
New Approaches to Password Authenticated

Key Exchange based on RSA

Muxiang Zhang

Verizon Communications Inc.
40 Sylvan Road, Waltham, MA 02451, USA

muxiang.zhang@verizon.com

Abstract. We investigate efficient protocols for password-authenticated
key exchange based on the RSA public-key cryptosystem. To date, most
of the published protocols for password-authenticated key exchange were
based on Diffie-Hellman key exchange. It seems difficult to design efficient
password-authenticated key exchange protocols using RSA and other
public-key cryptographic techniques. In fact, many of the proposed pro-
tocols for password-authenticated key exchange based on RSA have been
shown to be insecure; the only one that remains secure is the SNAPI pro-
tocol. Unfortunately, the SNAPI protocol has to use a prime public ex-
ponent e larger than the RSA modulus n. In this paper, we present a new
password-authenticated key exchange protocol, called PEKEP, which al-
lows using both large and small prime numbers as RSA public exponent.
Based on number-theoretic techniques, we show that the new protocol is
secure against the e-residue attack, a special type of off-line dictionary
attack against RSA-based password-authenticated key exchange proto-
cols. We also provide a formal security analysis of PEKEP under the
RSA assumption and the random oracle model. On the basis of PEKEP,
we present a computationally-efficient key exchange protocol to mitigate
the burden on communication entities.

1 Introduction

The design of authentication and key exchange protocol is usually based on the
assumption that entities either share or own some secret data (called keys) which
are drawn from a space so large that an adversary can not enumerate, either on-
line or off-line, all possible keys in the space. In practice, however, cryptographic
keys may often be substituted by human-memorable passwords consisting of only
six to ten characters. The consequence is the proliferation of the so-called exhaus-
tive guessing or dictionary attacks against many password-based systems [26].
Password guessing attacks have been around for so long, it seems paradoxical
that strong authentication using only small passwords would be possible. In 1992,
Bellovin and Merritt [5] showed that such paradoxical protocols did exist. They
presented a family of protocols known as Encrypted Key Exchange, or EKE. By
using a combination of symmetric and asymmetric (public-key) cryptographic
techniques, EKE provides insufficient information for an adversary to verify a

229

guessed password and thus defeats off-line dictionary attacks. Following EKE, a
number of protocols for password-based authentication and key exchange have
been proposed, e.g., [2, 6, 8, 10, 11, 13, 15–17, 21, 25]. A comprehensive list of such
protocols can be found in Jablon’s research link [14].

Password-authenticated key exchange protocols are attractive for their sim-
plicity and convenience and have received much interest in the research commu-
nity. Over the last decade, many researchers have investigated the feasibility of
implementing EKE using different public-key cryptosystems such as RSA, ElGa-
mal, and Diffie-Hellman key exchange. Nonetheless, most of the well-known and
secure variants of EKE are based on Diffie-Hellman key exchange. It seems that
EKE works well with Diffie-Hellman key exchange, but presents subtleties when
implemented with RSA and other public-key cryptosystems. In their original
paper [5], Bellovin and Merritt pointed out that the RSA-based EKE variant is
subject to a special type of dictionary attack, called e-residue attack. Based on
number-theoretic techniques, Patel [22] further investigated the security of the
RSA-based EKE variant and concluded that simple modifications of EKE would
not prevent the RSA-based EKE variant from off-line dictionary attacks. In
1997, Lucks [18] proposed an RSA-based password-authenticated key exchange
protocol (called OKE) which was claimed to be secure against the e-residue
attack. Later, Mackenzie et al. [19] found that the OKE protocol is still sub-
ject to the e-residue attack. In [19], Mackenzie et al. proposed an RSA-based
password-authenticated key exchange protocol (SNAPI) and provided a formal
security proof in the random oracle model. The SNAPI protocol mandates that
the public exponent e be a prime number larger than the RSA modulus n. This
ensures that e is relatively prime to φ(n).

To avoid using large public exponents, Zhu et al. [27] proposed an “interac-
tive” protocol which is revised from an idea of [5]. In the interactive protocol,
Bob sends to Alice a number of messages encrypted using Alice’s public key. If
Alice can successfully decrypt the encrypted messages, then Bob is ensured that
the encryption based on Alice’s public key is a permutation. In [24], Wong et al.
revised the interactive protocol of [27] to reduce the message size involved in the
interactive protocol. Recently, Catalano et al. [9] proposed an interactive pro-
tocol similar to that of [24] and provided a security proof in the random oracle
model. A drawback of the interactive protocols [27, 24, 9] is the large communi-
cation overhead involved in the verification of RSA public key.

In this paper, we investigate RSA-based password-authenticated key ex-
change protocols that can use both large and small primes as RSA public ex-
ponent, but without inducing large communication overhead on communication
entities. For this purpose, we develop a new protocol for password-authenticated
key exchange based on RSA. The new protocol, called PEKEP, involves two
entities, Alice and Bob, who share a short password and Alice possesses a pair
of RSA keys, n, e and d, where ed ≡ 1 (mod φ(n)). Unlike the protocol SNAPI,
however, the new protocol PEKEP allows Alice to select both large and small
primes for the RSA public exponent e. In the protocol PEKEP, Bob does not
need to verify if e is relatively prime to φ(n), and furthermore, Bob does not

230

have to test the primality of a large public exponent selected by Alice. Thus, the
protocol PEKEP improves on SNAPI by reducing the cost of primality test of
RSA public exponents. The protocol PEKEP also improves on the interactive
protocols of [27, 24, 9] by reducing the size of messages communicated between
Alice and Bob. Based on number-theoretic techniques, we prove that the proto-
col PEKEP is secure against the e-residue attack as described in [5, 22]. We also
provide a formal security analysis of PEKEP under the RSA assumption and
the random oracle model.

To further reduce the computational load on entities, we present a computa-
tionally efficient key exchange protocol (called CEKEP) in this paper. The pro-
tocol CEKEP is derived from PEKEP by adding two additional flows between
Alice and Bob. With the two additional flows, we show that the probability
for an adversary to launch a successful e-residue attack against CEKEP is less
than or equal to ε, where ε is a small number (e.g., 0 < ε ≤ 2−80) selected
by Bob. In the protocol CEKEP, the computational burden on Bob includes
two modular exponentiations, each having an exponent of O(dlog2 ε−1e) bits.
When ε = 2−80, for example, the computational burden on Bob is lighter than
that in a Diffie-Hellman based password-authenticated key exchange protocol.
In the Diffie-Hellman based EKE variant, Bob needs to compute two modular
exponentiations, each having an exponent of at least 160 bits.

The rest of the paper is organized as follows. We provide an overview of the
security model for password-authenticated key exchange in Section 2. In Section
3, we present the protocol PEKEP and investigate its security against e-residue
attack. We describe the protocol CEKEP in Section 4 and pursue formal security
analysis of PEKEP and CEKEP in Section 5. We conclude in Section 6.

2 Security Model

We consider two-party protocols for authenticated key-exchange using human-
memorable passwords. In its simplest form, such a protocol involves two entities,
say Alice and Bob (denoted by A and B), both possessing a secret password
drawn from a small password space D. Based on the password, Alice and Bob
can authenticate each other and upon a successful authentication, establish a
session key which is known to nobody but the two of them. There is present
an active adversary, denoted by A, who intends to defeat the goal for the pro-
tocol. The adversary has full control of the communications between Alice and
Bob. She can deliver messages out of order and to unintended recipients, con-
coct messages of her own choosing, and create multiple instances of entities and
communicate with these instances in parallel sessions. She can also enumerate,
off-line, all the passwords in the password space D. She can even acquire session
keys of accepted entity instances. Our formal model of security for password-
authenticated key exchange protocols is based on that of [2]. In the following,
we review the operations of the adversary and formulate the definition of secu-
rity. For details of the security model, we refer the readers to [2].

Initialization. Let I denote the identities of the protocol participants. Ele-

231

ments of I will often be denoted A and B (Alice and Bob). We emphasis that
A and B are variables ranging over I and not fixed members of I . Each pair of
entities, A, B ∈ I , are assigned a password w which is randomly selected from
the password space D. The initialization process may also specify a set of crypto-
graphic functions (e.g., hash functions) and establish a number of cryptographic
parameters.

Running the Protocol. Mathematically, a protocol Π is a probabilistic
polynomial-time algorithm which determines how entities behave in response
to received message. For each entity, there may be multiple instances running
the protocol in parallel. We denote the i-th instance of entity A as Π i

A. The
adversary A can make queries to any instance; she has an endless supply of Π i

A

oracles (A ∈ I and i ∈ N). In response to each query, an instance updates its
internal state and gives its output to the adversary. At any point in time, the in-
stance may accept and possesses a session key sk, a session id sid, and a partner
id pid. The query types, as defined in [2], include:

- Send(A, i, M): This sends message M to instance Π i
A. The instance executes

as specified by the protocol and sends back its response to the adversary.
Should the instance accept, this fact, as well as the session id and partner
id will be made visible to the adversary.

- Execute(A, i, B, j): This call carries out an honest execution between two
instances Π i

A and Πj
B , where A, B ∈ I, A 6= B and instances Π i

A and Πj
B

were not used before. At the end of the execution, a transcript is given to the
adversary, which logs everything an adversary could see during the execution
(for details, see [2]).

- Reveal(A, i): The session key ski
A of Π i

A is given to the adversary.
- Test(A, i): The instance Π i

A generates a random bit b and outputs its session
key ski

A to the adversary if b = 1, or else a random session key if b = 0. This
query is allowed only once, at any time during the adversary’s execution.

- Oracle(M): This gives the adversary oracle access to a function h, which is
selected at random from some probability space Ω . The choice of Ω deter-
mines whether we are working in the standard model, or in the random-oracle
model (see [2] for further explanations).

Note that the Execute query type can be implemented by using the Send query
type. The Execute query type reflects the adversary’s ability to passively eaves-
drop on protocol execution. As well shall see, the adversary shall learn nothing
about the password or the session key from such oracle calls. The Send query
type allows the adversary to interact with entity instances and to carry out an
active man-in-the-middle attack on the protocol execution.

Definition. Let Π i
A and Π i

B , A 6= B, be a pair of instances. We say that Π i
A

and Π i
B are partnered if both instances have accepted and hold the same session

id sid and the same session key sk. Here, we define the sid of Π i
A (or Π i

B) as the
concatenation of all the messages sent and received by Π i

A (or Π i
B). We say that

Π i
A is fresh if: i) it has accepted; and ii) a Reveal query has not been called either

on Π i
A or on its partner (if there is one). With these notions, we now define the

232

advantage of the adversary A in attacking the protocol. Let Succ denote the
event that A asks a single Test query on a fresh instance, outputs a bit b′, and
b′ = b, where b is the bit selected during the Test query. The advantage of the
adversary A is defined as Adv

ake
A = 2Pr(Succ)− 1.

It is clear that a polynomial-time adversary A can always gain an advantage
close to 1 if we do not limit her capability to perform on-line password-guessing
attacks. In such an attack, the adversary picks a password π as her guess and then
impersonates as an instance Π i

A to start the protocol towards another instance

Πj
B . By observing the decision of Πj

B (i.e., accepts or rejects), the adversary can
test the correctness of the guessed password π. Furthermore, by analyzing, off-
line, the transcript of the execution, the adversary may be able to test passwords
other than π. For a secure protocol, we expect that the adversary can only test
a single password in each on-line password-guessing attack. As suggested in [10],
we use the Send query type to count the number of on-line guesses performed by
the adversary. We only count one Send query for each entity instance, that is, if
the adversary sends two Send queries to an entity instance, it should still count
as a single password guess. Based on this idea, we have the following definition
of secure password-authenticated key exchange protocol, which is the same as
in [10].

Definition 1. A protocol Π is called a secure password-authenticated key ex-
change protocol if for every polynomial-time adversary A that makes at most
Qsend (Qsend ≤ |D|) queries of Send type to different instances, the following
two conditions are satisfied:

(1) Except with negligible probability, each oracle call Execute(A, i, B, j) produces
a pair of partnered instances Π i

A and Πj
B.

(2) Adv
ake
A ≤ Qsend/|D| + ε, where |D| denotes the size of the password space

and ε is a negligible function of security parameters.

The first condition basically says that when the adversary carries out an
honest execution between two instances Π i

A and Πj
B (A 6= B), both instances

accept and hold the same session key and the same session id. The second con-
dition means that the advantage of the adversary is at most negligibly more
than Qsend/|D| if she sends at most Qsend queries of Send type to different en-
tity instances, or equivalently, if she interacts on-line with at most Qsend entity
instances using the Send query type.

3 Password Enabled Key Exchange Protocol

In this section, we present a new protocol, called Password Enabled Key Ex-
change Protocol, or simply, PEKEP. In the protocol PEKEP, there are two enti-
ties, Alice and Bob, who share a password w drawn at random from the password
space D and Alice has also generated a pair of RSA keys n, e and d, where n is
a large positive integer (e.g., n > 21023) equal to the product of two primes of
(roughly) the same size, e is a positive integer relatively prime to φ(n), and d is a

233

positive integer such that ed ≡ 1 (mod φ(n)). The encryption function is define
by E(x) = xe mod n, x ∈ Zn. The decryption function is D(x) = xd mod n.
For a positive integer m, we define Em recursively as Em(x) = E(Em−1(x)) =
xem

mod n. Likewise, Dm(x) = D(Dm−1(x)) = xdm

mod n. Before describing
the protocol, let’s review some of the facts of number theory.

Let a be a positive integer relatively prime to n, we say that a is an e-th
power residue of n if the congruence xe ≡ a (mod n) has a solution in Z∗

n. Let
g be a positive integer relatively prime to n. The least positive integer i such
that gi ≡ 1 (mod n) is called the order of g modulo n. If the order of g is equal
to φ(n), then g is called a primitive root of n. It is known (see [1, 23]) that a
positive integer n, n > 1, possesses a primitive root if and only if n = 2, 4, pt or
2pt, where p is an odd prime and t is a positive integer. If n has a primitive root
g, then a positive integer a relatively prime to n can be represented as a = gi

mod n, 0 ≤ i ≤ φ(n) − 1. The integer i is called the index of a to the base g
modulo n, and is denoted by indga.

Alice (A) Bob (B)

password: w password: w

RSA keys: n, e, d

rA ∈R {0, 1}k

rA, n, e, A
-

e odd prime? and n odd?
If yes, m = bloge nc

a ∈R Z∗

n, rB ∈R {0, 1}k

α = H(w, rA, rB, A, B, n, e)

If gcd(α, n) = 1, λ = α

else λ ∈R Z∗

n

z = Em(λE(a))
rB, z

�

α = H(w, rA, rB, A, B, n, e)

If gcd(α, n) 6= 1, b ∈R Zn

else b = D(α−1Dm(z))
µ = H1(b, rA, rB, A,B, n, e)

µ
-

µ
?
= H1(a, rA, rB, A, B, n, e)

Reject if not, else

η = H2(a, rA, rB, A, B, n, e)

sk = H3(a, rA, rB, A, B, n, e)
η

�

η
?
= H2(b, rA, rB, A, B, n, e)

Reject if not, else

sk = H3(b, rA, rB, A, B, n, e)

Fig. 1. Password Enabled Key Exchange Protocol (PEKEP)

234

Define hash functions H1, H2, H3 : {0, 1}∗ → {0, 1}k and H : {0, 1}∗ → Zn,
where k is a security parameter, e.g., k = 160. Note that H can be implemented
using a standard hash function h : {0, 1}∗ → {0, 1}`, where ` is the length of n,
i.e., ` = dlog2 ne. On input x, H(x) = h(x), if h(x) < n, and H(x) = h(x)−dn/2e
if else. The protocol PEKEP is described in Fig. 1. Alice starts the protocol by
sending her public key (n, e) and a random number rA ∈R {0, 1}k to Bob.
Bob verifies if e is an odd prime and n is an odd integer. Bob may also verify
that the integer n is large enough, e.g., n > 21023. If e is not an odd prime
or n is not an odd integer, Bob rejects; otherwise, Bob computers an integer
m = bloge nc and selects two random numbers a ∈R Z∗

n, and rB ∈R {0, 1}k.
Bob then computes α = H(w, rA, rB , A, B, n, e) and checks if gcd(α, n) = 1. If
gcd(α, n) 6= 1, Bob assigns a random number of Z∗

n to λ; otherwise, Bob assigns
α to λ. Next, Bob computes z = Em(λE(a)) and sends rB and z to Alice.
Subsequently, Alice computes α using her password w and checks if α and n
are relatively prime. If gcd(α, n) 6= 1, Alice assigns a random number of Zn to
the variable b. If gcd(α, n) = 1 and z is an em-th power residue of n, Alice sets
b = D(α−1Dm(z)). Next, Alice and Bob authenticate each other using a and b
and generate a session key sk upon successful authentication.

Note that, when e is a prime number larger than n, Bob sets m = 0. In this
case, the run of PEKEP is nearly identical to that of SNAPI. In the protocol
PEKEP, Bob only verifies if the public exponent e is an odd prime and the
RSA modulus n is an odd integer; Bob does not verify if e is relatively prime to
φ(n). This may foster the so-called e-residue attack as described in [5, 22]. In the
e-residue attack, an adversary, say, Eva, selects π0 ∈ D as her guess of Alice’s
password. She also selects an odd prime number e and an odd integer n such
that e | φ(n), i.e., (n, e) is not a valid RSA public key. Then Eva impersonates
as Alice and starts the protocol PEKEP by sending rE , n, e, A to Bob, where
rE ∈ {0, 1}k is a random number generated by Eva. After receiving rB and z
from Bob, Eva computes µ and sends it back to Bob. If Bob accepts, then Eva
has a successful guess of Alice’s password (i.e., π0). If Bob rejects, on the other
hand, Eva excludes her guess π0 from the password space D. Furthermore, Eva
may exclude more passwords by repeating, off-line, the following three steps:

1) Eva selects a password π from D.
2) Eva computes α = H(π, rE , rB , A, B, n, e).
3) Eva tests if gcd(α, n) = 1. If not, Eva returns to step 1; otherwise, Eva

verifies if the congruence (αxe)em

≡ z (mod n) has a solution in Z∗
n. If the

congruence has a solution, Eva returns to step 1. If the congruence has no
solution in Z∗

n, then Eva knows that π is not the password of Alice. Next,
Eva excludes π from D and returns to step 1.

We say that Eva succeeds if she can exclude more than one password in the
e-residue attack as described above. In the following, we show that the protocol
PEKEP is secure against e-residue attack.

Theorem 1. Let n, n > 1, be an odd integer with prime-power factorization
n = pa1

1 pa2

2 . . . par
r . Let m be a non-negative integer and e an odd prime such that

235

for any prime-power pai

i of the factorization of n, em+1 - φ(pai

i), 1 ≤ i ≤ r. If z
is an em-th power residue of n, then for any λ ∈ Z∗

n, the congruence (λxe)em

≡
z (mod n) has a solution in Z∗

n.

Proof. To prove that (λxe)em

≡ z (mod n) has a solution in Z∗
n, we only need

to prove that, for each prime power pai

i of the factorization of n, the following
congruence

(λxe)em

≡ z (mod pai

i) (1)

has a solution in Z∗
p

ai
i

.

Let ni = pai

i , 1 ≤ i ≤ r. Then φ(ni) = pai−1
i (pi − 1). Since n is odd, pi is an

odd prime. Thus, the integer ni possesses a primitive root. Let g be a primitive
root of ni, that is, gφ(ni) = 1 mod ni, and for any 0 ≤ i, j ≤ φ(ni) − 1, i 6= j,
gi 6= gj mod ni. Let gcd(em, φ(ni)) = ec, 0 ≤ c ≤ m. We consider the following
two cases:

(1) If c = 0, then e and φ(ni) are relatively prime. In this case, it is clear
that the congruence (λxe)em

≡ z (mod ni) has a unique solution in Z∗
ni

.
(2) Next, we consider the case that 1 ≤ c ≤ m. Since z is an em-th power

residue of n, the congruence yem

≡ z (mod n) has solutions in Z∗
n. By the Chinese

Remainder Theorem, the following congruence

yem

≡ z (mod ni) (2)

has solutions in Z∗
ni

. Let indgz denote the index of z to the base g modulo ni

and let y ∈ Z∗
ni

be a solution of (2), then gemindgy−indgz ≡ 1 (mod ni). Since
the order of g modulo ni is φ(ni), we have

emindgy ≡ indgz (mod φ(ni)) (3)

Also since gcd(em, φ(ni)) = ec, equation (3) has exactly ec incongruent solutions
modulo φ(ni) when taking indgy as variable. This indicates that equation (2)
has ec solutions in Z∗

ni
. Let y0 denote one of the solutions of (2), then the ec

incongruent solutions of (3) are given by

indgy = indgy0 + tφ(ni)/ec (mod φ(ni)), 0 ≤ t ≤ ec − 1. (4)

For any λ ∈ Z∗
n, we have

indgy − indgλ ≡ indgy0 − indgλ + tφ(ni)/ec (mod φ(ni)), 0 ≤ t ≤ ec − 1.

Under the condition that em+1 - φ(ni), it is clear that e - φ(ni)/ec. Hence,
φ(ni)/ec ≡ 1 (mod e). So, there exists an integer t, 0 ≤ t ≤ ec − 1, such that

indgy0 − indgλ + tφ(ni)/ec ≡ 0 (mod e),

which implies that there exists an integer y ∈ Z∗
ni

, such that yem

≡ z (mod ni)
and yλ−1 is an e-th power residue of ni. Therefore, equation (1) has a solution
in Z∗

ni
, which proves the theorem. �

236

In PEKEP, Bob sets m equal to bloge nc. Thus, for every prime-power pai

i of
the factorization of n, we have em+1 > n ≥ pai

i . By Theorem 1, for any λ ∈ Z∗
n,

the congruence (λxe)em

≡ z (mod n) has a solution in Z∗
n, where z is the e-th

power residue computed by Bob. Hence, by repeating (off-line) the three steps
as described previously, Eva could not exclude any password from the space D.
So, the protocol PEKEP is secure against e-residue attacks. In Section 5, we
will provide a formal analysis of PEKEP within the security model described in
Section 2.

At the beginning of PEKEP, Bob needs to test the primality of the public
exponent e selected by Alice. When e is small, e.g., e = 17, the primality test only
induces moderate overhead on Bob. When e is large (e.g., e > 2512), however, the
computational load for the primality test would be tremendous. In the following,
we show that primality test of large public exponents by Bob could be avoided
with slight modification of PEKEP. In the protocol PEKEP, Bob can actually
select a small prime number e′ (e.g., e′ = 3) and replaces Alice’s public key (n, e)
by (n, e′), that is, Bob computes m, α, z, η, sk using (n, e′) instead of Alice’s
public key (n, e). Theorem 1 demonstrates that the replacement does not lead
to e-residue attacks, even if e′ is not relatively prime to φ(n). So, when the public
exponent e received from Alice exceeds a threshold, Bob replaces e by a smaller
prime number e′ (2 < e′ < e) of his own choosing. Bob sends rB , z, and e′ to
Alice in the second flow. After receiving e′ from Bob, Alice tests if e′ is relatively
prime to φ(n). If gcd(e′, φ(n)) 6= 1, Alice sends a random number µ ∈ {0, 1}k to
Bob; Alice may select a smaller prime number for e in the next communication
session. If gcd(e′, φ(n)) = 1, Alice replaces her decryption key by d′ and then
proceeds as specified in Fig. 1, where e′d′ ≡ 1 (mod φ(n)).

In each run of PEKEP, Bob computes m+1 encryptions using Alice’s public
key (n, e), where m = bloge nc. The computation time for the m+1 encryptions is
O((log2 n)3), which means that the computational load on Bob is about the same
as that in SNAPI. As discussed above, however, Bob does not have to perform
primality test of large public exponents. Hence, the protocol PEKEP still im-
proves on SNAPI by reducing the cost of primality test of RSA public exponent.
Since Alice has knowledge of φ(n), she only needs to perform two decryptions in
each run of PEKEP; one using the decryption key d1 = d and another using the
decryption key d2 = dm mod φ(n). Note that the computational load on Bob is
high even when e is small. In Section 4, we present a computationally-efficient
key exchange protocol which greatly reduces the computational load on Bob.

4 Computationally-Efficient Key Exchange Protocol

In this section, we present a Computationally-Efficient Key Exchange Proto-
col (CEKEP), which is described in Fig. 2. The protocol CEKEP is based on
PEKEP, but the number of encryptions performed by Bob is less than bloge nc,
where (n, e) is the public key of Alice. In the protocol CEKEP, Bob selects a
small number ε, 0 < ε ≤ 2−80, which determines the probability of a successful
e-residue attack against the protocol CEKEP. Alice starts the protocol CEKEP

237

by sending her public key n, e and two random numbers ρ, rA ∈R {0, 1}k to Bob.
Bob verifies if e is an odd prime and n is an odd integer. If not, Bob rejects.
Else, Bob computers an integer m based on e and ε as m = dloge ε−1e. Then
Bob selects a random number % ∈R {0, 1}k such that γ = H(n, e, ρ, %, A, B, m)
is relatively prime to n. Bob sends % and m to Alice. After receiving % and m,
Alice computes u = Dm(γ) and sends it back to Bob. Subsequently, Bob verifies
if Alice has made the right decryption, i.e., Em(u) = γ. If γ 6= Em(u), Bob
rejects. Else, Alice and Bob executes the rest of the protocol as in PEKEP.

Alice (A) Bob (B)

password: w password: w

RSA keys: n, e, d 0 < ε ≤ 2−80

ρ, rA ∈R {0, 1}k

ρ, rA, n, e, A
-

e odd prime? and n odd?

If yes, m = dlog
e
ε−1e

% ∈R {0, 1}k

H(n, e, ρ, %,A, B, m) ∈ Z∗

n%, m
�

γ = H(n, e, ρ, %, A, B,m)

u = Dm(γ)
u

-

γ
?
= Em(u)

Reject if not, else

a ∈R Z∗

n, rB ∈R {0, 1}k

α = H(w, rA, rB, A, B, n, e)

If gcd(α, n) = 1, λ = α

else λ ∈R Z∗

n

z = Em−1(λE(a))
z, rB

�

α = H(w, rA, rB, A, B, n, e)

If gcd(α, n) 6= 1, b ∈R Zn

else b = D(λ−1Dm−1(z))
µ = H1(b, rA, rB, A,B, n, e) µ

-

µ
?
= H1(a, rA, rB, A, B, n, e)

Reject if not, else
η = H2(a, rA, rB, A, B, n, e)

sk = H3(a, rA, rB, A, B, n, e)
η

�

η
?
= H2(b, rA, rB, A, B, n, e)

Reject if not, else

sk = H3(b, rA, rB, A, B, n, e)

Fig. 2. Computationally-Efficient Key Exchange Protocol (CEKEP)

238

A major difference between CEKEP and PEKEP is that the protocol CEKEP
adds two additional flows between Alice and Bob. Through the two flows, Alice
and Bob establish a random number γ ∈ Z∗

n. Then Alice decrypts the random
number γ repeatedly m times. If the m repeated decryption is correct, i.e.,
γ = Em(u), then it can be concluded that, except with probability as small
as e−m, the integer em does not divide φ(pai

i) for every prime-power pai

i of the
factorization of n.

Theorem 2. Let n, n > 1, be an odd integer with prime-power factorization
n = pa1

1 pa2

2 . . . par
r . Let m be a positive integer and e an odd prime. If there exists

a prime power, say pai

i , of the factorization of n such that em | φ(pai

i), then for
an integer γ randomly selected from Z∗

n, the probability that γ is an em-th power
residue of n is less than or equal to e−m.

Proof. Let ni = pai

i be a prime power of the factorization of n such that em |
φ(ni). Since n is odd, ni possesses a primitive root. Let g be a primitive root of
ni. For an integer γ randomly selected from Z∗

n, let indgγ denote the index of γ
to the base g modulo ni. Then γ is an em-th power residue of ni if and only if
the congruence xem

≡ γ (mod ni) has a solution, or equivalently, if and only if

gem indgx−indgγ ≡ 1 (mod ni),

which is equivalent to

emindgx ≡ indgγ (mod φ(ni)).

Since em | φ(ni), γ is an em-th power residue of ni if and only if em | indgγ.
Let n′

i = n/ni, then ni and n′
i are relatively prime. For any integer β ∈

Z∗
n, it is clear that β mod ni and β mod n′

i are integers of Z∗
ni

and Z∗
n′

i
,

respectively. On the other hand, for two integers α1 ∈ Z∗
ni

and α2 ∈ Z∗
n′

i
, by

the Chinese Remainder Theorem, there is an unique integer α ∈ Z∗
n, such that

α ≡ α1 (mod ni), and α ≡ α2 (mod n′
i). So, the number of integers α ∈ Z∗

n

which satisfy the congruence α ≡ α1 (mod ni) is φ(n′
i). If γ is randomly selected

from Z∗
n, then for any integer s, 0 ≤ s ≤ φ(ni)− 1, we have

Pr(gs = γ mod ni) = φ(n′
i)/φ(n) = 1/φ(ni),

which implies that Pr(indgγ = s) = 1/φ(ni). Hence,

Pr(em | indgγ) =
∑

em|s, 0≤s<φ(ni)

Pr(indgγ = s)

= φ(ni)e
−m/φ(ni)

= e−m

which indicates that, for an integer γ randomly selected from Z∗
n, the probability

that γ is an em-th power residue of ni is equal to e−m. So, the probability that
γ is an em-th power residue of n does not exceed e−m. �

239

Theorem 2 demonstrates that, if there exits a prime-power pai

i of the fac-
torization of n such that em | φ(pai

i), then for a random number γ ∈ Z∗
n, the

probability that Alice can decrypt γ repeatedly m times is less than or equal to
e−m. If the number u received from Alice satisfies the equation Em(u) = uem

=
γ mod n, i.e., γ is an em-power residue of n, then Bob is ensured with prob-
ability greater than or equal to 1− e−m that, for every prime-power pai

i of the
factorization of n, em - φ(pai

i). Since m = dloge ε−1e, e−m ≤ ε. By Theorem 1,
it is clear that the probability for an adversary to launch a successful e-residue
attack against CEKEP is upper-bounded by ε

In the protocol CEKEP, Alice proves to Bob in an interactive manner (via
flow 2 and flow 3) that for every prime-power pai

i of the factorization of n,
em - φ(pai

i). In the interactive procedure, however, only one decrypted message
is sent from Alice to Bob. The communication overhead on Alice and Bob is
greatly reduced in comparison with that in [27, 24, 9]. In CEKEP, the compu-
tational burden on Bob includes two modulo exponentiations, i.e., uem

mod n
and (λae)em−1

mod n, where m = dloge ε−1e. When e < ε−1, each modulo ex-
ponentiation has an exponent consisting of O(dlog2 ε−1e) bits. The computation
time for the two modulo exponentiations is O(2(log2 ε−1)(log2 n)2). If ε−1 � n,
then the computational load on Bob is greatly reduced in CEKEP in comparison
with that in PEKEP (or in SNAPI). The parameter ε determines the compu-
tational load on Bob. It also determines the level of security against e-residue
attacks. In practice, Bob can make a trade-off between the computational load
and the security level offered by the protocol. When ε = 2−80, for example,
Bob needs to compute two modular exponentiation, each having an exponent
of about 80 bits. In this case, the computational load on Bob is lighter than
that in a Diffie-Hellman based password-authenticated key exchange protocol.
In the Diffie-Hellman based EKE variant, for example, Bob needs to compute
two modular exponentiation, each having an exponent of at least 160 bits.

5 Formal Security Analysis

In this section, we analyze the security of PEKEP and CEKEP within the formal
model of security given in Section 2. Our analysis is based on the random-oracle
model of Bellare and Rogaway [4]. In this model, a hash function is modeled as
an oracle which returns a random number for each new query. If the same query
is asked twice, identical answers are returned by the oracle. In our analysis, we
also assume the intractability of the RSA problem.

RSA Assumption: Let ` be the security parameter of RSA. Let key generator
GE define a family of RSA functions, i.e., (e, d, n) ← GE(1`), where n is the
product of two primes of the same size, gcd(e, φ(n)) = 1, and ed ≡ 1 (mod
φ(n)). For any probabilistic polynomial-time algorithm C of running time t, the
following probability

Adv
rsa
C (t) = Pr(xe = c mod n : (e, d, n)← GE(1`), c ∈R {0, 1}`, x← C(1`, c, e, n))

240

is negligible. In the following, we use Adv
rsa(t) to denote maxC{Adv

rsa
C (t)}, where

the maximum is taken over all polynomial-time algorithms of running time t.

Theorem 3. Let A be an adversary which runs in time t and makes Qsend,
Qsend ≤ |D|, queries of type Send to different instances. Then the adversary’s
advantage in attacking the protocol PEKEP is bounded by

Adv
ake
A ≤

Qsend

|D|
+(Qexecute+3Qsend)Adv

rsa(O(t))+O(
(Qexecute + 2Qsend)Qoh

2k
),

where Qexecute denotes the number of queries of type Execute and Qoh denotes
the number of random oracle calls.

We prove Theorem 3 through a series of hybrid experiments. In each ex-
periment, we modify the way session keys are chosen for instances involved in
protocol execution. We start by choosing random session keys (not output by
random oracles) for instances for which the Execute oracle is called. We then
proceed to choose random session keys for instances for which the Send oracle is
called. These instances are gradually changed over five hybrid experiments and
in the last hybrid experiment, all the session keys are chosen uniformly at ran-
dom. Thus, the adversary A can not distinguish them from random. We denote
these hybrid experiments by P0, P1, . . . , P4 and by Adv(A, Pi) the advantage of
A when participating in experiment Pi. The hybrid experiment P0 describes
the real adversary attack. For 0 ≤ i ≤ 3, we show that the difference between
Adv(A, Pi) and Adv(A, Pi+1) is negligible. We bound the advantage of A in P4

by Qsend/|D| + ε. Hence, the advantage of A in P0 (i.e., in the real attack)
is bounded by Qsend/|D| + ε. Due to lack of space, the proof of Theorem 3 is
omitted and can be found in the full version of this paper [28].

It is easy to check that the protocol PEKEP satisfies the first condition of
Definition 1. Theorem 3 indicates that the protocol PEKEP also satisfies the
second condition of Definition 1 and hence is a secure password-authenticated
key exchange protocol. Similarly, we can also show that the protocol CEKEP
satisfies the two conditions of Definition 1. In summary, we have the following
theorem 4.

Theorem 4. Both protocols, PEKEP and CEKEP, are secure password authen-
ticated key exchange protocols under the RSA assumption and the random oracle
model.

We notice that the random oracle model in Theorem 4 is less desirable than a
standard cryptographic assumption. To avoid the random oracle model, we could
use the proof technique of [12], which require a public-key encryption scheme se-
cure against chosen-ciphertext attacks. Unfortunately, the most commonly used
RSA schemes (e.g. [3, 7]) which are secure against chosen-ciphertext attacks are
also based on the random oracle model. Nevertheless, it is encouraging to see
that efficient password-authenticated key exchange protocols with security proof
in the random oracle model can be constructed without severe restriction on the
public key of RSA.

241

6 Conclusion

In this paper, we investigate the design of RSA-based password-authenticated
key exchange protocols that do not restrict the size of RSA public exponent.
Based on number-theoretic techniques, we develop a Password Enabled Key
Exchange Protocol (PEKEP) which can use both large and small primes as
RSA public exponent. We show that the protocol PEKEP is secure against e-
residue attacks. We also provide a formal security analysis of PEKEP under the
RSA assumption and the random oracle model. Based on PEKEP, we develop
a computationally-efficient key exchange protocol to mitigate the burden on
communication entities. Both protocols, PEKEP and CEKEP, do not require
public parameters; Alice and Bob only need to establish a shared password in
advance and do not need to establish other common parameters such as a prime
number p and a generator g of the cyclic group modulo p. This is appealing in
environments where entities have insufficient resources to generate or validate
public parameters with certain properties, e.g., primality.

References

1. E. Bach and J. Shallit, Algorithmic Number Theory, vol. 1: Efficient Algorithms,
MIT Press, 1997.

2. M. Bellare, D. Pointcheval, and P. Rogaway, Authenticated key exchange secure
against dictionary attack, Advances in Cryptology - EUROCRYPT 2000 Proceed-
ings, Lecture Notes in Computer Science, vol. 1807, Springer-Verlag, 2000, pp.
139-155.

3. M. Bellare and P. Rogaway, Optimal asymmetric encryption, Advances in Cryp-
tology - EUROCRYPT ’94 proceedings, Lecture Notes in Computer Science, vol.
950, Springer-Verlag, 1995, pp. 92–111.

4. M. Bellare and P. Rogaway, Entity Authentication and key distribution, Advances
in Cryptology - CRYPTO’93 Proceedings, Lecture Notes in Computer Science, vol.
773, Springer-Verlag, 1994, pp. 22-26.

5. S. M. Bellovin and M. Merritt, Encrypted key exchange: Password-based protocols
secure against dictionary attacks, Proc. of the IEEE Symposium on Research in
Security and Privacy, Oakland, May 1992, pp. 72-84.

6. S. M. Bellovin and M. Merritt, Augmented encrypted key exchange: A password-
based protocol secure against dictionary attacks and password file compromise,
Proc. of the 1st ACM Conference on Computer and Communications Security,
ACM, November 1993, pp. 244-250.

7. D. Boneh, Simplified OAEP for the RSA and Rabin functions, Advances in Cryp-
tology - CRYPTO 2001 Proceedings, Lecture Notes in Computer Science, vol. 2139,
Springer-Verlag, 2001, pp. 275-291.

8. V. Boyko, P. MacKenzie, and S. Patel, Provably secure password authenticated
key exchange using Diffie-Hellman, Advances in Cryptology - EUROCRYPT 2000
Proceedings, Lecture Notes in Computer Science, vol. 1807, Springer-Verlag, 2000,
pp. 156-171.

9. D. Catalano, D. Pointcheval, and T. Pornin, IPAKE: Isomorphisms for Password-
based Authenticated Key Exchange, to appear in CRYPTO 2004 Proceedings.

242

10. R. Gennaro and Y. Lindell, A framework for password-based authenticated key ex-
change, Advances in Cryptology - EUROCRYPT 2003 Proceedings, Lecture Notes
in Computer Science, vol. 2656, Springer-Verlag, 2003, pp.524-542.

11. O. Goldreich and Y. Lindell, Session-key generation using human passwords only,
Advances in Cryptology - CRYPTO 2001 Proceedings, Lecture Notes in Computer
Science, vol. 2139, Springer-Verlag, 2001, pp.408-432.

12. S. Halevi and H. Krawczyk, Public-key cryptography and password protocols, Proc.
of the Fifth ACM Conference on Computer and Communications Security, 1998,
pp. 122-131.

13. D. Jablon, Strong password-only authenticated key exchange, Computer Commu-
nication Review, ACM SIGCOMM, vol. 26, no. 5, 1996, pp. 5-26.

14. D. Jablon, http://www.integritysciences.com.
15. J. Katz, R. Ostrovsky, and M. Yung, Efficient password-authenticated key exchange

using human-memorable passwords, Advances in Cryptology – EUROCRYPT 2001
Proceedings, Lecture Notes in Computer Science, vol. 2045, Springer-Verlag, 2001.

16. K. Kobara and H. Imai, Pretty-simple password-authenticated key-exchange under
standard assumptions, IEICE Trans., vol. E85-A, no. 10, 2002, pp. 2229-2237.

17. T. Kwon, Authentication and key agreement via memorable passwords, Proc. Net-
work and Distributed System Security Symposium, February 7-9, 2001.

18. S. Lucks, Open key exchange: How to defeat dictionary attacks without encrypting
public keys, Proc. Security Protocol Workshop, Lecture Notes in Computer Science,
vol. 1361, Springer-Verlag, 1997, pp. 79-90.

19. P. MacKenzie, S. Patel, and R. Swaminathan, Password-authenticated key ex-
change based on RSA, Advances in Cryptology—ASIACRYPT 2000 Proceedings,
Lecture Notes in Computer Science, vol. 1976, Springer-Verlag, 2000, pp. 599–613.

20. A. Menezes, P. C. van Oorschot, S. A. Vanstone, Handbook of Applied Cryptogra-
phy, CRC Press, 1997.

21. M. Nguyen and S. P. Vadhan, Simpler session-key generation from short ran-
dom passwords, Proc. TCC 2004, Lecture Notes in Computer Science, vol. 2951,
Springer-Verlag, 2004, pp. 428-445.

22. S. Patel, Number theoretic attacks on secure password schemes, Proc. IEEE Sym-
posium on Security and Privacy, Oakland, California, May 5-7, 1997.

23. K. H. Rosen, Elementary Number Theory and Its Applications, 4th ed., Addison
Wesley Longman, 2000.

24. D. Wong, A. Chan, and F. Zhu, More efficient password authenticated key exchange
based on RSA, INDOCRYPT 2003 Proceedings, Lecture Notes in Computer Sci-
ence, vol. 2904, Springer-Verlag, 2003, pp. 375-387.

25. T. Wu, The secure remote password protocol , Proc. Network and Distributed
System Security Symposium, San Diego, March 1998, pp. 97-111.

26. T. Wu, A real-world analysis of Kerberos password security, Proc. Network and
Distributed System Security Symposium, February 3-5, 1999.

27. F. Zhu, D. Wong, A. Chan, and R. Ye, RSA-based password authenticated key
exchange for imbalanced wireless networks, Proc. Information Security Conference
2003 (ISC’02), Lecture Notes in Computer Science, vol. 2433, Springer-Verlag,
2002, pp.150-161.

28. M. Zhang, New approaches to password authenticated key exchange based on RSA,
Cryptology ePrint Archive, Report 2004/033.

