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Abstract. This paper compares the XL algorithm with known Gröbner
basis algorithms. We show that to solve a system of algebraic equations
via the XL algorithm is equivalent to calculate the reduced Gröbner basis
of the ideal associated with the system. Moreover we show that the XL
algorithm is also a Gröbner basis algorithm which can be represented as
a redundant variant of a Gröbner basis algorithm F4. Then we compare
these algorithms on semi-regular sequences, which correspond, in con-
jecture, to almost all polynomial systems in two cases: over the fields F2

and Fq with q � n. We show that the size of the matrix constructed by
XL is large compared to the ones of the F5 algorithm. Finally, we give
an experimental study between XL and the Buchberger algorithm on the
cryptosystem HFE and find that the Buchberger algorithm has a better
behavior.

Keywords : Multivariate polynomial equations, Algebraic attacks, Solving
Systems, Gröbner basis, XL algorithm, Semi-regular Sequences.

1 Introduction

Algebraic attacks are among the most efficient attacks for public key cryptosys-
tems, block ciphers and stream ciphers. They try to recover a secret key by
solving a system of algebraic equations. Algebraic attacks were first applied to
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Matsumoto-Imai Public Key Scheme in [19] by Jacques Patarin and a similar
attack was also applied in [15]. Algebraic attacks were also applied to block
ciphers in [6], where the complexity for attacking AES and Serpent was evalu-
ated. Moreover, algebraic attacks were applied to stream cipher in [7], [8], [9]
and improved in [1].

As a general method to solve a system of algebraic equations, we know
Gröbner basis algorithms. The fastest of such algorithms previously known are
the F4 and F5 algorithms introduced in [11] and [12], respectively.

The XL algorithm was proposed as an efficient algorithm for algebraic at-
tacks. It was first introduced in [20] and applied to an attack for HFE which is
an improved version of Matsumoto-Imai Public Key Scheme. It was improved
in [5]. As stated in [20], in cryptographic scheme, a system of algebraic equa-
tions we are interested in has a unique solution over its defining field. The XL
algorithm was proposed as a powerful technique to solve such special systems.
In [20], it was stated that the XL algorithm does not try to calculate a whole
Gröbner basis and therefore it should be more efficient.

Recently, by using the algorithms F4 and F5, 80-bit HFE were first cryptana-
lyzed in [14], whereas the XL algorithm was not applicable to 80-bit HFE. Time
results with an implementation under Magma are presented on A. Steel’s web
page (http://magma.maths.usyd.edu.au/users/allan/gb/). As we stated above,
the F4 and F5 algorithms are Gröbner basis algorithms. Why did algebraic crypt-
analysis based on these Gröbner basis algorithms exceed XL? We give an answer
for this question in this article.

In this paper we clarify a relation between the XL algorithm and Gröbner ba-
sis algorithms. Moreover, we study the XL algorithm on semi-regular sequences,
which correspond, according to a conjecture in a report [3], to almost all overde-
fined polynomial systems, and on the cryptosystem HFE.

More precisely, we show the following:

1. The XL algorithm does not introduce explicitly a monomial ordering. But
we have proved that if the XL algorithm terminates, it will also terminate
with a lexicographic ordering.

2. To solve a system of algebraic equations whose solution in a given finite field
is unique amounts to nothing but to calculate the reduced Gröbner basis for
the ideal associated with that system.

3. By 2, the XL algorithm is actually a Gröbner basis algorithm. Moreover it
is essentially the same as the one treated in [17] and can be viewed as a
redundant variant of a Gröbner basis algorithm F4.

4. We study the XL algorithm on semi-regular sequences.
On F2, that the degree D of the parameter needed for the XL algorithm is
almost the same as the degree of the polynomials in the matrix constructed
by the F5 algorithm. But the complexity of these two algorithms is specified
by the size of the matrix: for example, for a quadratic multivariate polynomi-
als with n = 128 and m = 130, both algorithms reached the same degree 17
and the matrices generated by the XL algorithm will have about 170× 1020

rows and 6× 1020 columns compared to squared matrices with only 6× 1020

rows and columns for the F5 algorithm.
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On the field Fq , with q very large compared to n, we show the XL algorithm
terminates for a degree higher than Gröbner basis algorithms with a DRL
order. Then it is obvious that XL matrices are huge compared to F5 matrices.

5. We complete this study on generic systems with a comparison of the XL
algorithm and the Buchberger algorithm for a cryptosystem HFE. For this
cryptosystem, a Gröbner basis algorithm finds a structure in the multivariate
systems and never exceeds a low degree, whereas, for the XL algorithm, the
degree seems to still increase with the number of variables n.

The XL algorithm was proposed to be a more efficient algorithm to solve a
system of equations under a special condition without trying to calculate a whole
Gröbner basis. But our results imply that the XL algorithm is not so efficient as
it was expected to be.

In Section 2, we recall the description of the XL algorithm. In Section 3,
we give an overview of the theory of Gröbner bases. In Section 4, we clarify a
relation between the XL algorithm and the F4 algorithm. In Section 5, we study
the behavior of the XL algorithm on semi-regular sequences. In Section 6, we
give experimental results on HFE systems and in Section 7, we conclude this
report.

2 The basic principle of XL

The XL algorithm is given as an algorithm which solves systems of quadratic
equations having a solution in kn for a finite field k = Fq . Let A be a system
of multivariate equations fj = 0, (1 ≤ j ≤ m) for fj ∈ k[x] := k[x1, . . . , xn].
We denote the ideal generated by all fj in A by IA. Then, XL is described as
follows [20].

Algorithm 1 (The XL algorithm) For a positive integer D, execute the fol-
lowing steps:

1. Multiply: Generate all the products
∏r

j=1 x`j
∗ fi ∈ IA with r ≤ D− 2 and

total degree ≤ D.
2. Linearize: Consider each monomial in the xi of degree ≤ D as a new

variable and perform the Gaussian elimination on the equations obtained
in Step 1. The ordering on the monomials must be such that all the terms
containing one variable (say x1) are eliminated last.

3. Solve: Assume that step 2 yields at least one univariate equation in the
powers of x1. Solve this equation over the finite fields (e.g., with Berlekamp’s
algorithm).

4. Repeat: Simplify the equations and repeat the process to find the values of
the other variables.

In the original definition of the XL algorithm in [20], only quadratic equations
are treated. If we change the condition ”with r ≤ D − 2 and total degree ≤ D”
in Step 1 to ”with r ≤ D − deg(fi)”, we can apply XL to a system of equations
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including a non-quadratic equation. Note that this change does not contradict
the original XL setting when a system of equations consists of quadratic equa-
tions. So hereafter, we use this generalized version in order to work in general
case.

Remark 1. We can replace Step 1 of the XL algorithm by considering f ∗
i the

homogenization of fi: f∗
i = Zdf(x1

Z
, . . . , xn

Z
) ∈ k[x, Z] and products mf∗

i with m
a monomial with degree D−deg(f∗

i ). All the computation is exactly the same. So
the behavior of XL is the same on the homogenization of the system A as on A.
We will use this remark on section 5, and for more properties of homogenization,
we refer to [4].

3 Gröbner basis and some algorithms

3.1 Basic notation and definitions

Let k[x] = k[x1, . . . , xn] be a polynomial ring with variables x1, . . . , xn over a
field k. For a monomial xα = xα1

1 · · ·xαn
n , |α| :=

∑n

i=1 αi is called the total degree
of this monomial. In the following, the set of all monomials in variables x1, . . . , xn

is denoted by M(x1, · · · , xn), or simply by M . In the theory of Gröbner bases,
we need to consider a monomial ordering (cf. [10]). One of such ordering is the
degree reverse lexicographical order (DRL) defined as follows:

Definition 1 (cf. [14]). For α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ Zn
≥0, We say

xα >DRL xβ if |α| =
∑n

i=1 αi > |β| =
∑n

i=1 βi, or |α| = |β| and the right-most
nonzero entry of the vector α − β ∈ Zn is negative.

There are many monomial orderings. We choose one of such orderings on T and
write it as <.

A nonzero polynomial f in k[x] is written as f =
∑

α cαxα, cα 6= 0. We use
the following notations:

T (f) = {c(α1,··· ,αn)x
α1

1 · · ·xαn
n | c(α1,··· ,αn) 6= 0} : the set of terms of f

M(f) = {xα1

1 · · ·xαn
n | c(α1,··· ,αn) 6= 0} : the set of monomials of f

We denote the total degree, the leading term, the leading coefficient and the
leading term with respect to <, by deg(f), LM(f), LC(f) and LT(f) respectively.
(For each definition, see [10].)

The ideal in k[x] generated by a subset F is denoted by 〈F 〉. We also denote
by 〈I1, . . . , In〉 the minimal ideal containing ideals I1, . . . , In.

Under the above notation, a Gröbner basis is defined as follows.

Definition 2. Let M be the set of all monomial of k[x] with a fixed ordering.
A finite subset G = {g1, . . . , gm} of an ideal I is called a Gröbner basis if

〈LT(g1), . . . , LT(gm)〉 = 〈LT(I)〉.

For a given ideal I, its Gröbner basis is not unique. But the reduced Gröbner
basis, which is defined as follows, is uniquely determined.

Definition 3. A Gröbner basis G = {f1, . . . fm} of an ideal I is called reduced
Gröbner basis if for all i, LC(fi) = 1 and any monomial of fi is not divisible by
any element of LM(G\{fi}).
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3.2 The Buchberger algorithm

An algorithm which calculates a Gröbner basis is called a Gröbner basis algo-
rithm. The Buchberger algorithm is one of them.

Definition 4. Let f, g ∈ k[x] be nonzero polynomials. The S-polynomial of f
and g is the combination

S(f, g) := LC(g)
lcm(LM(f), LM(g))

LM(f)
f − LC(f)

lcm(LM(f), LM(g))

LM(g)
g.

For a finite set G of polynomials in k[x] and a polynomial f ∈ k[x], we denote
by f̄G, a remainder of f on division by G. (For the definition of division by a
finite set of polynomials, see [10] for example.)

Theorem 1. A basis G = {g1, . . . gm} of an ideal I in k[x] is a Gröbner basis

if and only if for all pairs i 6= j, S(gi, gj)
G

= 0.

As a result of Theorem 1, we have the The Buchberger algorithm:

Algorithm 2 (The Buchberger algorithm)

Input: an ordered set F = (f1, . . . , fm) in k[x]
Output: a Gröbner basis G = {g1, . . . , gs} for I = 〈f1, . . . , fm〉 with F ⊂ G
G := F
Repeat

H := G
For each pair (p, q), p 6= q in H,

If S := S(p, q)
H

6= 0, Then G := G ∪ {S}
Until H=G

We remark that the reduced Gröbner basis is calculated in a finite number of
steps from a Gröbner basis.

3.3 Some other algorithms

D. Lazard in the articles [17] describes a relationship between the method of the
computation of Gröbner bases and the one based on Gaussian Eliminations on
matrix for the system A. Moreover there are some other Gröbner basis algorithms
based on Gaussian elimination: F4 [11], FGLM [13] and F5 [12]. We explain now
the relationship between polynomials and matrices.

For a system A of equations fj = 0 (j = 1, 2, . . . , m), let us consider a finite
list G = (g1, . . . , gm) of elements of the ideal generated by fj , the ordered set
MG = [t1, . . . , tl] of monomials of all gi with respect to a fixed order <. A matrix
A whose (i, j)-entry is given as the coefficient of tj in gi is called the coefficient
matrix of G. Note that tG = A tMG where tG and tMG mean the transpose of
each. Let Ã be the row echelon form of A obtained by using elementary row
operations in a standard linear algebra6. Then we call G̃ given by tG̃ := Ã tMG

the row echelon basis of G. When we take the reduced row echelon form of G, we
say G̃ the reduced row echelon basis of G (In [11], this is called the row echelon
basis). Calculation of the reduced row echelon basis is an essential part of F4.

6 This procedure is so-called the Gaussian elimination.
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4 Relation between XL and Gröbner basis algorithms

4.1 The choice of a monomial ordering

To compare the XL algorithm with Gröbner basis algorithms, we need to give
an explicit monomial ordering for XL. As the XL algorithm does not give an
explicit monomial ordering, we need to introduce the following lemma :

Lemma 1. Let A be a system of m multivariate equations with n variables.

XL terminates for a degree D ⇐⇒ XL terminates for a degree D
with the Lexicographic ordering

Proof. Let be M (respect. M ′) the coefficient matrix of the list {(
∏k

j=1 xij
)∗fi}

with k ≤ D − deg(fi) for XL (respect. with the Lexicographic ordering). So we
can write M =

(
A B

)
and M ′ =

(
A′ B′ ) such that B (respect. B′) corresponds

to the columns for the univariate monomials. Moreover M ′, A′ and B′ are only
column permutations of M , A and B.

If XL terminates for a degree D, it means that rank(M) > rank(A). Then
rank(M ′) > rank(A′) and then XL will find an univariate polynomial with the
lexicographic ordering. ut

4.2 Pre-assumption of the XL algorithm

Let k = Fq be a finite field with q elements and let A be a system of multivariate
equations fj = 0 (1 ≤ j ≤ m) where fj ∈ k[x1, . . . , xn]. As stated implicitly in
the introduction of [20], XL was proposed to be an efficient algorithm to solve a
system of multivariate equations satisfying the following condition.

Condition 1 The system A has only one solution (x1, . . . , xn) = (a1, . . . , an)
in kn. (i.e. A has a solution (a1, . . . , an) in kn and no other solution in kn.)

Note that the system A under Condition 1 can have another solution in Kn

for some extension field K(6= k) of k. To determine the solution in kn, we need
extra equations xq

i − xi = 0 (i = 1, . . . , n). Thus the ideal we have to consider is
generated by fj (j = 1, . . . , m) and xq

i − xi (i = 1, . . . , n). We denote this ideal

by ĨA. Then we have the following important theorem.

Theorem 2. Let A be a system of multivariate equations fj = 0, j = 1, 2, . . . , m

in k[x1, . . . , xn] with k = Fq. Let ĨA be the ideal 〈f1, . . . , fm, xq
1−x1, . . . , x

q
n−xn〉.

Then a solution (x1, . . . , xn) = (a1, . . . , an) ∈ kn of A is unique in kn if and

only if ĨA = 〈x1 − a1, . . . , xn − an〉.

Proof. If (x1, . . . , xn) = (a1, . . . , an) is a unique solution in kn of A, ĨA ⊂
〈x1 − a1, . . . , xn − an〉 and (a1, . . . , an) is a unique solution in k̄n of a system
which consists of fj = 0 (j = 1, . . . , m) and xq

i − xi = 0 (i = 1, . . . , n) for an
algebraic closure k̄ of k because xq

i − xi = 0 has solutions only in k. Then from
Hilbert’s Nullstellensatz (cf. [10]), for each i = 1, . . . , n, there exists a positive

integer `i such that (xi−ai)
`i ∈ ĨA. Since xi−ai = gcd(xq

i −xi, (xi−ai)
`i) ∈ ĨA,

we have ĨA = 〈x1 − a1, . . . , xn − an〉. For the converse, it is obvious. ut
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By this theorem, Condition 1 is equivalent to the following condition.

Condition 2 The reduced Gröbner basis with respect to DRL of the ideal ĨA =
〈f1, . . . , fm, xq

1 − x1, . . . , x
q
n − xn〉 is {x1 − a1, . . . , xn − an}.

Thus the problem to solve A defined over k = Fq under the Condition 1
coincides with the problem to calculate the reduced Gröbner basis of the ideal
generated by equations in A and field equations xq

i −xi = 0 under the Condition
2, which is not a new problem. In particular, if the XL algorithm can solve
a system A of algebraic equations over Fq under the Condition 1, it actually

computes the reduced Gröbner basis of the ideal ĨA.

4.3 Relation between XL and the F4 algorithm

We use the same notation as in (3.1). Here we show the XL algorithm gives
a Gröbner basis algorithm which can be viewed as a redundant variant of the
F4 algorithm. (For the description of the original F4, see [11].) To give such a
description, we need the following definition.

Definition 5. (1) A critical pair of two polynomials (fi, fj) is an element of
M2 × k[x] × M × k[x], Pair (fi, fj) := (lcm ij , ti, fi, tj , fj) such that

lcm(Pair (fi, fj)) = lcmij = LM(tifi) = LM(tjfj) = lcm(LM(fi), LM(fj)).

(2) For a critical pair pij = Pair (fi, fj), deg(lcm ij) is called the degree of pij

and denoted by deg(pij). Let P be a list of critical pairs. For p = Pair(f, g) ∈ P
and d ∈ N, we define two functions XLLeft(p, d) = {(t, f)|t ∈ M, deg(t∗f) ≤ d},
and XLRight(p, d) = {(t, g)|t ∈ M, deg(t ∗ g) ≤ d}. We write XLLeft(P, d) =⋃

p∈P XLLeft(p, d) and XLRight(P, d) =
⋃

p∈P XLRight(p, d).

For a list of critical pairs P and a positive integer d ∈ N, we set

Sel(P, d) := {p ∈ P | deg(lcm(p)) ≤ d}.

Now we give an F4-like description of the XL algorithm.

Algorithm 3 (The XL Algorithm)

Input:

{
F : a finite subset of k[x]
Sel : fixed as above.

Output: a finite subset of k[x].
G := F , F̃+

0 := F and d := 0
P := {Pair(f, g)|f, g ∈ G with f 6= g}
While P 6= φ Do

d := d + 1
Ld := XLLeft(P, d) ∪ XLRight(P, d)
Pd := Sel(P, d)
P := P \ Pd

F̃+
d := Reduction(Ld)
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For h ∈ F̃+
d Do

P := P ∪ {Pair (h, g)|g ∈ G}
G := G ∪ {h}

Return G

Reduction
Input: a finite subset L of M × k[x]
Output: a finite subset of k[x] (possibly an empty set).

F := Symbolic Preprocessing(L)
F̃ := Reduction to Row Echelon Basis of F w.r.t. <
F̃+ := {f ∈ F̃ |LM(f) 6∈ LM(F )}

Return F̃+

Symbolic Preprocessing
Input: a finite subset L of M × k[x]
Output: a finite subset of k[x]

F := {t ∗ f | (t, f) ∈ L}
Return F

Remark 2. In the original description of XL, it seems that the bound D is taken
globally at once. However, to implement XL, there seems to be the following
four ways to realize the process determining the optimal value of D. Let A be a
system of equations you want to solve. Then each way is described as follows.

1. Begin with D = 1. Do XL described as in Definition 1 for A. If you cannot
obtain the solution, set D := D + 1 and do XL again for A with the new D.

2. Begin with D = 1. Iterate ’Multiply’ and ’Linearize’ described as in Def-
inition 1 for A by adding new equations obtained by ’Linearize’ to A. If
you cannot solve the resulting system, then return to the original A, set
D := D + 1 and iterate the same procedure as for D = 1. Repeat until you
obtain the solution.

3. Begin with D = 1. Do XL described as in Definition 1 for A. If you cannot
obtain the solution, then set D := D + 1, replace A by the resulting system
obtained by ’Linearize’ in the previous XL and do XL again for the new A
and D. Repeat until you obtain the solution.

4. Begin with D = 1. Iterate ’Multiply’ and ’Linearize’ described as in Defini-
tion 1 for A by adding new equations obtained by ’Linearize’ to A. If you
cannot solve the resulting system A′, then replace A by A′, set D := D + 1
and iterate the same procedure as for D = 1. Repeat until you obtain the
solution.

The first two processes are slightly different from the others. The degree
reached for the third and the fourth ones can be lower than the degree of the
others. The Gaussian elimination of polynomials with degree D can give poly-
nomials with lower or equal to D − 1. For example, let us consider the sys-
tem x2

2 + x3 = 0, x1x2 − x2 = 0, x3
3 + x1 = 0. For D = 3, the polynomial

x3x1 − x3 = (x1 − 1)(x2
2 + x3) − x2(x1x2 − x2) appear in resulting system ob-

tained by ’Linearize’, and then for D = 4, the third and fourth methods find the
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univariate polynomial x2
1 − x1 = (x1 − 1)(x3

3 + x1) − x2
3(x3x1 − x3). Whereas,

the two first methods need a degree D = 5 to find this polynomial because
x2

1 − x1 = (x1 − 1)(x3
3 + x1) − (x2

3x1 − x2
3)(x

2
2 + x3) + x2

3x2(x1x2 − x2).
In the above description of XL, we take the third one. You may take one of

the other three realizations but the rest of our result holds for all of them. We
should remark that XL taking D as in the first one is essentially the same as
the Gröbner basis algorithm treated in [17].

In the above description of the XL algorithm, we keep some redundancy in the
description to show the similarity to the F4 algorithm. Note that in algebraic
attacks using XL, the input F should be a set of polynomials which comes
from all equations in a given system of equations A whose solution in kn is
unique and all field equations xq

i − xi = 0 for all variables xi. ’Multiply’ in
XL corresponds to the calculation of Ld and ”Symbolic Preprocessing”. And
’linearize’ corresponds to ”Reduction”. Note that, XL in the above description
can be viewed as a redundant variant of F4. This is because XLLeft and XLRight
collect more polynomials and therefore the set of polynomials constructed in
”Symbolic Preprocessing” is much larger than the one in F4. In fact, XL collects
all the products

∏r

j=1 xlj ∗ fi with r ≤ D − deg(fi), whereas F4 collects only
polynomials needed in the Gaussian elimination.

The above description enables us to prove the following theorem.

Theorem 3. Let F be a finite set of polynomials in k[x]. Then Algorithm 3
computes a Gröbner basis G for the ideal 〈F 〉 in k[x] such that F ⊆ G.

Proof. Let d be a positive integer and Gd the set G obtained for that d in the
while-loop. If F̃+

d 6= φ, then deg h ≤ d for any h ∈ F̃+
d and hence h ∈ Ld+1 in the

next loop. Then it is obvious that h 6∈ F̃+
d+1. Since any g ∈ Gd−1 of deg g ≤ d is

contained in Ld, h 6∈ Gd−1 for any h ∈ F̃+
d and hence we have Gd−1 ( Gd when

F̃+
d 6= φ.

First, we show that Algorithm 3 terminates in a finite number of steps.
Suppose that Algorithm 3 does not terminate. Then there is an infinite sequence
(di) of positive integers such that di < di+1 and F̃+

di
6= φ for all i. From the

above observation, we have an infinite ascending chain Gdi
( Gdi+1

( · · · . But
it contradicts to the fact that the ring k[x] is noetherian.

Now we show the output G of Algorithm 3 is actually a Gröbner basis of 〈F 〉.
Since G =

⋃
d≥0 F̃+

d and F̃+
d ⊂ 〈F 〉, we have F ⊂ G ⊂ 〈F 〉. The remaining task

is to show S(f, g)
G

= 0 for all f 6= g in G. Put d̃ := deg(Pair(f, g)). Then the

S-polynomial S(f, g) is contained in Ld̃ and hence S(f, g)
G

d̃ = 0. In particular,

we obtain S(f, g)
G

= 0. Thus, by Theorem 1, the output G is actually a Gröbner
basis of 〈F 〉. ut

5 Semi-regular sequences

In this section, we try to give a bound on the matrix size of the XL algorithm
compared to the matrix size of the F5 algorithm for most polynomial systems.
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5.1 Presentation of Semi-regular sequences

In the report [3], the notion of semi-regular sequences was presented for overde-
fined systems over the finite field F2 and for affine systems. We have to distin-
guish two important cases for finite fields, F2 and Fq . In the field F2, we have
a criterion deduced from the Frobenius application. If we are interested in a
system A on a field Fq , with q � n, i.e. q is very high compared to n, then the
trivial relation issued from the Frobenius application will not be reached during
computation and all the computation done is similar to computation on Q.

Definition 6.

Homogeneous semi-regular sequence : Let f1, . . . , fmbe a sequence of m
homogeneous polynomials (i.e. for all monomial t of fi, deg(t) = deg(fi) in
Rh

n := F2[x1, . . . , xn]/〈x2
1, . . . , x

2
n〉 or Q[x1, . . . , xn]), and I = 〈f1, . . . , fm〉

an ideal of Rh
n or Q[x1, . . . , xn].

– The degree of regularity of I is the minimal degree d such that {LT (f) | f ∈
I, deg(f) = d} is exactly the set of monomials of degree d in Rh

n, denoted
by Dreg(I).

– f1, . . . , fm is a homogeneous semi regular sequence on F2 if I 6= Rh
n

and for i ∈ {1, . . . , m}, if gifi = 0 in Rh
n/〈f1, . . . , fi−1〉 and deg(gifi) <

Dreg(I) then gi = 0 in Rh
n/〈f1, . . . , fi−1, fi〉.

– f1, . . . , fm is a homogeneous semi regular sequence on Q if I 6= Q[x1, . . . , xn]
and for i ∈ {1, . . . , m}, if gifi = 0 in Q[x1, . . . , xn]/〈f1, . . . , fi−1〉 and
deg(gifi) < Dreg(I) then gi = 0 in Q[x1, . . . , xn]/〈f1, . . . , fi−1〉.

Affine semi-regular sequence : Let f1, . . . , fm be a sequence of m polyno-
mials, and I = 〈f1, . . . , fm〉 an ideal of F2[x1, . . . , xn]/〈x2

1 −x1, . . . , x
2
n −xn〉

or Q[x1, . . . , xn]. Let fh
i the homogeneous part of the largest degree of fi.

– f1, . . . , fm is a semi regular sequence if fh
1 , . . . , fh

m is a homogeneous
semi-regular sequence.

– the degree of regularity of I is the degree of regularity of 〈fh
1 , . . . , fh

m〉,
denoted by Dreg.

With this sequence of polynomials, the matrix generated by the F5 algorithm
has a full rank for the degree d < Dreg . Moreover, all polynomials computed by
F5 have a degree lower or equal to Dreg.

This means that, for semi-regular sequences, the number of rows Hm,n(d)
of the matrix in the homogeneous case, for d < Dreg , is known, and is given
by a recurrence formula Hm,n(d) = Hm−1,n(d) + #{m` monomial of degree d−
dm} − Hm,n(d − dm) with initial conditions Hm,n(d) = 0 if m ≤ 0 or d <
min(deg(fk) | k ≤ m}. Then the number of rows of a matrix for the affine case

is
∑d

d′=1 Hm,n(d′).
The degree Dreg corresponds to the degree d when we will have more rows

than columns for the homogeneous part of the largest degree. It is the minimal
degree such that Hm,n(d) > #{m` monomial of degree d}. If we consider the
series f(y) =

∑
d≥0(Hm,n(d)−#{m` monomial of degree d})yd, the degree Dreg

is given when the coefficient of this series is negative. the expression of f for
quadratic equations is :
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(1+y)n

(1+y2)m for F2
(1−y2)m

(1−y)n for Fq, with q � n.

Moreover, in the article [3], the authors have made a conjecture verified on
many computer experiments:

Conjecture 1. almost all polynomial systems are semi-regular sequences.

As the XL algorithm computes for an homogeneous system, we work on
semi-regular sequences such that the homogenization of the sequences is still
semi-regular. With these hypotheses, the conjecture is still true.

If we want to find an univariate polynomial for the original description of
XL, we need to have a number of rows higher than the number of monomials
with degree D minus the number of univariate monomials in X1 (i.e., X1 and 1
for F2 and 1, . . . , XD

1 , for Fq).
This means that the degree D of the XL algorithm is given when the co-

efficient of this series is negative. the expression of f for quadratic equations
is :

(1+y)n

(1−y)(1+y2)m − 1+y

1−y
for F2

(1−y2)m

(1−y)n+1 − 1
(1−y)2 for Fq , with q � n.

5.2 On the field F2

Figure 1(a) presents a comparison of the degree reached between the XL algo-
rithm and Gröbner basis computation for a variation of the number of variables
n and Figure 1(b) for a variation of the number of equations m.

(a) (b)

Fig. 1. Behavior of the XL algorithm and the F5 algorithm on F2

With these figures, we do not have a noticeable difference between the degree
reached by the two algorithms. So we can say that for random systems, the
methods of XL and Gröbner basis are almost the same.

For the complexity point of view, if ND is the size of the matrix constructed,
then the whole complexity is the cost of linear algebra on this matrix, which is
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Nw
D where w ≤ 3 is the coefficient of linear algebra. The XL algorithm creates

matrices with
∑m

i=1

∑D−deg(fi)
k=0

(
n

k

)
rows and

∑D

k=0

(
n

k

)
columns, whereas F5

creates square matrices with
∑D

k=0

(
n

k

)
columns.

So the number of columns for F5 algorithm matrices is lower or equal to the
one for XL algorithm matrices whereas the number of rows of the matrices con-
structed is very different, Figure 2 presents the number of rows of each matrices
with a logarithm scale. As we can see, the difference between the two curves
gives us a multiplicative constant.

Fig. 2. Matrices of the XL algorithm and F5 algorithm on F2

5.3 On the field Fq, with q large

Figure 3(a) presents a comparison of the degree reached between the XL algo-
rithm and Gröbner basis computation for a variation of the number of variables
n with m = n + 2 and Figure 3(b) for a variation of the number of equations
m. First we can see that for random polynomials we have always computed a
Gröbner basis before finding the univariate polynomial for a degree D. More-
over, we can see the behavior of the degree of the XL algorithm does not seem
to follow the formula n√

m
as it was said in [6].

As the complexity is Nw
D , where ND is the size of the matrix constructed and

w the coefficient of linear algebra and the XL algorithm has a higher degree D
than the F5 algorithm, the difference of the size of constructed matrices is very
important. For example, for quadratic multivariate polynomials with n = 128
and m = 130, the XL algorithm reached a degree 66 whereas the F5 algorithm
reached a degree 61. So the matrices generated by the XL algorithm will have
about 94317×1049 rows and 6332×1049 columns compared to squared matrices
with only 8.4 × 1049 rows and columns for the F5 algorithm.

For the case m = n, the number of solutions with multiplicity of a random
system with quadratic equations is

∏m

i=1 deg(fi) = 2n, which is the Bezout
bound. So the univariate polynomial has this degree and XL will terminate for
this degree. Whereas, the computation of the Gröbner basis will not exceed
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(a) (b)

Fig. 3. Behavior of the XL algorithm and the F5 algorithm on Fq

1+
∑n

i=1(deg(fi)−1) = n+1 for any ordering. This computation is done with a
DRL ordering and then we use the FGLM algorithm [13, 10] to find the wanted
ordering.

All this study is still true if D < q and not only for q � n.

6 Example on HFE systems

In cryptography, the systems studied seem to be random but have a structure
behind them. So we need to make experimental tests on cryptosystems to have
an idea of the efficiency of both algorithms.

Hidden Field Equations (HFE) is an asymmetric cryptosystem. It does not
use the number theory but it is based on multivariate polynomials over a finite
field (cf [18]). The idea of HFE is to take a secret univariate polynomial (the
private key) on an extension of the finite field, then to express this polynomial
on the finite field. We thus obtain an algebraic system (the public key). This
system is composed with polynomials of degree 2.

We have implemented the XL algorithm in Magma to test on the examples.
Moreover as the XL algorithm has a better behavior for m > n, we have fixed
some variables to be in the case m = n + 2. We studied on both cases presented
in section 5, for the field F2, we use secret polynomials with degree 17 and with
degree 24 for the field F16.

With Figure 4(a), we see that the XL algorithm’s maximal degree increases
whereas for Gröbner basis computation, the degree of resolution does not change
and does not exceed 3. In fact, the XL algorithm seems to follow Figure 1(a). So
XL does not seem to find a difference between a random system and the HFE
cryptosystem contrary to Gröbner basis computation.

Figure 4(b) confirms that the Buchberger algorithm is still better than the
XL algorithm on a bigger field for a number of elements higher than 6.

We present then time computation on figure 5. For the XL algorithm, the
main part of computation is done in the Gaussian elimination and not in the
other part of the algorithm. As we can see, the Buchberger algorithm has a
better behavior than the XL algorithm.



348

(a) on F2 (b) on F16

Fig. 4. Comparison between XL and Gröbner algorithms on HFE

(a) on F2 (b) on F16

Fig. 5. Time comparison between XL and Gröbner algorithms on HFE

7 Conclusion

In this paper, we compared the XL algorithm with Gröbner basis algorithms.
First, we showed that to solve a system of algebraic equations treated in XL is
equivalent to calculate the reduced Gröbner basis of the ideal associated with
the system. Moreover we showed that the XL algorithm is also a Gröbner basis
algorithm which can be represented as a redundant variant of a Gröbner basis
algorithm F4. Then we compared these algorithms on semi-regular sequences in
two cases: in the fields F2 and Fq with q � n. We showed that the size of the
matrix constructed by XL is huge compared to the ones of F5 algorithm. We
gave an experimental study between XL and Buchberger algorithms on the cryp-
tosystem HFE and found that the Buchberger algorithm had a better behavior.
Our results imply that the XL algorithm is not so efficient as it was expected.

References

1. F. Armknecht, M. Krause, “Algebraic Attacks on Combiners with Memory”,
Crypto 2003, LNCS 2729, pp. 162-176, Springer.

2. G. Ars and J.-C. Faugère. “Comparison of XL and Gröbner Basis Algorithms over
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