
On Provably Secure Time-Stamping Schemes

Ahto Buldas1,2,3,? and Märt Saarepera4

1 University of Tartu, Liivi 2, 50409 Tartu, Estonia. Ahto.Buldas@ut.ee
2 Cybernetica, Akadeemia tee 21, 12618 Tallinn, Estonia.

3 Tallinn University of Technology, Raja 15, 12618 Tallinn, Estonia.
4 Independent researcher. marts@neoteny.com

Abstract. It is almost a folklore-knowledge that hash-based time-stam-
ping schemes are secure if the underlying hash function is collision-

resistant but still no rigorous proofs have been published. We try to
establish such proof and conclude that the existing security conditions
are improper because they ignore precomputations by adversaries. After
analyzing a simplistic patent filing scenario, we suggest a new security
condition for time-stamping schemes that leads to a new security prop-
erty of hash functions – chain-resistance. We observe that if the variety
of possible shapes of hash-chains is polynomial (and the verification pro-
cedure is suitably improved), then the time-stamping scheme becomes
provably secure, assuming that the underlying hash function is collision-
resistant. Finally, we show that in some sense, the restrictions in the
security definition are necessary – conventional black-box techniques are
unable to prove that chain-resistance follows from collision-resistance.

1 Introduction

The main goal of digital time-stamping is to prove that electronic data-items
were created or registered at a certain time. A simple method is to use a trusted
service (with a precise clock) that provides data items with current time value
and digitally signs them. The assumption of unconditionally trusted service hides
a risk of possible collusions that may not be acceptable in applications. The risks
are especially high in centralized applications like electronic patent- or tax filing
as well as in electronic voting, where the possible collusions are related to direct
monetary (or even political) interests.

First attempts to eliminate trusted services from time-stamping schemes were
made in [4], where cryptographic hash functions and publishing were used to
replace electronic signatures. To date, several improvements of hash-based time-
stamping schemes have been presented [1–3]. Such schemes have been used in
business applications and are even included in international standards [9].

The combined monetary value of electronic content (insured, in particular,
with time stamps) increases over time and so does the risk associated with it. A
decision of a content manager to start using a certain time-stamping service for
protecting electronic records must involve the assessment of long-term security

? Supported by Estonian SF grant no. 5113

492

risks. Desirably, such assessments should be based on analytical arguments. As
an example of such argument, modern cryptography can prove that there are
no structural flaws (or principal design errors) in security solutions, assuming
that their basic building blocks (such as hash functions) are secure. The use of
provably secure time-stamping schemes can avoid many practical risks.

Regardless of the growing importance of hash-based time-stamping schemes,
their security is only superficially studied in scientific literature. In [5], a formal
security condition for hash-based time-stamping schemes was presented and an
informal sketch of a security proof was outlined. Though no rigorous proofs were
presented it has become almost a public myth that the security of hash-based
time-stamping schemes can be reduced to the collision-resistance of underlying
hash functions. Thus far, no more related studies have been published.

In this paper, we revisit the security analysis of hash-based time-stamping
schemes [5]. We observe that the formal security condition stated in [5] is un-
reachably strong because it overlooks pre-computations of the adversary.

Inspired by a simplistic patent filing scenario, we present a new security
condition for time-stamping schemes that leads to a new security condition for
hash functions – chain-resistance – necessary for the scheme [5] to be secure. We
show that additional checks in the verifying procedure render the conventional
time-stamping schemes provably secure in the new sense, based on collision-
resistance of the hash function. The additions concern an examination of whether
the shape of the hash-chain included into a time stamp belongs to a certain
(polynomial) set of templates. This may seem a minor detail but as no currently
used time-stamping schemes implement it, none of them are provably secure.

We further examine the necessity of said additional checks in the verification
procedure and prove that without these checks it is probably very hard (if not
impossible) to prove the security of the schemes of type [5] based on collision-
resistance alone. We present an oracle relative to which there exist collision-
resistant hash functions which are not chain-resistant. Almost all security proofs
relativize – are valid relative to any oracle. Therefore, any security proof of the
unmodified schemes should use either non-standard (non-relativizing) proof tech-
niques or stronger/incomparable security assumptions on the underlying hash
function. For example, it is easy to prove that entirely random hash functions
(random oracles) are chain-resistant. In practice, it is often assumed that SHA-1
and other hash functions behave like random oracles which means that in such
setting, their use in practical time-stamping schemes is justified. At the same
time, it is still possible that a time-stamping scheme that uses SHA-1 is totally
insecure while no collisions are found for SHA-1.

2 Notation and Definitions

By x ← D we mean that x is chosen randomly according to a distribution D.
If A is a probabilistic function or a Turing machine, then x← A(y) means that
x is chosen according to the output distribution of A on an input y. By Un we
denote the uniform distribution on {0, 1}n. If D1, . . . ,Dm are distributions and

493

F (x1, . . . , xm) is a predicate, then Pr[x1 ← D1, . . . , xm ← Dm: F (x1, . . . , xm)]
denotes the probability that F (x1, . . . , xm) is true after the ordered assignment of
x1, . . . , xm. We write f(k) = O(g(k)) if there are c, k0 ∈ R, so that f(k) ≤ cg(k)
(∀k > k0). We write f(k) = ω(g(k)) if g(k) = O(f(k)) but f(k) 6= O(g(k)).
A function f : N → R is negligible if f(k) = k−ω(1). A Turing machine M is
polynomial-time (poly-time) if it runs in time kO(1), where k denotes the input
size. Let F∗ be the class of all functions f : {0, 1}∗→ {0, 1}∗. Let FP be the class of
all functions f ∈ F∗ computable by poly-time Turing machines M. A distribution
D on {0, 1}∗ is polynomially sampleable if it is an output distribution of a poly-
time Turing machine.

By an oracle Turing machine we mean an incompletely specified Turing ma-
chine S that comprises calls to oracles. The description can be completed by
defining the oracle as a function O ∈ F∗. In this case, the machine is denoted
by SO. An oracle O is not necessarily computable but may still have assigned
a conditional (worst-case) running time t(k), which may or may not reflect the
actual amount of computations performed by O internally. Running time of SO

comprises the conditional worst-case running time t(k) of oracle calls – each call
takes t(k) steps. An oracle O is poly-time if t(k) = kO(1). We say that S is a
poly-time oracle machine, if the running time of SO is polynomial, whenever O
is poly-time. Let FP

• denote the class of all poly-time oracle machines. Let FP
O

be the class of all functions computable by poly-time oracle machines SO.

A primitive P is a class of (not necessarily computable by ordinary Turing
machines) functions intended to perform a security related task (e.g. data confi-
dentiality, integrity etc.). Each primitive P is characterized by the success δ(k)
of an adversary A. For example, a collision-resistant hash function is a function
family {hk}k∈N, where hk: {0, 1}2k → {0, 1}k and

δ(k) = Pr[(x, x′)← A(1k): x 6= x′, hk(x) = hk(x′)] .

In more rigorous definitions [12], hk is randomly chosen from a set F ⊆ F∗.
Otherwise A may output a fixed collision. We write h(x) instead of hk(x). Some-
times, we need hash functions H = {Hk}k∈N of type Hk: {0, 1}∗ → {0, 1}k. An
adversary A ∈ F∗ breaks f ∈ P (and write A breaks

P
f) if A has non-negligible

success. An instance f ∈ P is secure if no A ∈ FP breaks f . An instance f ∈ P

is secure relative to an oracle O if no A ∈ FP
O breaks f .

3 Time-Stamping Schemes and Their Security

3.1 The Scheme of Haber and Stornetta

A time-stamping scheme [5] involves three parties: a Client C, a Server S, and
a Repository R; and two procedures for time-stamping a data item and for
verifying a time stamp (Fig. 1). It is assumed that R is write-only and receives
items from S in an authenticated manner.

494

Time-stamping procedure is divided into rounds of equal duration. During each
round, S receives requests from Clients. For simplicity, all requests x1, . . . , xm

are assumed to be bit-strings xi ∈ {0, 1}k. If the t-th round is over, S computes a
compound hash rt ∈ {0, 1}k by using a function h: {0, 1}2k → {0, 1}k and a tree-
shaped hashing scheme rt = Gh(x1, . . . , xm). For example, if the requests of the
t-th round are x1, x2, x3, x4, then S may compute rt = h(x1, h(h(x2, x3), x4)).
Next, S sends rt to R (in a secure way), where it is stored as a pair (t, rt).

Server

x x2 x3

z

z

x4 x5 x6 x7 x8 x9

z

z

rt

1

1

3

2 4
h(x ,x)1 2

Repository

rt

Client

x1

Fig. 1. The scheme of Haber and Stornetta (a simplified model).

After that, S issues for each request x a time-certificate c = (x, t, n, z), where
t is current time value, n is an identifier n = n1n2 . . . n` ∈ {0, 1}`, and z is a

sequence z = (z1, z2, . . . , z`) ∈
(

{0, 1}k
)`

. In the scheme of Fig. 1, the time-
certificate for x1 is (x1, t, 0000, (z1, z2, z3, z4)), where z1 = x2, z2 = h(x3, x4),
z3 = h(h(x5, x6), x7), and z4 = h(x8, x9).

Verification procedure is performed by C as follows. To verify (x, t, n, z), C
computes a hash value r′t by using h and a Fh(x; n; z), which computes a sequence

y = (y0, y1, . . . , y`) ∈
(

{0, 1}k
)`

inductively, so that y0 := x, and

yi :=

{

h(zi, yi−1) if ni = 1
h(yi−1, zi) if ni = 0

(1)

for i > 0, and outputs r′t = Fh(x; n; z) := y`. Second, C sends a query t to R

and obtains rt as a reply. Finally, C checks whether r′t = rt. Note that n and z
can be equal to empty string bc, in which case Fh(x; n; z) = x.

Security condition [5] states that the time-stamping scheme above is secure
against AHS ∈ FP that sends requests x1, . . . , xq to S and queries to R. As a
result, AHS outputs a time-certificate (x, t, n, z), where x ∈ {0, 1}k, n ∈ {0, 1}`,
and z ∈ ({0, 1}k)`. The attack is considered successful, if x 6∈ {x1, . . . , xq} and
Fh(x; n; z) = rt, where rt is assumed to be the correct response of R to query t.

495

3.2 Analysis of the Security Condition

The scheme described above is insecure against the following behavior of AHS:

– AHS chooses x and z0 uniformly at random.
– AHS sends x0 = h(x, z0) to S and obtains a time-certificate (x0, t, n, z).
– AHS computes a faked time-certificate (x, t, 0‖n, z0‖z),

where ‖ denotes concatenation. By definition, Fh(x; 0‖n; z0‖z) = Fh(x0; n; z) =
rt. Hence, the attack is successful whenever x 6= x0 because x0 was the only
request made by AHS. If h has reasonable security properties then Pr[x 6= x0] is
non-negligible. 5 This “attack” shows that the formal security definition does not
follow the intuition behind time-stamping, because it overlooks the possibility
of precomputations. As a success criterion, the condition x 6∈ {x1, . . . , xq} is
improper because the notion of already time-stamped items is not sufficiently
precise.

4 New Security Condition and Improved Schemes

4.1 New Security Condition

The new security condition is inspired by the following simplistic attack-scenario,
where Bob, a criminal who steals inventions, co-operates with a server S:

– Bob precomputes (not necessarily with Gh) some hash values r1, . . . , rs that
may help him to back-date documents in the future. His collaborator S sends
the hash values to R, where they are stored as pairs (t1, r1), . . . , (ts, rs).

– Alice, an inventor, creates a description XA ∈ {0, 1}∗ of her invention and
requests a time certificate for xA = H(XA), where H: {0, 1}∗ → {0, 1}k is a
(collision-resistant) hash function.

– Some time later, the invention is disclosed to the public and Bob tries to
steal the rights to Alice’s invention. He creates a slightly modified version
XB of XA (at least the author’s name should be replaced), and tries to
back-date it relative to XA. Bob is successful, if he finds n and z, so that
Fh(xB ; n; z) ∈ {r1, . . . , rs}. Bob can use (xB , t, n, z) to claim his rights to
the invention.

In order to formalize such attack scenario, a two-staged adversary A = (A1, A2)
is needed. The first stage A1 precomputes a set R = {r1, . . . , rs} after which
the second stage A2 obtains a new document X ∈ {0, 1}∗ (“a document, un-
known to mankind before”) and tries to back-date it by finding n and z, so that

5 If h is collision-resistant, Pr[x = x0] = Pr[x, z0 ← Uk: h(x, z0) = z] = δ, and px =
Pr[x′

← Uk: h(x, x′) = x], then the collision-finding adversary (xx′, xx′′)← A(1k)
(where x, x′, x′′

← Uk are independent random bit-strings) has non-negligible suc-
cess. Indeed, the probability δ′ that A outputs a collision for h (possibly, with x′ =

x′′) is δ′ ≥
P

x
Pr[x] · p2

x ≥
`
P

x
Pr[x] · px

´

2
= δ2, where Pr[x] = Pr[X ← Uk: X = x].

Hence, the overall success of A is at least δ2 − 2−k.

496

Fh(H(X); n; z) ∈ R. The term new document is hard to define formally. As we
saw, the condition H(X) 6∈ {x1, . . . , xq} does not guarantee that X is really
new. We assume that X is chosen according to a distribution D on {0, 1}∗ that
is somewhat unpredictable to A. The success of A is defined as follows:

δ(k) = Pr[(R, a)←A1(1
k), X←D, (n, z)←A2(X, a): Fh(H(X); n; z)∈R] , (2)

where a denotes a state information sent from A1 to A2. Note that (2) can be
simplified by assuming | R |= 1, because this reduces δ(k) only polynomially.

Necessary conditions for D. Intuitively, the prediction of D must require super-
polynomial time-success ratio, i.e. every A with running time T (k) and success

δ(k) = Pr[R ← A(1k), x ← D: x ∈ R] has time-success ratio T (k)
δ(k) = kω(1). In

case D is polynomially sampleable, an equivalent assumption is that

PC(D) = Pr[y ← D, x← D: x = y] = k−ω(1), (3)

where PC(D) is the collision probability of D. Indeed, if for a poly-time A we
have Pr[R←A(1k), x←D: x∈R] = T (k) · k−O(1), then there is R0⊆{0, 1}k, so
that |R0 |= kO(1) and Pr[x←D: x∈R0] = k−O(1). Thus,

∃r∈R0: p = Pr[x←D: x = r] = |R0 |
−1 ·k−O(1) = k−O(1)

and hence PC(D) ≥ p2 = k−O(1). If, in turn, PC(D) = k−O(1), then every A with
output distribution D has success δ(k) = k−O(1).

The condition (3) is equivalent to the requirement that D has Rényi entropy
H2(D) = − log2 PC(D) = ω(log k), and is in fact necessary for a time-stamping
scheme to be secure relative to D. Indeed, if A1 is defined to output y ← D and
(bc, bc)← A2(x, a) (for any x and a), then (A1, A2) has success PC(D).

Chain-resistant hash functions. The security definition (2) implies that h must
satisfy the following new security condition for hash functions:

Definition 1. A hash function h is chain resistant (relative to a distribution
Dk on {0, 1}k), if for every adversary A = (A1, A2) ∈ FP:

Pr[(R, a)←A1(1
k), x←Dk , (n, z)←A2(x, a): Fh(x; n; z)∈R] = k−ω(1) . (4)

It is easy to show that if a time-stamping scheme is secure relative to D, then
the hash function h is chain-resistant relative to H(D).

4.2 Improved Verification Procedure

We will prove later that the conventional black-box techniques are insufficient to
imply chain-resistance from collision-resistance, and hence, also the security of
time-stamping schemes in the sense of (2) cannot be proved under the collision-
resistance condition alone. We modify the verification procedure in a way that

497

prevents the adversary from finding chains for h without finding collisions as by-
products. We restrict the set N ⊂ {0, 1}∗ of identifiers (possible shapes of hash
chains) that are considered valid by the verification procedure and show that if
|N|= kO(1), then the collision-resistance of h is sufficient for a time-stamping
scheme to be secure. The modified verification procedure is defined as follows:

New verification procedure. To verify a time-certificate (x, t, n, z) for X ∈ {0, 1}∗,
C checks if x = H(X), computes a hash value r′t using Fh(x; n; z) defined by (1),
sends a query t to R to obtain rt, and checks if r′t = rt and n ∈ N.

To be usable in practical time-stamping, the condition n ∈ N must be efficiently
verifiable. One way to achieve this is to set N = {0, 1}k0 , where k0 is constant,
which means that n ∈ N is equivalent to ‖n‖ = k0 and is naturally efficiently
computable. The set N can be viewed as a template of a hashing scheme that is
published by the service provider before the service starts. As we consider service
providers as possible adversaries, N is created by an adversary. The restrictions
above lead us to a weaker condition with the following notion of success:

Pr[(R,N,a)←A1(1
k), X←D, (n, z)←A2(X, a): Fh(H(X); n; z)∈R, n∈N] . (5)

4.3 Proof of Security

We prove that the security of the modified hash-based time-stamping schemes
follows from the collision-resistance of h and H.

Definition 2. Let y = (y0, y1, . . . , y`) and y′ = (y′
0, y

′
1, . . . , y

′
`′) be two sequen-

ces produced by Fh(x; n; z) and Fh(x′; n′; z′) respectively, by using (1). Let z =
(z1, . . . , z`), z′ = (z′1, . . . , z

′
`′), n = n1 . . . n`, and n′ = n′

1 . . . n′
`′ . We say that

sequences y and y′ comprise a collision, if for some indices i ∈ {1, . . . , `} and
j ∈ {1, . . . , `′}, h(a, b) = yi = y′

j = h(a′, b′), but (a, b) 6= (a′, b′), where

(a, b) =

{

(zi, yi−1) if ni = 1

(yi−1, zi) if ni = 0
and (a′, b′) =

{

(z′j , y
′
j−1) if n′

j = 1

(y′
j−1, z

′
j) if n′

j = 0 .

Lemma 1. If x 6= x′ and Fh(x; n; z) = Fh(x′; n; z′), then the sequences y and
y′ computed internally by Fh(x; n; z) and Fh(x′; n; z′) comprise a collision.

Proof. Let ` be the bit-length of n. As x = y0 6= y′
0 = x′ and y` = Fh(x; n; z) =

Fh(x′; n; z′) = y′
`, there exists i ∈ {1, . . . , `}, such that yi = y′

i and yi−1 6= y′
i−1.

Hence, either h(zi, yi−1) = h(z′i, y
′
i−1) or h(yi−1, zi) = h(y′

i−1, z
′
i). In both cases,

we have a collision. ut

Theorem 1. If h and H are collision-resistant, then the time-stamping scheme
is secure in the sense of (5) relative to every polynomially sampleable D with
Rényi entropy H2(D) = ω(log k).

Proof. Let A = (A1, A2) be an adversary with running time T (k) that breaks
the time-stamping scheme in the sense of (5) with success δ(k). Assuming the

498

collision-resistance of H, we construct a collision-finding adversary A′ for h with

running time T ′(k) = kO(1)T (k) and with success δ′(k) ≥ δ2(k)
T 2(k) − k−ω(1), and

hence, T ′(k)
δ′(k) = kO(1)

(

T (k)
δ(k)

)2

. The adversary A′:

– calls A1 and obtains R = {r1, . . . , rm}, N ⊂ {0, 1}∗, and a ∈ {0, 1}∗;
– generates two independent random strings X, X ′ ← D and calls A2 twice to

obtain (n, z)← A2(X, a) and (n′, z′)← A2(X
′, a);

– simulates Fh(H(X); n; z) and Fh(H(X ′); n′; z′).

If Fh(H(X); n; z) = Fh(H(X ′); n′; z′), H(X) 6= H(X ′), and n = n′, then by
Lemma 1 above, A′ is able to find a collision for h. By Lemma 2 below, the

probability that all these conditions hold is at least δ2(k)
T 2(k) − 2−H2(H(D)).

It remains to show that 2−H2(H(D)) = PC(H(D)) = k−ω(1). Let C be a
collision-finding adversary that on input 1k generates X ← D and X ′ ← D inde-
pendently at random and outputs (X, X ′). Let E1 denote the event that X = X ′.
Hence, Pr[E1] = PC(D) = k−ω(1). Let E2 be the event that H(X) = H(X ′). As H
is collision-resistant, the success of C is Pr[E2\E1] = k−ω(1) and due to E1 ⊆ E2,
we have PC(H(D)) = Pr[E2] = Pr[E1]+Pr[E2\E1] = k−ω(1)+k−ω(1) = k−ω(1). ut

Lemma 2. The success of A′ is at least δ2(k)
T 2(k) − 2−H2(H(D)). (See Appendix)

Remark. Using the improved verification procedure, it is possible to achieve the
original security condition of Haber and Stornetta, assuming that the server S
is honest and the set N is a prefix-free code with a polynomial number of words.

5 Necessity of the Improved Verification

In this section, we prove that the conventional proof techniques used in theo-
retical cryptography – black-box reductions and semi black-box reductions – are
unable to prove that collision-resistance implies chain-resistance. Hence, in some
sense the modifications in time-stamping schemes are necessary for establishing
their provable security. For the self-containedness of this paper, we introduce
some basic results about oracle separation, which have been used to prove sev-
eral ”impossibilities” in theoretical cryptography [6–8, 13].

5.1 Cryptographic Reductions and Oracle Separation

Almost all known constructions of a new primitive P2 from another P1 belong
to one of the following two types:

Definition 3. A semi black-box reduction from P1 to P2 is a machine P ∈
FP

•, so that (1) P f ∈ P2 (∀f ∈ P1); and (2) for any A2 ∈ FP
• there exists

A1 ∈ FP
•, so that A

f
2 breaks

P2

P f implies A
f
1 breaks

P1

f (∀f ∈ P1).

499

Definition 4. A (fully) black-box reduction from P1 to P2 is a pair of ma-
chines P, S ∈ FP

•, so that (1) P f ∈ P2 (∀f ∈ P1); and (2) A breaks
P2

P f

implies SA,f breaks
P1

f (∀f ∈ P1, ∀A ∈ F∗).

Note that the universal quantifiers apply over F∗ instead of FP. The reason is
that uniform reductions stay valid if the quantifiers’ range is extended from FP

to F∗ and this is exactly what expresses the black-box nature of f and A in these
reductions. We will use the following folklore lemmas about oracle separation.

Lemma 3. (A) If there is f ∈ P1∩FP
O secure relative to O but no g ∈ P2∩FP

O

is secure relative to O, then there exist no (fully) black-box reductions from P1

to P2. (B) If in addition, O = πf (equality of functions) for a π ∈ FP
•, then

there exist no semi black-box reductions from P1 to P2.

Proof. (A) Suppose (S, P) is a black-box reduction from P1 to P2. According
to the assumptions, g = P f ∈ P2 ∩ FP

O and g is insecure relative to O. Hence,
A breaks

P2

g = P f for some A ∈ FP
O ⊂ F∗. It follows that Sf,A breaks

P1

f ,

contradicting Sf,A ∈ FP
O. (B) Suppose P is a semi black-box reduction from P1

to P2. Let f ∈ P1 ∩FP
O be a secure (relative to O) instance of P1. Let O = πf

for some π ∈ FP
•. According to the assumptions, g = P f ∈ P2 ∩ FP

O and g is
insecure relative to O. Hence, A breaks

P2

g = P f for some A ∈ FP
O. Therefore,

taking A2 = Aπ ∈ FP
• we have that A = AO = Aπf

= A
f
2 breaks

P2

P f . Hence,

there exists A1 ∈ FP
•, so that A

f
1 breaks

P1

f , which contradicts A
f
1 ∈ FP

O. ut

Definition 5. A (semi/fully) black-box reduction is said to be a self reduction
if P is a trivial machine, i.e. P f = f (for every f).

Lemma 4. (A) If relative to O there is a secure instance of f ∈ P1, which is
also an insecure instance of P2, then there exist no (fully) black-box self reduc-
tions from P1 to P2. (B) If in addition, O = πf (equality of functions) for a
π ∈ FP

•, then there exist no semi black-box self reductions from P1 to P2.

The proof of Lemma 4 is completely analogous to the proof of Lemma 3.

5.2 Non-Existence of Fully Black-Box Self Reductions

We define an oracle O, relative to which there exist a collision-resistant hash
function H : {0, 1}2k → {0, 1}k (chosen randomly from a set F of functions) that
is not chain-resistant. The oracle O responds to the following queries:

– H-queries that given as input (x1, x2) ∈ {0, 1}2k return H(x1, x2) ∈ {0, 1}k.
– A1-queries that given as input 1k return the root rk of a Merkle tree [11]

Mk, the leaves of which are all k-bit strings in lexicographic order (Fig. 2).
– A2-queries that given as input a bit string x ∈ {0, 1}k find z ∈ ({0, 1}k)k,

based on Mk, so that FH(x; x; z) = rk and output a pair (x, z).

500

000 001 010 011 100 101 110 111

000,001)H(

3r

H(010,)011

Leaf sibling pair

Second layer pair

Third layer pair

Fig. 2. Computations performed by A1(1
k) in case k = 3.

We assume that O-queries are of unitary cost and hence H is not chain-resistant
relative to O. We define F so that O is insufficient for finding collisions for H .

Let F be the set of all functions H , such that for all k: (1) all non-leaf vertices
in Mk contain different elements of {0, 1}k and (2) all sibling-pairs (including
the leaves) are different. Hence, the argument-value pairs in Mk do not comprise
collisions and A1- and A2-queries do not help in finding collisions for H .

Lemma 5. Every collision finding adversary A
O for H that makes p(k) = kO(1)

oracle calls, has success probability k−ω(1).

Proof. Let S ⊆ {0, 1}2k denote the set of all pairs in the tree Mk. There are
exactly 2k−1 of such pairs. Hence, there are 22k−2k +1 pairs in the complement
S = {0, 1}2k\S. The restriction of H to S behaves like a uniformly random
function while the restriction of H to S is injective. Hence, if AO finds a collision
(p1, p2) for H , then one or both of the pairs p1, p2 belong to S.

Let K ⊂ {0, 1}2k be the set of all pairs for which the value of H is released.

If p1, p2 ∈ S, then the probability of finding collisions does not exceed |K∩S|2

2k+1 ≤
p2(k)
2k+1 = k−ω(1), because the values of H|S can only be obtained via H-queries.

If p1 ∈ S and p2 ∈ S, then the probability of finding a collision does not

exceed |K∩S|·|K∩S|
2k ≤ mk·(p(k)−m)

2k , where m is the number of A2-queries, each of
which releases no more than k values of H . The maximum of the last function
is achieved if m ≈ p(k)

2 , and hence the success is k·p(k)2

2k+2 = k−ω(1). ut

Corollary 1. Fully black-box self reductions cannot prove that collision-resis-
tance of h implies chain-resistance of h.

5.3 Non-Existence of Semi Black-Box Self Reductions

The oracle O defined above does not yet prove the non-existence of semi-black
box self reductions because H does not provide full access to O, i.e. O 6= πH .
Hence, we have to ”embed” O into H . We define a new hash function (oracle)
O: {0, 1}2n → {0, 1}n recursively for all n > 0, assuming that the values of it are
already defined for smaller indices.

501

Let Mn be a complete Merkle tree, the leaves of which are all n-bit strings
in the lexicographic order. Each internal vertex v in Mn is computed as a hash
On(vL, vR) of the child vertices vL, vR of v. Note that as we have not yet defined
On: {0, 1}2n → {0, 1}n, the tree Mn is not yet defined either. We divide the
domain {0, 1}2n = {(y1, y2): y1, y2 ∈ {0, 1}n}) into two non-intersecting parts:

– The set S of all sibling pairs in Mn that occur as inputs to O during the
computation of Mn. It contains leaf-sibling pairs of the form (y0, y1), where
y ∈ {0, 1}n−1, second-layer pairs of the form (O(t00, t01),O(t10, t11)), where
t ∈ {0, 1}n−2 etc. (Fig. 2)

– The set P of all other pairs.

Hence, to define On, we have to define two functions: OS
n : S → {0, 1}n and

OP
n : P → {0, 1}n. The function OS

n is defined in a deterministic way and is
injective (no collisions can be found inside S), while OP

n is a random oracle
(obviously collision-resistant!). In addition, if n = 4k, then we embed a chain-
finding adversary for Ok into OS

n , which means that O can find chains for itself
and is thereby not chain-resistant.

First of all, we define (for n = 4k) an oracle An: {0, 1}2n → {0, 1}n that
can be used to find chains for Ok. The oracle An allows input pairs of the form
(02kx0k−m1m, 0k1kx0k−m1m), where x ∈ {0, 1}k and m ∈ {0, . . . , k}. The set D
of all such pairs has exactly (k +1)2k elements. Let rk be the root of Mk (which
has been already defined). On input of such form, the oracle An finds (based on
Mk) z ∈ ({0, 1}k)k, such that FO(x; x; z) = rk . We define An as follows:

An(02kx0
k−m

1
m, 0k

1
kx0

k−m
1

m) =

{

1kx0k−m1mx if m = 0 ,
1kx0k−m1mzm if m ∈ {1, . . . , k} .

Obviously, An is injective and its values never coincide with the allowed inputs.
Now we are ready to define OS

n . We begin with the case n 6= 4k, which is
considerably easier, because there is no need to embed An into OS

n . To define OS
n

as an injection, it is sufficient to assign different n-bit strings to all 2n−1 internal
vertices of Mn. However, care must be taken that no sibling pairs (including the
leaf sibling pairs) coincide with other pairs, because otherwise we may have a
contradictory definition – different values are assigned to the same input pair.
Such contraditions can be easily avoided if, as opposed to the leaf sibling pairs,
the elements of internal sibling pairs are in the decreasing order.

If n = 4k, then we have to embed An as a function into OS
n . There are

2n−2 = 24k−2 second layer pairs in Mn and (k+1)2k arguments of An (elements
of D). As (k +1)2k ≤ 24k−2 for any k > 0, there is an injection e: D → {0, 1}n−2

and we can embed D into the set of second layer pairs of Mn, so that for each
x ∈ {0, 1}k and m ∈ {0, . . . , k} there is t = e(x, m) ∈ {0, 1}n−2, such that
O(t00, t01) = 02kx0k−m1m and O(t10, t11) = 0k1kx0k−m1m. Now we apply
An to the second layer pairs in e(D) and store the values into Mn as third
layer vertices. Note that if k > 1, then there are still some second layer pairs
for which the value of O has not yet been defined. Note also that all non-leaf
vertices defined thus far are different and hence to conclude the definition of OS

n ,

502

we define (in arbitrary way) the values of other vertices (not yet defined) so that
all non-leaf vertices are different and hence OS

n is injective.
As said above, for every n we choose OP

n uniformly at random from the set
of all functions P → {0, 1}n. Now we can do it because P is fixed after the
procedure above. Like in Lemma 5, we can show in a similar fashion that O is
collision resistant but not chain-resistant, because O4k can be used to find chains
for Ok (for any k > 0) and therefore also a time-stamping scheme that uses O
as a hash function (and (1) for verification) is insecure.

Corollary 2. Semi black-box self reductions cannot prove that collision-resis-
tance of h implies chain-resistance of h.

6 Discussion and Open Problems

More Efficient Reductions. The reduction established in the proof of Theo-
rem 1 does not give sufficient security guarantees for practical time-stamping
schemes. To show this, assume that k = 160 (output size of SHA-1) and that
there is an adversary A = (A1, A2) with running time T (k) = 216 and with
success probability δ(k) = 2−16 ≈ 1/65000. Hence, the time-success ratio is
T (k)/δ(k) = 232. If the time unit denotes the time elapsed for one hash oper-
ation and a computer performs 10,000 hash operations per second, then T (k)
is about six seconds. For practical time-stamping schemes, an attack with such
ratio is considered very serious. Now let us examine the consequences of The-
orem 1. Assume that the collision-finding adversary A′ is implemented very ef-
ficiently, so that T ′(k) = 2T (k). By Lemma 2, the time-success ratio of A′ is
T ′(k)
δ′(k) ≈

2×T (k)
δ2(k)

T2(k)
−2H2(D)

≥ 2T 3(k)
δ2(k) = 281, which is close to the birthday barrier and

says nothing essential about security – any 160-bit hash function can be broken
with that amount (281) of computational resources. Hence, even the highest se-
curity of h does not exclude the attacks with ratio 232. The reduction gives prac-
tical security guarantees only in case k > 400, which is much larger than used in
the existing schemes. Therefore, it would be very desirable to find more efficient

reductions, say the linear-preserving ones [10], in which T ′(k)
δ′(k) = kO(1) · T (k)

δ(k) .

Constructions of Chain-Resistant Hash Functions. We leave open the exis-
tence of efficient constructions of chain-resistant hash functions, possibly as
atomic primitives. While we proved that collision-resistance does not imply
chain-resistance, it is still unknown whether there exist more general black-box
constructions (g = P h) of chain-resistant hash functions (g) based on a collision-
resistant one (h). In case such constructions exist, it would be sufficient to just
replace the hash functions in the existing schemes.

Another interesting research topic is attempts at the opposite: to prove that
there exist no general black-box constructions of chain-resistant hash-functions
based on collision-resistant ones. It would be sufficient to find an oracleO relative
to which there exist collision-resistant hash functions while no function is chain-
resistant. Inspired by the work of Simon [13] it may seem tempting to define an

503

oracle O capable of finding chains to any computable f : {0, 1}2k → {0, 1}k, the
description of which is given to O as an argument. However, there seem to be no
obvious ways of doing this. For example, if O is able to compute the root of the
complete Merkle tree M f

k for any (computable) hash function f , then one can
show that such O can also be “abused” to find collisions for any hash function.

At the same time, it seems very likely that the oracle used by Simon [13] (to
prove that collision-resistant hash functions are not black-box constructible from
one-way functions) is also sufficient for showing that collision-resistant hash-
functions cannot be constructed from the chain-resistant ones.

Stronger Security Conditions. The chain-resistance condition is still too sim-
plistic, considering some scenarios that are very likely to happen in practical
implementations of time-stamping schemes. Instead of having unconditional un-
certainty about x, it is possible that A1 has some partial knowledge y = f(x)
about x (e.g. ciphertexts or signatures). This suggests a stronger condition:

Definition 6. A function h is universally chain-resistant if for any (proba-
bilistic) function f and for any poly-time adversary A = (A1, A2) with success
δ = Pr[x← D, (R, a)← A1(f(x)), (n, z)← A2(x, a): Fh(x; n; z) ∈ R] = k−O(1)

there is a poly-time A′ with success Pr[x← D, x′ ← A′(f(x)): x′ = x] = k−O(1).

Loosely speaking, if x can be time-stamped based on y = f(x), then x can be
efficiently computed based on y, and hence the time stamp is “legitimate”. This
condition implies chain-resistance if we define f(x) ≡ 1k.

Though the universal chain resistance condition seems natural, it is probably
not achievable. To see this, assume that h is one-way even if one of the arguments
is revealed to the adversary, i.e. every A′ ∈ FP has success

δ′(k) = Pr[(x, z)← U2k, x′ ← A
′(h(x, z), z): x = x′] = k−ω(1) . (6)

This assumption is intuitively assumed to hold in the case of conventional hash
functions. Let f be a probabilistic function such that (h(x, z), z)← f(x), where
z ← Uk; and let A = (A1, A2) be defined as follows: ({y}, z) ← A1(y, z), and
(0, z) ← A2(x, z). Clearly, the success of A (in the sense of universal chain re-
sistance) is δ = 1, while no adversary A′ can efficiently invert f . Therefore, no
functions that are one-way in the sense of (6) are universally chain resistant,
which means that this is a very strong security requirement. Even if h is de-
fined as a random oracle, it is still insufficient for the universal chain-resistance.
Nothing changes if the set of valid identifiers is polynomially restricted.

Acknowledgements

The authors are grateful to Matthew Franklin, to Peeter Laud, to Berry Schoen-
makers, and to anonymous referees for their valuable remarks and suggestions
that helped to improve the quality and readability of the paper, as well as to
Estonian Science Foundation for supporting the study.

504

References

1. Dave Bayer, Stuart Haber, and W.-Scott Stornetta. Improving the efficiency and
reliability of digital time-stamping. In Sequences II: Methods in Communication,

Security, and Computer Science, pp.329-334, Springer-Verlag, New York 1993.
2. Josh Benaloh and Michael de Mare. Efficient broadcast time-stamping. Tech. report

1, Clarkson Univ. Dep. of Mathematics and Computer Science, August 1991.
3. Ahto Buldas, Peeter Laud, Helger Lipmaa, and Jan Villemson. Time-Stamping

with Binary Linking Schemes. In Advances in Cryptology – CRYPTO’98, LNCS

1462, pp. 486-501, 1998.
4. Stuart Haber and W.-Scott Stornetta. How to time-stamp a digital document.

Journal of Cryptology, Vol. 3, No. 2, pp. 99-111 (1991).
5. Stuart Haber and W.-Scott Stornetta. Secure Names for Bit-Strings. In ACM Con-

ference on Computer and Communications Security, pp. 28–35, 1997.
6. Yael Gertner, Sampath Kannan, Tal Malkin, Omer Reingold, and Mahesh

Viswanathan. The relationship between public key encryption and oblivious trans-
fer. In FOCS 2000, 41st IEEE Symposium on the Foundations of Computer Sci-

ence, pp. 325–335, 2000.
7. Susan Rae Hohenberger. The Cryptographic Impact of Groups with Infeasible

Inversion. Master Thesis. Massachusetts Institute of Technology. May 2003.
8. Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of

one-way permutations. Proceedings of 21st Annual ACM Symposium on the Theory

of Computing, 1989, pp. 44 – 61.
9. ISO IEC 18014-3,Time-stamping services – Part 3: Mechanisms producing linked

tokens.
10. Michael Luby. Pseudorandomness and cryptographic applications. Princeton Uni-

versity Press, 1996.
11. Ralph C. Merkle. Protocols for public-key cryptosystems. Proceedings of the 1980

IEEE Symposium on Security and Privacy, pp.122-134, 1980.
12. Alexander Russell. Necessary and sufficient conditions for collision-free hashing.

Journal of Cryptology (1995) 8: 87–99.
13. Daniel Simon. Finding collisions on a one-way street: can secure hash functions

be based on general assumptions? In Advances in Cryptology – EUROCRYPT’98,
LNCS 1403, pp.334–345. Springer-Verlag, 1998.

A Proof of Lemma 2

Let Pr[R, N, a] = Pr[(R, N, a)← A1(1
k): R = R, N = N, a = a] and

Pr[Brk | R, N, a] = Pr[X←D, (n, z)←A2(X, a): Fh(H(X); n; z)∈R, n∈N] .

By definition, Pr[Brk |R, N, a] is the conditional success of (A1, A2), assuming
that A1 outputs (R, N, a). Thus, δ(k) =

∑

R,N,a Pr[R,N,a]·Pr[Brk |R,N,a], where

the sum is computed over all possible outputs of A1(1
k). Let

Pr[Brk(ρ,n) |R,N,a]=Pr[X←D,(n,z)←A2(X,a): Fh(H(X);n;z)=ρ∈R, n=n∈N]

be the conditional probability of success with additional condition that the iden-
tifier (output by A2) is n and the result of the hash chain is ρ ∈ R. Now assume

505

that A′ has finished and hence the following computations have been performed:

(R, N, a)← A1(1
k),

X ← D
X ′ ← D

,
(n, z)← A2(X, a)
(n′, z′)← A2(X

′, a)
,
ρ = Fh(H(X); n; z)
ρ′ = Fh(H(X ′); n′; z′) .

Let Coll denote the event that A′ finds a collision and let Coll′ denote the event
that A

′ finds a collision so that ρ = ρ′ ∈ R, n = n′. By Lemma 1, the event Coll

is a superset of Coll
′ ∩ (H(X) 6= H(X ′)). Hence, the success δ′(k) = Pr[Coll

′] of
A′ satisfies

δ′(k) ≥ Pr[Coll
′ ∩ (H(X) 6= H(X ′))] = 1− Pr[(¬Coll

′) ∪ (H(X) = H(X ′))]

≥ 1− (1− Pr[Coll
′])− Pr[H(X) = H(X ′)] = Pr[Coll

′]− PC(D) .

Therefore, it remains to estimate Pr[Coll
′]. Let Coll

′(n, ρ) denote the product
event Coll

′∩ (n = n′ = n)∩ (ρ = ρ′ = ρ). From the independence of the two runs
of A2 it follows that Pr[Coll

′(n, ρ) | R, N, a] = Pr
2[Brk(n, ρ) | R, N, a] and hence,

Pr[Coll
′ | R, N, a] =

∑

n,ρ

Pr[Coll
′(n, ρ) | R, N, a] =

∑

n,ρ

Pr
2[Brk(n, ρ) | R, N, a]

=
∑

n,ρ

Pr
2[Brk|R,N,a]·Pr

2[n,ρ|R,N,a,Brk]=Pr
2[Brk|R,N,a]·

∑

n,ρ

Pr
2[n,ρ|R,N,a,Brk]

≥ Pr
2[Brk | R, N, a] ·

1

|R| · |N|
≥ Pr

2[Brk | R, N, a] ·
1

T 2(k)
,

where the first inequality holds because
∑

n,ρ Pr[n, ρ | R, N, Brk, a] = 1 and

for any probability space X , we have
∑

x∈X

2

Pr[x] ≥ 1
|X| . The second inequality

follows from the observation that R and N are produced by the adversary and
hence their size cannot exceed the running time. Therefore,

Pr[Coll
′]=

∑

R,N,a

Pr[R,N,a]·Pr
2[Brk |R,N,a]

T 2(k)
≥

(Pr[R,N,a]·Pr[Brk |R,N,a])
2

T 2(k)
=

δ2(k)

T 2(k)
,

which follows from the Jensen inequality. ut

