomial”, 46 and 48 in Introduction to Number Theory. New York:
Wiley, 158-160 and 164-168, 1951.

[20] A. Odlyzko, Discrete Logarithms: The past and the future, Designs, Codes and
Cryptography, 19 (2000), 129-145.

[21] S. C. Pohlig, M. E. Hellman, An Improved Algorithm for Computing Logarithms
over GF(p) and its Cryptographic Significance, IEEE Trans. on IT, 24 (1978),
106-110.

[22] J. M. Pollard, Monte Carlo methods for index computation (mod p), Math. Comp.,
32 (1978), 918-924.

[23] K. Rubin and A. Silverberg, Algebraic tori in cryptography, to appear in High
Primes and Misdemeanours: lectures in honour of the 60th birthday of Hugh
Cowie Williams, Fields Institute Communications Series, American Mathematical
Society, Providence, RI (2004).

[24] K. Rubin and A. Silverberg, Torus-Based Cryptography, In Advances of Cryptol-
ogy – Crypto 2003, LNCS 2729, Springer, 349-365.

[25] K. Rubin and A. Silverberg, Using primitive subgroups to do more with fewer bits,
In Algorithmic Number Theory (ANTS VI), Lecture Notes in Computer Science
3076 (2004), Springer, 18-41.

[26] C. P. Schnorr, Efficient Signature Generation by Smart Cards, Journal of Cryp-
tology, 4 (1991), 161-174.

[27] O. Schirokauer, Discrete Logarithms and Local Units, Phil. Trans. R. Soc. Lond.
A 345, 1993, 409-423.

[28] O. Schirokauer, D. Weber, Th. F. Denny, Discrete Logarithms: the effectiveness
of the index calculus method, Proceedings ANTS II, LNCS 1122, Springer-Verlag
1996.

[29] M. Stam, Speeding up Subgroup Cryptosystems, PhD Thesis, Eindhoven University
of Technology, 2003.

[30] V. Voskresenskii, Algebraic Groups and Their Birational Invariants, Translations
of Mathematical Monographs 179, American Mathematical Society, Providence,
RI, 1998.

[31] A. Weimerskirch and C. Paar, Generalizations of the Karatsuba Algorithm for
Efficient Implementations, URL:
http://www.crypto.ruhr-uni-bochum.de/Publikationen/, 2003.

