
Asynchronous Proactive Cryptosystems
Without Agreement

(extended abstract)?

Bartosz Przydatek1 and Reto Strobl2

1 Department of Computer Science, ETH Zürich, Switzerland
2 IBM Research, Zurich Research Laboratory, Switzerland

Abstract. In this paper, we present efficient asynchronous protocols that allow
to build proactive cryptosystems secure against a mobile fail-stop adversary. Such
systems distribute the power of a public-key cryptosystem among a set of servers,
so that the security and functionality of the overall system is preserved against an
adversary that crashes and/or eavesdrops every server repeatedly and transiently,
but no more than a certain fraction of the servers at a given time. The building
blocks of proactive cryptosystems — to which we present novel solutions — are
protocols for joint random secret sharing and for proactive secret sharing.
The first protocol provides every server with a share of a random value unpre-
dictable by the adversary, and the second allows to change the shared represen-
tation of a secret value. Synchronous protocols for these tasks are well-known,
but the standard method for adapting them to the asynchronous model requires
an asynchronous agreement sub-protocol. Our solutions are more efficient as they
go without such an agreement sub-protocol. Moreover, they are the first solutions
for such protocols having a bounded worst-case complexity, as opposed to only
a bounded average-case complexity.

1 Introduction

Threshold cryptography addresses the task of distributing a cryptosystem among n
servers such that the security and functionality of this distributed system is guaran-
teed even if an adversary corrupts up to t servers [2] (see [3] for a survey). Threshold
cryptosystems are realized by sharing the key of the underlying cryptosystem among
all servers using a (t + 1)-out-n sharing scheme [4], and by accomplishing the cryp-
tographic task through a distributed protocol. If this task involves the choice of secret
random values, then the distribution of the task involves so-called joint random secret
sharing (JRSS) [5], which allow the servers to jointly generate a (t+ 1)-out-n sharing
of a random value unpredictable by the adversary.

Proactive cryptosystems use threshold cryptosystems as the basis, but drastically
reduce the assumption concerning failures [6] (see [7] for a survey). They operate in a
sequence of time periods called phases and tolerate a mobile adversary, which corrupts
the servers transiently and repeatedly, and is only restricted to corrupt at most t servers
during every phase. Technically, proactive cryptosystems are threshold cryptosystems

? The full version of this paper is available as an IBM Technical Report [1]

152

that change the representation of the shared secret key from one phase to another using
proactive secret sharing (PSS) [8], so that the representations are independent; the old
representation has to be erased.

The key to efficient proactivization of many public key cryptosystems for signing
and encryption lies in efficient solutions for JRSS and for PSS. In the synchronous
network model with broadcast channels, such solutions exist [5, 8]. Although such syn-
chrony assumptions are justified in principle by the existence of clock synchronization
and broadcast protocols, this approach may lead to rather expensive solutions in prac-
tice, for example when deployed in wide-area distributed systems with only loosely
synchronized clocks. Furthermore, such systems are vulnerable to timing attacks.

These issues can be eliminated by considering an asynchronous network in the first
place. However, the standard approach to building asynchronous protocols for JRSS and
PSS requires an asynchronous agreement sub-protocol, which substantially contributes
to the overall complexity of such solutions; see for example [9].

Contributions. In this paper, we provide the first solutions for asynchronous JRSS
and for asynchronous PSS, which do not rely on an agreement sub-protocol. Avoiding
agreement results in two main advantages. On one hand, we are able to bound the
worst-case complexity of our protocols. For previous protocols, one could only bound
their average case complexity; such protocols therefore could (at least theoretically) run
forever. On the other hand, our protocols have a worst-case latency of only six rounds,
whereas the best known previous solution of Cachin et al. [9] has an expected latency of
17 rounds (this comparison takes into account that [9] can be optimized in our model).

Our protocols tolerate a fail-stop adversary who may adaptively and repeatedly
eavesdrop and crash up to t servers in every two subsequent phases, where t < n/3.
We stress that assuming a fail-stop adversary (as opposed to a fully Byzantine adver-
sary) does not make the problem of avoiding agreement trivial: the main reason why the
standard solutions for asynchronous JRSS and PSS require agreement is the fact that a
crashed server cannot be distinguished from a slow server, and this problem also occurs
for a fail-stop adversary. Note that in principle our protocols can be extended to tolerate
Byzantine adversaries without affecting the resilience of t < n/3, using known tech-
niques for asynchronous verifiable secret sharing [9] and zero-knowledge proofs [10].
Furthermore, as shown in [11, Chapter 7], our protocols remain secure even under arbi-
trary composition.

The cost of our approach is a higher communication complexity. Specifically, if k
is the security parameter of the system, our protocols transmit a total of O(kn4) bits
across the network using O(n3) messages, whereas the (optimized) solution of Cachin
et al. [9] transmits onlyO(kn3) bits using alsoO(n3) messages. However, in a practical
setting, this additional overhead is of little concern as the size of n is typically very small
relative to k (e.g. 10 vs. 1024).

Technically, the key to our solutions is a novel proactive pseudorandomness (PPR)
scheme [12], with an additional property that we call constructibility. Such a scheme
provides at every phase to every server Pi a random value pr i which remains hidden
from the adversary. Additionally, it enables the honest servers to jointly reconstruct
any such value pr i. We then build our JRSS and PSS schemes such that a server Pi
derives all its random choices from its value pr i by using it as a seed to a pseudorandom

153

function [13]. This allows the honest servers to reproduce the steps of a (possibly) faulty
server in public, instead of agreeing on a set of such servers and then excluding them
from the computation (as it is done by previous work).

Related Work. As mentioned previously, Cachin et al. [9] implemented asynchronous
proactive protocols using an agreement subprotocol as a building block, which results
in a relatively high round complexity. Zhou [14] proposed to build proactive cryptosys-
tems on a weaker notion of PSS, which can be implemented without agreement. In this
weaker PSS protocol, every server computes in every phase a list of candidate shares
such that one of these candidates is the fresh share of the secret. Zhou shows that this
suffices to implement a proactive version of RSA signatures exploiting the fact that
RSA signatures are unique in the sense that for any public key and any message, there
exists only one signature on the given message valid under the given public key. Unfor-
tunately, the approach of Zhou [14] cannot be applied to proactivize discrete-logarithm
signature schemes such as ElGamal [15] or DSS [16], as these schemes are not unique
in the above sense. The only known technique for proactivizing these signature schemes
are protocols for JRSS and for PSS in the sense we introduced them before.

Organization. In the next section we introduce our system model, and recall the def-
initions of cryptographic tools we use in the proposed solutions. In Section 3 we give
an overview of our constructions. Section 4 presents an efficient secret sharing pro-
tocol, which will be useful in our constructions. In Section 5 we present our solution
for an asynchronous proactive pseudorandomness scheme. In Sections 6 and 7, we de-
scribe our solutions to asynchronous proactive secret sharing, and to asynchronous joint
random secret sharing, respectively. In Section 8 we sketch how these protocols can
be used to proactivize public-key signature schemes, considering Schnorr’s signature
scheme [17] as an example. Finally, in Section 9 we conclude the paper.

2 Asynchronous Proactive System Model

Motivation. Proactive cryptosystems are threshold cryptosystems that operate in a
sequence of phases. At the beginning of every phase, the servers refresh the shares of
the underlying threshold system such that the new shares are independent of the old
shares (except for the fact that they define the same secret). This prevents an adversary
from learning the shared key, assuming that she corrupts no more than t servers in every
phase. Such an assumption can be justified if every phase lasts some limited amount of
real time, the idea being that it takes the adversary a certain amount of real time to
corrupt a server, and that corruptions are transient, i.e., do not last forever [6].

This idea maps onto a synchronous network in a straightforward way: one can define
phases with respect to a common clock accessible to every server and implement refresh
using a synchronous protocol [8]. The drawback of this approach is that synchronous
protocols proceed in rounds, i.e., messages are sent on a clock “tick”, and are received
at the next “tick”. This may lead to slow protocols in practice, as the duration of a
communication round must account for maximal message delays and maximal shifts
among local clocks of the servers. Moreover, as the security of synchronous protocols
relies on the timely delivery of messages, this approach is also vulnerable to timing
attacks, which are often easy to launch.

154

Cachin et. al [9] suggest to avoid these issues by implementing refresh using an
asynchronous protocol. Such protocols are message-driven, i.e., proceed as soon as
messages arrive. This allows a server to terminate a refresh and proceed with the next
phase as soon as it has received enough information. Moreover, such protocols do not
rely on upper bounds on message delays or clock shifts, i.e., they are as fast as the net-
work. Timing attacks will only slow down such protocols, but not affect their security.

However, in a purely asynchronous network servers would not have access to a
common clock for defining phases. Therefore, Cachin et al. [9] suggest to define phases
locally to every server in terms of a single time signal, or clock tick, that occurs locally
for a server and only indicates the start of a phase. The idea is to model systems where
the time signals come from a local clock, say every day at 0:00 UTC, and where the local
clocks are loosely synchronized, say they agree on which day and hour it is. Hence, the
model is partially synchronous with long stretches of asynchrony. Such a setting implies
an upper bound on the real time available to an adversary for corrupting servers in a
certain phase, which justifies the assumption that an adversary corrupts only t servers
in the same local phase [6].

The formal model of [9] does not further constrain the synchronization of phases,
i.e., it leaves the scheduling of phases up to the adversary. This is to ensure that the
security of a protocol does not rely on any synchrony assumptions, and hence, is not
affected by timing attacks.

Network and Adversary. We adopt the basic system model from [9], which is param-
eterized by a security parameter k; a function ε(k) is called negligible if for all c > 0
there exists a k0 such that ε(k) < 1

kc for all k > k0. The network consists of n servers
P1, . . . , Pn and an adversary which are all probabilistic interactive Turing machines
(PITM) [10] that run in polynomial time in k. The random tape of a server is initialized
at the beginning of the computation, and we assume that the servers can erase informa-
tion. There is also an initialization algorithm run by a trusted dealer before the system
starts. On input k, n, t, and further parameters, it generates the state information used
to initialize the servers.

Every server operates in a sequence of m(k) local phases, where m(k) is a poly-
nomial. The phases are defined with respect to dedicated input actions of the form
(in, clock tick), scheduled by the adversary. The local phase of a server is defined as
the number of such input actions it has received.

The servers are connected by a proactive secure asynchronous network that allows
every pair of servers to communicate authentically and privately whenever they are in
the same local phase. The scheduling of the communication is determined by the ad-
versary. Formally, we model such a network as follows. There exists a global set of
messagesM, whose elements are identified by a label (s, r, l, τ) denoting the sender
s, the receiver r, the length l of the message, and the phase τ when the message has
been sent. The adversary sees the labels of all messages inM, but not their contents.
All communication is driven by the adversary, and proceeds in steps as follows. Ini-
tially,M is empty. At each step, the adversary performs some computation, chooses a
server Pi, and selects some message m ∈ M with label (s, i, l, τ), where Pi must be
currently in local phase τ . The messagem is then removed fromM, and Pi is activated
with m on its communication input tape. When activated, Pi reads the contents of its

155

communication input tape, performs some computation, and generates one or more re-
sponse messages, which it writes to its communication output tape. Then, the response
messages are added to M, and control returns to the adversary. This step is repeated
arbitrarily often until the adversary halts. We view this sequence of steps as logical
time, and sometimes use the phrase “at a certain point in time” to refer to such a step.
Such proactive secure asynchronous networks can be implemented based on a secure
co-processor [18], or on the assumption that the network itself is authentic during short
periods of time, allowing the exchange of fresh communication keys [19].

We assume an adaptive mobile fail-stop adversary. The adversary may corrupt a
server Pi at any point in time by activating it on a special input action. After such an
event, she may read the entire internal state of Pi, which includes its random tape but
not previously erased information. Furthermore, she may observe all messages being
received, until she leaves the server. During such a period of time, we call a server
corrupted; at every other point in time, a server is called honest. The adversary may also
cause a corrupted server to stop executing a protocol. We call an adversary t-limited if
for any phase τ , she corrupts at most t servers that are in a local phase τ or τ + 1.

Protocol execution and notation. In our model, protocols are invoked by the adver-
sary. Every protocol instance is identified by a unique string ID , which is chosen by the
adversary when it invokes the instance. For a protocol instance ID , we model the spe-
cific input and output actions of a server in terms of messages of the form (ID , in, . . .)
and (ID , out, . . .) that a server may receive and produce, respectively. Messages that
servers send to each other over the network on behalf of an instance ID have the form
(ID , type, . . .), where type is defined by the protocol. We call a message associated
with a protocol instance ID if it is of the form (ID , . . .).

We describe a protocol in terms of transition rules that are executed in parallel. Such
a transition rule consists of a condition on received messages and other state variables,
and of a sequence of statements to be executed in case the condition is satisfied. We de-
fine parallel execution of transition rules as follows. When a server is activated and the
condition of one or more transition rule is satisfied, one such rule is chosen arbitrarily
and the corresponding statements are executed. This is repeated until no more condi-
tions of transition rules are satisfied. Then, the activation of the server is terminated.

A protocol instance may also invoke another protocol instance by sending it a suit-
able input action and obtain its output via an output action. We assume that there is an
appropriate server-internal mechanism which creates the instance for the sub-protocol,
delivers the input message, and passes the produced output message to the calling pro-
tocol. Furthermore, we assume that upon termination of a protocol instance, all internal
variables associated with this instance are erased.

Efficiency Measures and Termination. We define the message complexity of a pro-
tocol instance as the number of all associated messages produced by honest servers. It
is a family of random variables that depend on the adversary and on k. Similarly, the
communication complexity of a protocol instance is defined as the bit length of all as-
sociated messages, and is also a family of such random variables. To define the latency
(round complexity) of a protocol, we follow the approach of [20], where informally
speaking the latency of an execution is the absolute duration of the execution divided
by a longest message delay in this execution, where both times are as measured by an

156

imaginary external clock. The latency of a protocol is a latency of a worst-case execu-
tion. (For details see the full version of [20], page 6.)

These quantities define a protocol statistic X , i.e., a family of real-valued, non-
negative random variables {XA(k)}, parameterized by the adversaryA and the security
parameter k, where each XA(k) is a random variable induced by running the system
withA. We call a protocol statistic uniformly bounded if there exists a fixed polynomial
p(k) such that for all adversariesA, the probability Pr[XA(k) > p(k)] is negligible.

As usual in asynchronous networks, we require liveness of a protocol, i.e., that
“something good” eventually happens, only to the extent that the adversary delivers
in every phase all associated messages among the servers that remain honest during this
phase. As in [21], we define termination as the combination of liveness and an efficiency
condition, which requires a protocol to have uniformly bounded message complexity,
i.e., the number of messages produced by the protocol is independent of the adversary.

Cryptographic Assumptions. Our constructions are based on the assumption that
there exists pseudo-random functions [13] defined as follows (sketch): Let Fk denote
the set of functions from {0, 1}k → {0, 1}k, and let e ∈R Dom denote the process of
choosing an element e uniformly at random from domain Dom. Finally, let Df denote
the execution of an algorithm D when given oracle access to f , where f is a random
variable over Fk. We say that D with oracle access distinguishes between two random
variables ψ and g over Fk with gap s(k), if |Pr[Dψ(1k) = 1] − Pr[Dg(1k) = 1]| =
s(k). We say a random variable ψ over Fk is s(k)-pseudorandom, if no polynomial
time in k algorithmD with oracle access distinguishes ψ from g ∈R Fk with gap s(k).

A function family Ψk = {ψl}l∈{0,1}k (with ψl ∈ Fk) is called s(k)-pseudorandom,
if the random variable ψl for l ∈R {0, 1}k is s(k)-pseudorandom. If s(k) is negligible,
the collection {Ψk}k∈N is called pseudorandom. We consider pseudorandom collections
which are efficiently constructible, i.e., there exists a polynomial time algorithm that on
input l, x ∈ {0, 1}k outputs ψl(x).

Pseudorandom function families can be constructed from any pseudorandom gen-
erator [13], which in turn could be constructed from any one-way function [22]. Al-
ternatively, one could trust and use much simpler constructions based on AES or other
widely available cryptographic functions.

In our protocols we make use also of distributed pseudorandom functions (DPRF),
as introduced by Naor et al. [23]. In a DPRF the ability to evaluate the function is dis-
tributed among the servers, such that any authorized subset of the servers can evaluate
the function, while no unauthorized subset gets any information about the function.
For example, in a threshold DPRF the authorization to the evaluation of the functions
is determined by the cardinality of the subset of the servers. In the sequel, we denote
by Φk = {ϕl}l∈{0,1}k a family of efficiently constructible distributed pseudorandom
functions. Moreover, we assume that if Φk denotes a DPRF with threshold κ, and if
every server holds a polynomial κ-out-n share ri of a seed r (where all ri’s are from
the same domain as r) then ϕr(x) can be efficiently computed from any set of κ values
ϕri

(x) for any position x ∈ {0, 1}k. Threshold DPRFs with this property are also called
non-interactive. Nielsen [24] showed how to construct efficiently such non-interactive
threshold DPRFs based on the decisional Diffie-Hellman assumption [25].

157

3 Technical Roadmap

Hybrid Secret Sharing. A basic tool we need is a κ-out-n hybrid secret sharing
scheme: it allows a dealer to share a secret value among all other servers, such that ev-
ery server receives an additive n-out-n share of the secret, as well as a κ-out-n backup
share of every other server’s additive share (t+ 1 ≤ κ ≤ n). Moreover, it guarantees to
terminate for any server if the dealer is honest; otherwise, it either terminates for none
or for all honest servers. Details of our scheme are given in Section 4.

Reconstructible Proactive Pseudorandomness (PPR). The key to our solutions for
proactive secret sharing and for joint random secret sharing is a reconstructible PPR
scheme. Such a scheme provides at every phase τ to every server Pi a secret value pr τ,i
which looks completely random to the adversary. Furthermore, any set of n− t servers
must be able to reconstruct the value pr τ,j of any other server Pj without affecting the
secrecy of the random value pr τ ′,j computed by this server in another phase τ ′ 6= τ .

Our implementation assumes a trusted dealer that provides in the first phase every
server Pi with a random key ri, and with a (n − t)-out-n backup share rji of every
other server’s key rj . The idea is to compute pr τ,i as ϕri

(c), where {ϕl} is a DPRF
with threshold (n− t), and c is some constant (pseudorandomness and constructibility
of pr τ,i then follows by the properties of DPRFs). This approach requires the servers
to refresh in every phase their keys ri (and shares r1i, . . . , rni) such that the fresh keys
of honest servers are unknown to the adversary. This can be done as follows.

In a first step, Pi shares the pseudorandom value ψri
(a) (where a denotes some

public constant) among all other servers using a (n − t)-out-n hybrid secret sharing
scheme, where it derives all random choices using its current key ri as a seed to a
pseudorandom function. It then computes its new key r′i as the sum of the additive
shares provided by all these hybrid secret sharing schemes (the new shares r′1i, . . . , r

′
ni

are computed as the sum of all provided backup shares). To do this, Pi waits until n− t
servers have completed their sharing scheme as a dealer; for every other server Pj , it
reveals the share rji. It can now simply wait until either Pj’s sharing scheme terminates,
or until it receives enough shares rjl from other servers Pl to reconstruct rj and derive
the missing shares thereof; since a sharing scheme terminates either for none or for all
servers, one of the two cases eventually happens.

Notice that the servers need not agree on whether to derive the missing shares from
the sharing schemes, or from the reconstructed key rj , as both ways provide the same
values. Our protocol ensures that there is at least one honest server whose sharing
scheme is not reconstructed. This ensures secrecy of the new keys r′i.

Proactive Secret Sharing (PSS). Suppose that at the beginning of the computation, a
trusted dealer shares a secret s among the servers. To prevent a mobile adversary from
learning s, the servers have to compute fresh shares of s whenever they enter a new
phase. This can be done using a proactive secret sharing scheme.

Our implementation for PSS relies on an underlying PPR scheme (initialized by the
dealer). Furthermore, it assumes that the trusted dealer initially provides every server
with an additive share of the secret s, and with a (t + 1)-out-n backup share of every
other server’s additive share.

In an epoch τ , the servers refresh their shares of the secret by first re-sharing their
additive share of s using a (t+1)-out-n hybrid sharing scheme; in this step, every server

158

Pi derives all its random choices by using the current random value pr τ,i (provided by
the PPR scheme) as a seed to a pseudorandom function.

As in the PPR scheme, every server then computes its fresh additive share of s as
the sum of the additive shares provided by all re-sharing protocols (the backup shares
are computed analogously). It therefore waits for n− t re-sharing schemes to terminate,
and reconstructs the remaining schemes in public. This can be done by reconstructing
for every corresponding dealer Pj the random value pr τ,j as well as Pj’s current ad-
ditive share of the secret. Reconstructing pr τ,j can be done using the reconstruction
mechanism of the PPR scheme, whereas Pj’s additive share can be reconstructed by
revealing the corresponding backup shares.

Joint Random Secret Sharing (JRSS). The goal of a JRSS protocol is to provide
every server with a (t+ 1)-out-n share of a random value e unknown by the adversary.
It can be executed repeatedly during the phases. Our implementation works exactly
as the above protocol for refreshing a sharing, except for the following differences.
In an instance with tag ID of protocol JRSS, a server Pi derives its random choices
from the (pseudo)random value ϕri

(ID) (as opposed to pr τ,i = ϕri
(c)), where ri and

{ϕl} is the current key of Pi and the DPRF, respectively, used by the underlying PPR
scheme. It then shares a random value ei and proceeds as above. If the sharing scheme
of a server Pj needs to be reconstructed, the servers reconstruct only the corresponding
randomness ϕrj

(ID). Adding up all backup shares provided by the sharing schemes
yields the desired (t+ 1)-out-n share of the random value e = e1 + · · ·+ en.

Building Proactive Cryptosystems. Our protocols for PSS and for JRSS allow to
build proactive versions of a large class of discrete logarithm-based cryptosystems with-
out the use of expensive agreement sub-protocols. The idea is to share the key of the
cryptosystem using our PSS protocol, and to accomplish the cryptographic operation
using a distributed protocol. Such a protocol can be derived by combining our JRSS
protocol with known techniques from threshold cryptography. We illustrate this idea in
Section 8, considering Schnorr’s signature scheme [17] as example.

4 Hybrid Secret Sharing

In this section, we describe the syntax and security properties of our protocol for hy-
brid secret sharing, HybridShareκ, which will serve as a basic tool in our subsequent
constructions. A description and analysis of the protocol is given in [1].

Intuitively, our hybrid secret sharing protocol allows a dealer to share a secret s
among n servers in such a way that every server Pi computes an additive share si
of the secret, and a κ-out-n backup share sji of every other server’s additive share,
where t + 1 ≤ κ ≤ n (the idea of backing up additive shares is inspired by [26]).
Our specification treats the randomness r used by the dealer as an explicit parameter,
and requires that the share of every server is a deterministic function of s and r. This
constructibility of the shares will be essential for our purposes.

Formally, our sharing protocol HybridShareκ has the following syntax. Let Fq be an
arbitrary finite field, denoting the domain of secrets. There is a distinguished server Pd
called the dealer which activates an instance ID .d of HybridShareκ upon receiving an
input of the form (ID .d, in, share, s, r), where s ∈ Fq and r ∈ {0, 1}k; if this happens,
we also say the dealer shares s over Fq using randomness r through ID .d. Every other

159

server activates ID .d upon receiving a message (ID .d, in, share). A server terminates
ID .dwhen it produces an output of the form (ID .d, out, shared, si, s1i, . . . , sni), where
si, s1i, . . . , sni ∈ Fq.

Our protocol HybridShareκ has message complexity of O(n2), communication
complexity of O(kn3) bits, and round complexity equal four. Furthermore, for any t-
limited adversary where t < n

3 , the following holds: Whenever a dealer shares a secret
s over Fq using randomness r through an instance ID .d of HybridShareκ, it holds that:

LIVENESS: If the dealer is honest throughout ID .d, then all honest servers terminate
ID .d, provided all servers activate ID .d in the same phase τ , and the adversary
delivers all messages among servers honest during phase τ .

AGREEMENT: If one honest server terminates ID .d, then all honest servers terminate
ID .d, provided all servers activate ID .d in the same phase τ , and the adversary
delivers all messages among servers honest during phase τ .

CORRECTNESS: The values s and r uniquely define n polynomials fj(x) ∈ Fq[x] for
j ∈ [1, n] of degree κ, such that s =

∑n
j=1 fj(0), and the following holds: If a

server Pi outputs si, s1i, . . . , sni, then fi(0) = si and fj(i) = sji for j ∈ [1, n].
PRIVACY: If the dealer is honest throughout ID .d, and s and r are uniformly distributed

in Fq and {0, 1}k, respectively, then the adversary cannot guess s with probability
significantly better than 1/|Fq|.

EFFICIENCY: The message complexity of ID .d is uniformly bounded.

5 Asynchronous Reconstructible Proactive Pseudorandomness

In this section we give a definition for an asynchronous reconstructible PPR scheme
along the lines of [12], and describe our implementation. The security proof of the
scheme is contained in the full version of the paper.

5.1 Definition

Let l(k) be a fixed polynomial. An asynchronous reconstructible proactive pseudoran-
domness scheme consists of a probabilistic setup algorithm σ, a proactive pseudoran-
domness protocol π, and a reconstruction protocol ρ. An instance of such a scheme has
an associated tag ID and works as follows.

The setup algorithm σ produces the initial state information state0,i and the initial
random value pr0,i of every server Pi. It is executed at the beginning of the compu-
tation by a trusted dealer. At the beginning of every phase τ ∈ [1,m(k)], the servers
execute an instance ID |ppr.τ of π to compute a fresh pseudorandom value for phase
τ . The input action for server Pi carries the state information stateτ−1,i of the previ-
ous phase, and has the form (ID |ppr.τ , in, stateτ−1,i). The output action comprises the
pseudorandom value pr τ,i and the updated state information stateτ,i. It has the form
(ID |ppr.τ , out, pr τ,i, stateτ,i). If Pi does not produce an output in phase τ (which
could be the case if the server was corrupted and halted in the previous phase) then its
input stateτ,i to the subsequent instance of π is the empty input ⊥.

In every phase τ ∈ [1,m(k)], the servers may execute an instance ID |recj .τ of pro-
tocol ρ to reconstruct the current pseudorandom value of server Pj . The corresponding
input and output actions have the form (ID |recj .τ , in, stateτ,i), and (ID |recj .τ , out, zi),

160

respectively, where stateτ,i denotes the current state information of Pi. We say a server
reconstructs a value zi for Pj , if it outputs a message (ID |recj .τ , out, zi).

As in [12], we define the security requirements with respect to the following on-line
attack: The scheme is run in the presence of a t-limited adversary for m(k) phases. At
every phase τ , the adversary may also instruct the servers to reconstruct the value pr τ,i
of any server. At a certain phase l (chosen adaptively by the adversary), the adversary
chooses an honest server Pj whose value pr τ,j is not reconstructed at that phase. She
is then given a test value v, and the execution of the scheme is resumed for phases
l+1, . . . ,m(k). (Our definition will require that the adversary is unable to say whether
v is Pj’s output at phase l, or a random value.)

For an instance ID of a PPR scheme and an adversaryA, let A(ID ,PR) denote the
output of A after an on-line attack on ID , when v is indeed the output of Pj ; similarly,
let A(ID , R) denote the corresponding output when v is a random value.

Definition 1. Let σ, π, and ρ be given as above. We call (σ, π, ρ) a t-resilient asyn-
chronous reconstructible proactive pseudorandomness scheme if for every instance ID ,
and every t-limited adversary A the following properties hold:

LIVENESS: Every server Pi honest throughout a phase τ ∈ [1,m(k)] terminates in-
stance ID |ppr.τ in phase τ , provided that in every phase τ ′ ∈ [1, τ], the adversary
activates each server honest throughout τ ′ on ID |ppr.τ ′, and delivers all associ-
ated messages among servers honest during phase τ ′. Furthermore, if every such
server Pi subsequently activates ID |recj .τ for some j ∈ [1, n], it reconstructs some
value zi for Pj , provided the adversary delivers all associated messages among
servers honest during phase τ .

CORRECTNESS: If a server Pj outputs (ID , out, pr τ,j , stateτ,j) in some phase τ ∈
[1,m(k)], and another server Pi reconstructs zi for Pj in phase τ , then zi = pr τ,j .

PSEUDORANDOMNESS: |Pr[A(ID ,PR) = 1]− Pr[A(ID , R) = 1]| is negligible.
EFFICIENCY: The message complexity of an instance of π is uniformly bounded.

5.2 Implementation

Let Φk = {ϕi}i∈{0,1}k denote a DPRF with threshold n − t, and a,b,c denote dis-
tinct arbitrary constants in the domain of Φk. For convenience, we view elements from
{0, 1}k as elements from F2k (and conversely), according to some fixed bijective map
from {0, 1}k to F2k . All computations are done over F2k .

The Setup Algorithm σppr. The setup algorithm provides to every server Pi a ran-
dom value ri ∈ F2k , and a (t + 1)-out-n share rji ∈ F2k of the random value
of every other server. It therefore chooses n random polynomials fi(x) ∈ F2k [x]
of degree t for i ∈ [1, n]. The initial state information of a server Pi is defined as
state0,i , (fi(0), f1(i), . . . , fn(i)). The initial pseudorandom value is computed as
pr0,i ← ϕfi(0)(c).

The Reconstruction Protocol ρppr. Let ri, r1i, . . . , rni denote Pi’s local input to an
instance ID |recj .τ of protocol ρppr. Reconstructing the pseudorandom value pr τ,j of
server Pj is straightforward. Every server Pi computes pr τ,ji ← ϕrji

(c), and sends
it to every other server. Using the reconstruction mechanism of Φk, every server can
compute pr τ,j upon receiving n− t “shares” pr τ,jm from other servers Pm.

161

The Asynchronous Proactive Pseudorandomness Protocol πppr. Let ri, r1i, . . . , rni
denote server Pi’s local input stateτ−1,i to instance ID |ppr.τ of πppr. To refresh this
sharing, and to compute fresh pseudorandom values {pr τ,i}, every server Pi executes
the following transition rules in parallel.

SHARE: When Pi invokes the protocol with non-empty input, it shares the pseu-
dorandom value ϕri

(a) over F2k using randomness ϕri
(b) through an instance

ID |ppr.τ |share.i of protocol HybridSharen−t.
SHARE-TERMINATION: Whenever Pi terminates a sharing protocol ID |ppr.τ |share.j,

it stores the corresponding output in the local variables d̄ji, d̄j1i, . . . , d̄jni. If the
(n − t)’th such sharing protocol has terminated and Pi has received non-empty
input before, it sends to all servers a reveal message containing the values ϕrmi

(a)
and ϕrmi

(b) for servers Pm whose sharing protocol did not terminate yet.
RECONSTRUCT: Whenever Pi receives n−t values ϕrmi

(a), ϕrmi
(b) for a server Pm,

it reconstructs ϕrm
(a) and ϕrm

(b) using the reconstruction mechanism of Φk . It
then computes the values d̄mi, d̄m1i, . . . , d̄mni as the i’th share when sharing a
secret ϕrm

(a) using randomness ϕrm
(b) according to protocol HybridSharen−t.

COMBINE: When Pi has computed values d̄ji, d̄j1i, . . . , d̄jni for every j ∈ [1, n], it
computes its local output values pr τ,i and stateτ,i , (r′i, r

′
1i, . . . , r

′
ni) as r′i ←∑n

j=1 d̄ji, r
′
mi ←

∑n
j=1 d̄jmi for m ∈ [1, n], and pr τ,i ← ϕr′

i
(c).

The scheme guarantees pseudorandomness because the pseudorandom values ϕrh
(a)

and ϕrh
(b) of at least one honest server remain hidden from the adversary. This is

guaranteed because all honest servers together reveal at most (n− t)t “shares” ϕrij
(a)

and ϕrij
(b). But to reconstruct ϕri

(a) and ϕri
(b) of all (n − t) honest servers, the

adversary needs at least (n− t)(n− 2t) ≥ (n− t)(t+ 1) such shares, as the threshold
of Ψk is (n− t).

The reason why the scheme avoids an agreement (while preserving constructibility)
is the following: if an honest server Pi terminates the protocol ID |ppr.τ |share.j and
computes the tuple (d̄ji, d̄j1i, . . . , d̄jni), then this is the same tuple it would compute
by first reconstructing the randomness rj of Pj from backup shares, and then repro-
ducing the computations of Pj in the sharing protocol ID |ppr.τ |share.j. Hence, the
servers do not have to agree whether to compute their share of Pj’s sharing protocol by
the SHARE-TERMINATION or the RECONSTRUCT transition rule, respectively, as both
rules provide the same share. We prove the following theorem in [1].

Theorem 1. (σppr, πppr, ρppr) is a t-resilient asynchronous reconstructible proactive
pseudorandomness scheme for t < n/3. It has a latency of five rounds, uses O(n3)
messages, and has a communication complexity of O(kn4) bits.

6 Refreshing a Sharing

In this section we define an asynchronous PSS scheme along the lines of [9], and sketch
our implementation. The security proof of the scheme can be found in [1].

6.1 Definition

Let K denote the domain of possible secrets, S denote the domain of possible shares,
and l(k) a fixed polynomial. An asynchronous proactive secret sharing scheme consists

162

of a setup algorithm σ, a proactive refresh protocol π, and a reconstruction protocol ρ.
An instance of a PSS has a tag ID and works as follows.

The setup algorithm produces for each serverPi the initial state information state0,i

and the initial share s0,i ∈ S of the secret. It is executed at the beginning of the computa-
tion by the trusted dealer. At the beginning of every phase τ ∈ [1,m(k)] the servers exe-
cute an instance ID |ref.τ of protocol π to refresh the old share sτ−1,i, and to update the
state stateτ−1,i. The corresponding input and output actions of server Pi have the form
(ID |ref.τ , in, sτ−1,i, stateτ−1,i) and (ID |ref .τ , out, sτ,i, stateτ,i), respectively, where
sτ−1,i and stateτ−1,i equal ⊥ in case Pi did not produce an output in phase τ − 1.

In every phase τ ∈ [1,m(k)], the servers may execute an instance ID |rec.τ of
protocol ρ to reconstruct the secret. The input and output actions for server Pi have the
form (ID |rec.τ, in, sτ,i), and (ID |rec.τ, out, zi), respectively, where sτ,i denotes the
current share as computed by the instance ID |ref .τ . We say that a server reconstructs a
value zi, when it outputs a message (ID |rec.τ, out, zi).

Definition 2. Let σ, π, and ρ be given as above. We call (σ, π, ρ) a t-resilient asyn-
chronous proactive secret sharing scheme, if for every instance ID , and every t-limited
adversary the following properties hold:

LIVENESS: Every server Pi honest throughout a phase τ ∈ [1,m(k)] terminates in-
stance ID |ref .τ in phase τ , provided that in every phase τ ′ ∈ [1, τ], the adversary
activates every server honest throughout phase τ ′ on ID |ref .τ ′, and delivers all
associated messages among servers honest during phase τ ′. Further, if every such
Pi subsequently activates ID |rec.τ , it reconstructs some value zi, provided the ad-
versary delivers all associated messages among servers honest during phase τ .

CORRECTNESS: After initialization, there exists a fixed value s ∈ K. Moreover, if an
honest server reconstructs a value zi, then zi = s.

PRIVACY: As long as no honest server activates an instance of ρ, the adversary cannot
guess s with probability significantly better than 1/|K|.

EFFICIENCY: The message complexity of π and ρ is uniformly bounded.

We stress that the security of the sharing does not depend on the timely delivery of
messages. Even if the adversary fails to deliver the messages within prescribed phase,
the privacy of the shared secret is not compromised.

6.2 Implementation

Our implementation of the PSS scheme is a suitable example to illustrate how the PPR
scheme introduced in the previous section can be used to avoid the need for agreement
even if it seems to be inherently necessary. We therefore briefly recall the standard
solution [9] for PSS that depends on agreement. Here, every server initially receives
a (t + 1)-out-n share of the secret. To refresh the shares, every server provides every
other server with a (t + 1)-out-n sub-share of its own share, using a suitable sharing
scheme. The servers then agree on a set of at least t+1 servers whose re-sharing scheme
terminates for all honest servers, and compute the new share as the linear combination
of the received sub-shares (with Lagrange coefficients).

We follow the same approach (see Section 3), but avoid agreement by reconstructing
the re-sharing schemes of the slowest (possibly crashed) servers in public. However,

163

this approach only works if the publicly reconstructed sub-shares are identical to the
ones which the re-sharing scheme would produce. Otherwise, the servers would again
have to agree on which sub-shares to reconstruct, and which to take from the re-sharing
schemes. This is where the PPR scheme comes in handy, as it allows to reconstruct the
random choices made by a server when it is re-sharing its share. The technical details
are given below. Let the domain of possible secrets be a field Fq where q ≤ 2k. All
computations are in Fq or F2k , as is clear from the context.

The Setup Algorithm σpss. The setup algorithm provides every server with an additive
share si of a randomly chosen secret, and with a (t+ 1)-out-n share sji of every other
server’s additive share. It therefore chooses n random polynomials fi(x) ∈ Zq [x] of
degree t for i ∈ [1, n] (the secret is defined as s =

∑n
i=1 si). The initial share of server

Pi is defined as s0,i , (si, s1i, . . . , sni), where si = fi(0) and sji = fj(i).
Additionally, the setup algorithm provides every server with the initial state infor-

mation needed to initialize a PPR scheme. It therefore runs the setup algorithm σppr, and
computes the initial state information state0,i of server Pi as the tuple (stateppr

0,i , pr0,i)

The Reconstruction Protocol ρpss. The reconstruction protocol is straight forward.
Every server Pi sends its input sτ,i , (si, s1i, . . . , sni) to every other server. Upon
receiving t+1 such values the server interpolates all missing shares sj from the received
sub-shares sji by Lagrange interpolation, and computes the secret as s =

∑n
j=1 sj .

The Refresh Protocol πpss. Let (si, s1i, . . . , sni) and (stateppr
τ−1,i, prτ−1,i) denote

server Pi’s local input sτ−1,i and stateτ−1,i, respectively, to instance ID |ref .τ . To
compute a fresh share (s′i, s

′
1i, . . . , s

′
ni) and updated state information (stateppr

τ,i , pr τ,i),
every server Pi executes the following transition rules in parallel:

SHARE: When Pi invokes the protocol, it activates an instance ID |ppr.τ of protocol
πppr with input stateppr

τ−1,i to compute (stateppr
τ,i , prτ,i). Furthermore, if Pi received

non-empty input, it shares its share si over Fq using randomness pr τ−1,i through
an instance ID |ref.τ |share.i of protocol HybridSharet+1.

SHARE-TERMINATION: Whenever Pi terminates an instance ID |ref.τ |share.j of a
sharing protocol , it stores the corresponding output in the local variables ēji,
ēj1i, . . . , ējni. If for n− t servers Pj the corresponding protocols ID |ref .τ |share.j
have terminated, it sends the indices of all servers whose sharing protocol did not
terminate yet to every other server in a missing message.

REVEAL: If for some indexm, Pi receives (n−t) missing messages from other servers
containing this index and has received non-empty input before, it sends a reveal

message to every other server containing the backup share smi and the index m.
Next, it activates the instance ID |recm.τ of protocol ρppr with input state

ppr
τ−1,i to

reconstruct the randomness pr τ−1,m of Pm.
RECONSTRUCT: Whenever Pi receives (t + 1) reveal messages for the same index

m and reconstructs the value pr τ−1,m for Pm, it computes the share sm from the
received backup shares by Lagrange interpolation. It then computes the tuple (ēmi,
ēm1i, . . . , ēmni) as the i’th share when sharing sm using randomness pr τ−1,m.

COMBINE: When Pi has computed values (ēmi, ēm1i, . . . , ēmni) for all m ∈ [1, n],
it computes the new share (s′i, s

′
1i, . . . , s

′
ni) as follows: s′i ←

∑n
j=1 ēji, s

′
mi ←∑n

j=1 ējmi for m ∈ [1, n].

164

Notice that the protocol has the same message flow as the pseudorandomness protocol
πppr, except for the additional missing messages. They ensure the secrecy of the share sh
of at least one honest server Ph, and are needed because the servers hold a (t+1)-out-n
hybrid sharing of the secret s. We remark that for refreshing a (n − t)-out-n hybrid
sharing, the servers could omit waiting for t+ 1 such messages, and could execute the
REVEAL rule directly at the end of the SHARE-TERMINATION rule. This would save
one communication round. The proof of the following theorem can be found in [1].

Theorem 2. The tuple (σpss, πpss, ρpss) is a t-resilient asynchronous proactive secret
sharing scheme for t < n/3. The refresh protocol πpssusesO(n3) messages, has latency
of six rounds and communication complexity of O(kn4).

7 Asynchronous Proactive Joint Random Secret Sharing

The goal of an asynchronous proactive joint random secret sharing scheme is to enable
the servers to repeatedly generate (t+1)-out-n sharings of random values, such that the
random values remain hidden from the adversary. Due to lack of space, we only sketch
the definition and implementation.

Definition. An asynchronous proactive joint random secret sharing (JRSS) scheme
consists of a setup algorithm σ, a proactive update protocol π, a joint random secret
sharing protocol γ, and a reconstruction protocol ρ. An instance of such a scheme has
a tag ID and works as follows.

At the beginning of the computation, a trusted dealer executes the setup algorithm
σ and provides every server with its initial state information state0,i. At the beginning
of every phase τ ∈ [1,m(k)], the servers execute protocol π to update the state in-
formation {stateτ−1,i}. During every phase τ ∈ [1,m(k)], the servers can repeatedly
execute protocol γ to generate a sharing of a random value zc in a domain K. Every
such instance has a unique tag ID |genc. For every server Pi, it takes the current state
information stateτ,i as input, and produces as output a share sc,i of the random value
zc. These shares may serve as input to the reconstruction protocol ρ with tag ID |recc,
which produces for every server Pi a value zc,i as output.

For a JRSS scheme to be secure, we require that when the first server completes an
instance ID |genc, there is a fixed value zc such that the following holds: (Correctness)
If a server Pi terminates ID |recc and outputs zc,i, then zc,i = zc. Furthermore, (Pri-
vacy) as long as no honest server activates ID |recc, the adversary cannot guess zc with
probability significantly better than 1/|K|.

Implementation. Our implementation builds on our PPR scheme (σppr, πppr, ρppr).
Let Φk = {ϕi} denote the DPRF family used by the PPR scheme, a and b denote
two distinct constants, and H : {0, 1}∗ → {0, 1}k denote a collision resistant hash
function (it is well-known how to construct such functions from standard computational
assumptions such as the hardness of the discrete-logarithm problem).

The state information {stateτ,i} of our JRSS scheme comprises only the state in-
formation of our PPR scheme, i.e., stateτ,i , (ri, r1i, . . . , rni). Protocols σjrss and πjrss

for setting up and refreshing this state, respectively, consist only of calling the proto-
cols σppr and πppr. The protocol γjrss for generating sharings of random values in {0, 1}k

165

works as follows. Given input stateτ,i , (ri, r1i, . . . , rni) to an instance ID |genc of
γjrss, every server Pi performs the following steps (all computations are done in F2k).

SHARE: When Pi invokes the protocol with non-empty input, it shares
ϕri

(H(ID |genc|a)) over F2k through an instance of protocol HybridSharet+1

with tag ID |genc|share.i using randomness ϕri
(H(ID |genc|b)).

SHARE-TERMINATION: Whenever Pi terminates a sharing protocol ID |genc|share.j,
it stores the corresponding output in local variables ēji, ēj1i, . . . , ējni. Once n− t
sharing protocols have terminated and Pi has received non-empty input before, it
sends to all servers a reveal message containing values ϕrmi

(H(ID |genc|a)) and
ϕrmi

(H(ID |genc|b)) for servers Pm whose sharing protocol did not terminate yet.
RECONSTRUCT: Upon receiving n−t reveal messages for the same indexm, Pi recon-

structs values ϕrm
(H(ID |genc|a)) and ϕrm

(H(ID |genc|b)) (using the threshold
evaluation property of Φk) and derives the missing sub-share ēmi, ēm1i, . . . , ēmni.

COMBINE: When Pi has computed values (ēmi, ēm1i, . . . , ēmni) for everym ∈ [1, n],
it computes sc,i , (si, s1i, . . . , sni) as follows: si ←

∑n
j=1 ēji, smi ←∑n

j=1 ējmi for m ∈ [1, n].

The shared secret value zc is never reconstructed but equals
∑n

i=1 si. The protocol
has a latency of five rounds, a message complexity of O(n3), and a communication
complexity of O(kn4) bits.

An instance ID |recc of the reconstruction protocol ρjrss works as follows. Every
server i sends its share sc,i , (si, s1i, . . . , sni) — which it receives as input — to every
other server. Upon receiving t+1 such values, Pi derives all values sj from the received
sub-shares sjm by Lagrange interpolation and computes the secret as zc =

∑n
j=1 sj .

8 A Simple Proactive Secure Signature Scheme
Our protocols for PSS and JRSS can be used to proactivize a large class of discrete-
logarithm based public-key cryptosystems for signing and encryption. In this section,
we sketch how this can be done considering Schnorr’s signature scheme as an example.

Let p denote a large prime, and 〈g〉 denote a multiplicative subgroup of Z
∗
p of prime

order q such that q|p−1. In the regular centralized Schnorr signature scheme, the secret
key x of the signer is a random element from Zq , and the public key is y = gx. To sign
a message m ∈ {0, 1}∗, the signer picks a random number r ∈ Zq , and computes the
signature (ρ, σ) as ρ← gr mod p and σ ← r+H(m||ρ)x mod q. A signature (ρ, σ)
on a message m can then be verified by checking that gσ = ρyH(m||ρ) mod p.

In a proactive signature scheme, the power to sign a message is distributed among
the servers such that in every epoch, only a set of at least t+1 servers can generate valid
signatures, whereas any smaller set can neither compute a signature nor prevent the
overall system from operating correctly. For a formal treatment of proactive signature
schemes we refer to [12].

Proactivizing Schnorr’s signature scheme in the above sense can be done as follows.
First, a trusted dealer chooses the values p, q, g, x as in the standard Schnorr scheme,
and initializes a PSS scheme with a sharing of x. It also initializes a JRSS scheme,
and announces the public parameters p, q, g and y. To compute a signature (ρ, σ) on a
message m, every server i performs the following steps:

166

generate ρ = gr:
(1) Use the underlying JRSS scheme to compute a (t+1)-out-n share ri of a random
value r ∈ Zq .
(2) Reveal the value ρi = gri mod p to all other servers.
(3) Upon receiving t+1 values ρj , compute ρ from the values ρj by using Lagrange

interpolation in the exponent, i.e., ρ ←
∏
i∈Q ρ

λj

j mod p. Here, Q denotes the
indices of the received values ρi, and λi the Lagrange interpolation coefficient for
the set Q and position 0.

generate σ = r +H(m||ρ)x:
(1) Reveal the value σi = ri + H(m||ρ)xi mod q to all other servers; here, xi
denotes server i’s current share of x as computed by the underlying PSS scheme.
(2) Upon receiving t + 1 values σj , compute σ by using Lagrange interpolation,
i.e., σ ←

∑
j∈S λjσj mod q. Here, S denotes the indices of the received values

σj , and λj the Lagrange coefficients for the set S and position 0.

Verification of the computed signature can be done exactly as in the centralized
Schnorr scheme. One can show that this proactive signature scheme is as secure as the
centralized Schnorr scheme in the following sense: If there exists a t-limited mobile
adversary against the proactive signature scheme that can forge a signature (under an
adaptively chosen message attack), then there exists an adversary against the centralized
Schnorr scheme that can forge signatures (under an adaptively chosen message attack).

Proactivizing other discrete-logarithm signature schemes such as ElGamal [15] or
DSS [16] can be done in a similar way (to solve the inversion problem that occurs in
DSS, one can use the approach of [27]).

9 Conclusions and Open Problems

In this paper, we have presented the first asynchronous schemes for proactive secret
sharing and proactive joint random secret sharing with a bounded worst case complex-
ity. Moreover, our solutions run three times faster (in terms of latency) than the best
known previous solutions.

The technical novelty of our schemes is that they do not rely on an agreement sub-
protocol. The fact that agreement can be avoided is surprising on its own, as all known
previous techniques for implementing such schemes require the servers to have at some
point a common view of which servers have been crashed.

A natural open problem is to enhance our techniques to tolerate a Byzantine adver-
sary. Here, the main difficulty lies in designing a verifiable version of our hybrid secret
sharing scheme. In such a scheme, the dealer must be committed to a random value
(of the same size as the secret), such that every server can verify that the dealer has
indeed computed the shares by using this random value as a seed to a pseudorandom
function. In principle, this can be done using the technique of general zero-knowledge
proofs [10]. We suggest it as an open research problem to construct a pseudorandom
function together with efficient zero-knowledge proofs for this task.

References
1. Przydatek, B., Strobl, R.: Asynchronous proactive cryptosystems without agreement. Tech-

nical Report RZ 3551, IBM Research (2004)

167

2. Desmedt, Y.: Society and group oriented cryptography: A new concept. In: Proc.
CRYPTO ’87. (1987)

3. Desmedt, Y.: Threshold cryptography. European Transactions on Telecommunications 5
(1994) 449–457

4. Shamir, A.: How to share a secret. Communications of the ACM 22 (1979) 612–613
5. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure key generation for discrete-log

based cryptosystems. In: Proc. EUROCRYPT ’99. (1999) 295–310
6. Ostrovsky, R., Yung, M.: How to withstand mobile virus attacks. In: Proc. 10th ACM

Symposium on Principles of Distributed Computing (PODC). (1991) 51–59
7. Canetti, R., Gennaro, R., Herzberg, A., Naor, D.: Proactive security: Long-term protection

against break-ins. RSA Laboratories’ CryptoBytes 3 (1997)
8. Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive secret sharing or how to cope

with perpetual leakage. In: Proc. CRYPTO ’95. (1995) 339–352
9. Cachin, C., Kursawe, K., Lysyanskaya, A., Strobl, R.: Aysnchronous verifiable secret sharing

and proactive cryptosystems. In: Proc. 9th ACM CCS. (2002)
10. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-

systems. In: Proc. 17th ACM STOC. (1985) 291–304
11. Strobl, R.: Distributed Cryptographic Protocols for Asynchronous Networks with Universal

Composability. PhD thesis, ETH (2004)
12. Canetti, R., Herzberg, A.: Maintaining security in the presence of transient faults. In: Proc.

CRYPTO ’94. (1994) 425–438
13. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. Journal of

the ACM 33 (1986) 792–807
14. Zhou, L.: Towards fault-tolerant and secure on-line services. PhD thesis, Cornell Univ.

(2001)
15. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete loga-

rithms. IEEE Trans. Info. Theory IT 31 (1985)
16. National Institute for Standards, Technology: Digital signature standard (DSS). Technical

Report 169 (1991)
17. Schnorr, C.P.: Efficient signature generation by smart cards. J. of Cryptology 4 (1991)

161–174
18. Backes, M., Cachin, C., Strobl, R.: Proactive secure message transmission in asynchronous

networks. In: Proc. 21th ACM PODC. (2003)
19. Canetti, R., Halevi, S., Herzberg, A.: Maintaining authenticated communication in the pres-

ence of break-ins. J. of Cryptology 13 (2000) 61–106
20. Canetti, R., Rabin, T.: Fast asynchronous Byzantine agreement with optimal resilience. In:

Proc. 25th ACM STOC. (1993) full version at www.research.ibm.com/security/cr-ba.ps.
21. Cachin, C., Kursawe, K., Petzold, F., Shoup, V.: Secure and efficient asynchronous broadcast

protocols (extended abstract). In: Proc. CRYPTO 01. (2001) 524–541
22. Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any

one-way function. SIAM Journal on Computing 28 (1999) 1364–1396
23. Naor, M., Pinkas, B., Reingold, O.: Distributed pseudo-random functions and KDCs. In:

Proc. EUROCRYPT ’99. (1999) 327–346
24. Nielsen, J.B.: A threshold pseudorandom function construction and its applications. In: Proc.

CRYPTO ’02. (2002) 401–416
25. Boneh, D.: The decision Diffie-Hellman problem. In: Third Algorithmic Number Theory

Symposium. Volume 1423 of LNCS. (1998) 48–63
26. Rabin, T.: A simplified approach to threshold and proactive RSA. In: Proc. CRYPTO ’98.

(1998)
27. Canetti, R., Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Adaptive security for threshold

cryptosystems. In: Proc. CRYPTO ’99. (1999)

