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Abstract. Universal One-Way Hash Functions (UOWHFs) are families
of cryptographic hash functions for which first a target input is chosen
and subsequently a key which selects a member from the family. Their
main security property is that it should be hard to find a second input
that collides with the target input. This paper generalizes the concept
of UOWHFs to UOWHFs of order r. We demonstrate that it is possible
to build UOWHFs with much shorter keys than existing constructions
from fixed-size UOWHFs of order r. UOWHFs of order r can be used
both in the linear (r + 1)-round Merkle-Damg̊ard construction and in a
tree construction.

Keywords: Hash Function, Collision Resistant Hash Function (CRHF),
Universal One-Way Hash Function (UOWHF), Higher Order Universal
One-Way Hash Function

1 Introduction

Since the introduction of the notion of UOWHFs by Naor and Yung in 1989 [5],
it is widely believed that UOWHFs form an attractive alternative to CRHFs
(Collision Resistant Hash Functions). The main requirement for a UOWHF is
that it is hard to find a second preimage. First a challenge input is selected by
the opponent, subsequently a key is chosen which selects a member of the class
of functions and only after this choice the opponent has to produce a second
preimage with the same hash value (for this key) as the challenge input. This
should be contrasted to CRHFs, where first a key is selected and subsequently a
two colliding inputs need to be found; due to the birthday paradox, a black box
approach for a CRHF with an n-bit result takes on average about 2n/2 queries.
Simon [10] has demonstrated that a UOWHF is a strictly weaker concept than
a CRHF. UOWHFs can replace CRHFs in many applications; even for digital
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signatures this is feasible, but it should be noted that one becomes vulnerable
to attacks by the signers (who can cheat and choose the key before the target
message). The concept of UOWHFs has been generalized by Zheng et al. [12]
and by Mironov [4].

A standard approach to construct hash functions that take input strings of
arbitrary length is to start from a compression function that compresses input
strings of fixed length. For CRHFs, the Merkle-Damg̊ard construction is a widely
used and efficient method [2, 3]. Both authors showed independently that it is
sufficient for the hash function to be collision resistant that the compression
function is. Damg̊ard also proposed a tree construction. Naor and Yung showed
that it is possible in principle to build UOWHFs by composition [5]. However,
Bellare and Rogaway showed that even if the compression function is a UOWHF,
a 2-round Merkle-Damg̊ard iteration of this function may not be a UOWHF.

Subsequently, provably secure constructions have been developed based on
compression functions at the cost of an increase in key length. Bellare and Rog-
away [1] propose two types of constructions.

– The first type has a linear structure; two variants of the Merkle-Damg̊ard
construction were shown to be secure: the basic linear hash and the XOR
linear hash. Later, Shoup improved the XOR linear hash construction. He
shows that if one has a fixed size UOWHF which maps n bits to m bits (with
n > m), one can construct a UOWHF that can hash messages of bit-length
2t(m− n) + m bits to m using a key of bit-length t ·m and 2t applications
of the compression function. Mironov has proved that this construction is
optimal in terms of key size among linear constructions [4].

– The second type has a tree structure. Here the two constructions with a
security proof are the basic tree hash and the XOR tree hash (they extend
the work of [5]). XOR tree hash has subsequently been improved further, a.o.
by Sarkar [7, 8] and by Lee et al. [11], who reduce the key size and extend
these structures to higher dimensional parallel constructions.

1.1 Motivation

The special UOWHF made by Bellare and Rogaway [1] loses its universal one-
wayness when it is extended to 2-round Merkle-Damg̊ard construction. This ex-
ample motivated us to study general constructions that work for any UOWHF
compression function. It means that the Merkle-Damg̊ard construction cannot
be used for extending a universal one-way compression function in general. How-
ever, this property does not applied to all UOWHFs. The compression functions
of certain UOWHFs may not lose their universal one-wayness until they are ex-
tended to 3-round Merkle-Damg̊ard construction. In this case, a 2-round Merkle-
Damg̊ard construction based on the compression function can be used as another
compression function and so the key size of the whole scheme is reduced by a
factor of 2. This lead to promising results, since an important goal of research
on constructions extending UOWHFs has been optimalization of the key size.
We began with the Merkle-Damg̊ard construction, but we found that the tree
construction has the same problem as the Merkle-Damg̊ard construction.
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Intuitively, a UOWHF which does not lose its universal one-wayness until
it is extended to 3-round Merkle-Damg̊ard construction is a slightly stronger
primitive than Bellare-Rogaway’s special UOWHF. More generally, a UOWHF
which does not lose its universal one-wayness until it is extended to more round
Merkle-Damg̊ard construction is stronger. So, we need new security notions to
classify UOWHFs.

1.2 Our Contribution

We define the order of a UOWHF. We can classify UOWHFs according to the
order. The classes of UOWHFs of same order form a chain between CRHF and
UOWHF classes.

We show in Theorem 1 that if a UOWHF has a higher order, a Merkle-
Damg̊ard construction with more rounds based on it becomes a UOWHF. Theo-
rem 3 states that if a UOWHF has a higher order, a tree construction with more
levels becomes a UOWHFs. Theorems 1 and 3 are our main results. They con-
sider collisions of the same length only, since we want to use our Merkle-Damg̊ard
and tree constructions only as a compression function which plays the role of a
building block in the known constructions. Theorems 2 and 4 are generalizations
of Theorem 1 and 3 which are mainly of theoretical interest.

1.3 Organization of this Paper

This paper is organized as follows. Section 2 introduces our notation and defini-
tions and presents the counterexample of Bellare and Rogaway. In Sect. 3, our
new definition of higher order UOWHFs is introduced. Section 4 and 5 present
respectively the Merkle-Damg̊ard and the tree construction based on higher or-
der UOWHFs. Some concluding remarks are made in Sect. 6.

2 Preliminaries

We will follow the notation and computation models in [1].

2.1 Notation

We denote the concatenation of strings x and x′ by x||x′ or xx′. Σn is the set
of all strings of bit-length n. We use the notation Σm

n instead of Σnm when we
want to stress that each string consists of m blocks of bit-length n. The set of
all strings whose lengths are multiple of n is denoted by Σ+

n .
A hash function family is a function H : Σk × Σm → Σc, where Σk is the

key space, Σm is the message space, and Σc is the set of hash values. We often
need to change Σm to describe different hash function families.

We write x
R
←− Σn for choosing a string of n-bit length uniformly at random.

For a string x, |x| is its bit-length. When A is an algorithm, program or adversary,
A(x)→ y means that A gets an information of x to output y. When we want to
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address that A has no information to outputs y, we write A(null)→ y with the
null string null.

We take the RAM (Random Access Machine) model of computation which is
also used in [1], and measure the running time of a program with respect to that
model. If H : Σk ×Σm → Σc is a hash function family, we let TH indicate the
worst-case time to compute H(K, x), in the underlying model of computation,
when K ∈ Σk and x ∈ Σm.

2.2 Definitions of CRHF and UOWHF

Recently, Rogaway and Shrimpton suggested seven simple and nice definitions
of hash functions including CRHF and UOWHF [6], but we prefer to use some
games to define our objects and to describe our work.

Definition 1 (CRHF). A hash function family H : Σk ×Σm → Σc, m ≥ c, is
(t, ε)-CRHF if no adversary A wins in the following game with the probability ε
and within the time t:

Game(CRHF,A,H)

K
R
←− Σk

A(K)→ (x, x′)

A wins if x 6= x′ and H(K, x) = H(K, x′).

In the game of Definition 1, the adversary gets the key K of H . This implies that
the adversary knows everything about H(K, ·) and so it can try any experiments
until it produces its output within the time t. However, the behavior of the
adversary is more restricted in Definition 2.

Definition 2 (UOWHF). A hash function family H : Σk×Σm → Σc, m ≥ c,
is (t, ε)-UOWHF if no adversary A = (A1, A2) wins in the following game with
the probability ε and within the time t:

Game(UOWHF,A,H)
A1(null)→ (x, State)

K
R
←− Σk

A2(K, x, State)→ x′

A = (A1, A2) wins if x 6= x′ and H(K, x) = H(K, x′).

In Definition 2, algorithm A1 outputs the target message x. The only information
which the adversary has before producing the target message is H . State, the
other output of A1, is some extra state information which helps A2 to find a
collision. Algorithm A2 outputs the sibling message x′ on input (x, State).

Strictly speaking, when we are given H : Σk×Σm → Σc, we should call it a
CRHF family or a UOWHF family, but for simplicity we often just call it CRHF
or UOWHF.
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3 Higher Order UOWHFs

Let us revisit Definition 2. No access to any oracles is given to A1. A1 outputs
(x, State) with no information. So, random selection of K from K is independent
of A1’s behavior. Consequently, changing the order of steps 1 and 2 in the game
doesn’t effect the success probability of the adversary. So, the following game is
essentially equivalent to the game in Definition 2.

Definition 3. A hash function family H : Σk × Σm → Σc, m ≥ c, is (t, ε)-
UOWHF′ if no adversary A = (A1, A2) wins in the following game with the
probability ε and within the time t:

Game(UOWHF′, A, H)

K
R
←− Σk

A1(null)→ (x, State)
A2(K, x, State)→ x′

A = (A1, A2) wins if x 6= x′ and H(K, x) = H(K, x′).

However, unlike the game in Definition 2, we can add an oracle OH(K,·) to
the game in Definition 3, which gets a query x and returns y = H(K, x). We
can then allow the adversary to access the oracle before he chooses the target
message. Now we give the following definition. Let Q be a set of adaptive query-
answer pairs associated with the oracle OH(K,·) which is initialized to the empty
set Ø in the game.

Definition 4 (r-th order UOWHF). A hash function family H : Σk×Σm →
Σc, m ≥ c, is (t, ε)-UOWHF(r) if no adversary A = (A1, A2) wins in the follow-
ing game with the probability ε and within the time t:

Game(UOWHF(r), A)

K
R
←− Σk; Q← Ø

if r > 0 do:
for i = 1, ..., r do:

A1(Q)→ xi

yi ← O
H(K,xi)

Q← {(xi, yi)} ∪Q
A1(Q)→ (x, State)
A2(K, x, State)→ x′

A = (A1, A2) wins if x 6= x′ and H(K, x) = H(K, x′).

Indeed, the hash function families which satisfy Definition 3 can be regarded
as UOWHF(0) families. The relationships among Definitions 1, 2, 3 and 4 can
be summarized as follows.

Proposition 1. Let H : Σk × Σm → Σc, m ≥ c, be a hash function family.
Then,
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1. H is a (t, ε)-UOWHF ⇔ H is a (t, ε)-UOWHF(0).
2. For any r ≥ 0, H is a (t′, ε)-UOWHF(r + 1) ⇒ H is a (t, ε)-UOWHF(r),

where t = t′ −Θ(TH + m + c).
3. For any r ≥ 0, H is a (t′, ε)-CRHF ⇒ H is a (t, ε)-UOWHF(r), where

t = t′ −Θ(r)(TH + m + c).

Proof. The proofs of 1 and 2 are trivial. So, we only prove 3. Suppose that
A = (A1, A2) is an adversary for H in the UOWHF(r) sense. We use it to make
the adversary B who works in Game(CRHF,B, H) as follows.

Game(CRHF,B, H)

K
R
←− Σk

B(K) do:
Q← Ø
if r > 0 do:

for i = 1, ..., r do:
A1(Q)→ xi

yi ← H(K, xi)
Q← {(xi, yi)} ∪Q

A1(Q)→ (x, State)
A2(K, x, State)→ x′

output (x, x′)

In the above game, B simulates OH(K,·) for A1. Since B just outputs a
collision which A found, the probability that B wins the game is same as A. The
running time of B is at most t + Θ(r)(TH + m + c). ut

We claim that H is not a UOWHF(1) in Bellare and Rogaway’s example
[1]. If the adversary asks any query x and get the answer y = H(K, x), then he
would obtain the key K and can make a collision easily.

4 Merkle-Damg̊ard Construction Based on Higher Order

UOWHF

Suppose we have a hash function family H : Σk × Σc+m → Σc, where m is
a positive integer. The Merkle-Damg̊ard construction of H with variable initial
value gives a hash function family MD[H ] : Σk × (Σc × Σ+

m) → Σc. For each
key K ∈ Σk and any message x = x0x1...xn, where x0 ∈ Σc and xi ∈ Σm for
i = 1, ..., n, MD[H ] is defined as follows.

Algorithm MD[H ](K, x)
n← (|x| − c)/m
y0 ← x0

for i = 1, ..., n do:
yi ← HK(yi−1||xi)
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return yn

If MD[H ] only takes (c + nm)-bit messages for a fixed n, it would always
have n rounds. In that case we use the notation MDn[H ] instead of MD[H ].
In the following theorem, we say that if H is a UOWHF(r), the (r + 1)-round
MDr+1[H ] is a UOWHF.
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Fig. 1. 3-round Merkle-Damg̊ard construction MD3[H]

Theorem 1. Let H : Σk×Σc+m → Σc be a (t′, ε′)-UOWHF(r). Then, MDr+1[H ] :
Σk×Σc+rm → Σc is a (t, ε)-UOWHF, where ε = (r+1)ε′ and t = t′−Θ(r)(TH +
m + c).

Proof. Let x, x′ ∈ Σc+(r+1)m be a collision for MDr+1[H ](K, ·). We observe that
there exists an index j ∈ {1, ..., r + 1} such that

MD[H ](K, x0x1 · · ·xj) = MD[H ](K, x′
0x

′
1 · · ·x

′
j)

MD[H ](K, x0x1 · · ·xj−1)||xj 6= MD[H ](K, x′
0x

′
j · · ·x

′
j−1)||x

′
j . (1)

We will exploit this below.
Assume that A = (A1, A2) is an adversary who breaks MDr+1[H ] with in-

puts of equal-length in the UOWHF sense. We use it to make the adversary
B = (B1, B2) who works in the Game(UOWHF(r),B, H) as follows.

Game(UOWHF(r),B, H)

K
R
←− Σk; Q← Ø

if r > 0 do:
for j = 1, ..., r do:

B1(Q) do:
if j = 1 do:

A1(null)→ (x, StateA)
y0 ← x0

query y0||x1 to OH(K,·)

if j > 1 do:
query yj−1||xj to OH(K,·)
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yj ← O
H(K,yj−1 ||xj)

Q← {(yj−1||xj , yj)} ∪Q
B1(Q) do:

i
R
←− {1, ..., r + 1}

output (yi−1||xi, StateB)
B2(K, yi−1||xi, StateB) do:

A2(K, x, StateA)→ x′

y′
i−1 ← MD[H ](K, x′

0x
′
1 · · ·x

′
i−1)

output y′
i−1||x

′
i

The adversary B works in the game as follows. When j = 1, Q is empty and
B1 runs A1 to obtain (x, StateA) where x = x0x1 · · ·xr+1. Then B1 sets y0 to
x0 and sends a query y0||x1 to the oracle OH(K,·). When j 6= 1, Q is nonempty
and B1 sends a query yj−1||xj to the oracle OH(K,·). After collecting r adaptive
query-answer pairs, B1 selects i ∈ {1, ..., r + 1} at random, and then outputs
yi−1||xi and StateB = (i, x, StateA) as the target message and an additional
state information for B2, respectively. On input (K, yi−1||xi, StateB), B2 runs
A2 by giving (K, x, StateA). Once A2 outputs its sibling message x′, B2 computes
y′

i−1 and outputs y′
i−1||x

′
i as its sibling message.

Now we must bound the probability that (yi−1||xi, y
′
i−1||x

′
i) is a collision for

H(K, ·) in the game. Note that i was chosen at random, so if (x, x′) is a collision
for MDr+1[H ](K, ·) then we have i = j with probability 1/(r + 1), where j is
the value of Equation (1). So, ε′ > ε/(r + 1).

The running time of B is that of A plus the overhead. This overhead is
Θ(r)(TH + m + c). The choice of t in the theorem statement makes all this at
most t′, from which we conclude the result. ut

Assume that a domain D and a range R are fixed. We regard the notion
of UOWHF(r) as the class of all UOWHF(r). We also consider the class of all
the hash functions which do not lose universal one-wayness (upto equal-length
collisions) until they are extended to (r+1)-round Merkle-Damg̊ard construction,
UOW-MD(r). From Proposition 1 and Theorem 1, it is easy to see that these
classes forms two different chains between the classes CRHF and UOWHF with
the same domain D and the same range R, and that for each integer r > 0,
UOWHF(r) implies UOW-MD(r+1) (see Fig. 2).

We can generalize Theorem 1 to MD[H ] taking inputs of variable length. We
assume that the message is always padded such that its length is a multiple of
m. There are many padding methods but we don’t mention any specific one.
We use the notation (t, µ1, µ2, ε)-UOWHF instead of (t, ε)-UOWHF. µ1 is the
bound on the length of the target message and µ2 is the bound on the length of
the sibling message. Note that the only restriction on µ2 is that the algorithms
on the sibling message should be computable in polynomial time.

Theorem 2. Suppose H : Σk × Σc+m → Σc be a (t′, ε′)-UOWHF(r). Suppose
µ1 − c and µ2 − c are multiples of m. Then, for µ1 ≤ c + (r + 1)m and a proper
µ2, MD[H ] : Σk× (Σc×Σ+

m)→ Σc is a (t, µ1, µ2, ε)-UOWHF, where ε = σminε′
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Fig. 2. Two chains between CRHF and UOWHF. Each arrow means the implication.

and t = t′ −Θ(σmax)(TH + m + c) for σmin = min{(µ1 − c)/m, (µ2 − c)/m} and
σmax = max{(µ1 − c)/m, (µ2 − c)/m}.

Proof. The proof is similar to that of Theorem 1.

5 Tree Construction Based on Higher Order UOWHF

If we are given a UOWHF family H : Σk × Σm → Σc and m is a multiple of
c, we can extend it more efficiently by using a tree structure. If m = dc for a
positive integer d, we can use a d-ary tree structure. Since a tree construction
consists of parallel procedures, it can be more efficient than the Merkle-Damg̊ard
construction if multiple processors are available.

Firstly, we define the parallel construction PA[H ] on H . PAn[H ] consists
of n components PAn[H ]1, ..., PAn[H ]n. For K ∈ Σk, each component function
PAn[H ]i is

PAn[H ]i(K, x) =

{

H(K, xi) if |x| = dc
xi if |x| = c

That is, the domain of PAn[H ]i(K, ·) is Σc ∪ Σdc, while the domain of H(K, ·)
is Σc.

We assume that we are given x = x1 · · ·xn for each xi ∈ Σc ∪Σdc. For a key
k ∈ Σk, PAn[H ](K, x) is defined as follows.

Algorithm PAn[H ](K, x)
n← logdc |x|
for i = 1, ..., n do:

yi ← PAn[H ]i(K, xi)
return y1|| · · · ||yn

Now we define a tree construction TR[H ] based on H . We begin with the

message space Σdl

c . We denote the tree construction on H to hash only messages
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Fig. 3. 3-level tree construction TR3[H] for the case of l = 3

in Σdl

c as TRl[H ]. For each key K ∈ Σk and any message x ∈ Σdl

c , TRl[H ] is
defined according to:

Algorithm TRl[H ](K, x)
Level[0] ← x
for i = 1, ..., l do

Level[i] ← PAdl−i [H ](K, Level[i− 1])
return Level[l]

Write Level[0] = x as x0 = x0,1x0,2 · · ·x0,dl where x0,i ∈ Σc for i = 1, ..., dl.
Then, we can see TRl[H ](K, x) is computed as follows.

Level[0] = x1
0x

2
0 · · · · · · · · · xdl

0

Level[1] = x1
1x

2
1 · · · · · · xdl−1

1
...

Level[l− 1] = x1
l−1 · · · xd

l−1

Level[l] = x1
l

where xj
i = H(K, x

(j−1)d+1
i−1 x

(j−1)d+2
i−1 · · ·xjd

i−1).

The following theorem states that if H is a UOWHF(r) and r = (dl−1)/(d−
1), then TRl[H ] is a UOWHF.

Theorem 3. Let H : Σk × Σd
c → Σc be a (t′, ε′)-UOWHF(r) and r = (dl −

d)/(d−1). Then TRl[H ] : Σk×Σdl

c → Σc is a (t, ε)-UOWHF, where ε = (r+1)ε′,
and t′ = t + Θ(dl)(TH + dc).

Proof. Assume that x, y ∈ Σdl

c is a collision for TRl[H ](K, ·). We observe that
there exist α ∈ {1, ..., l} and β ∈ {1, ..., dl−α} such that

xβ
α = yβ

α

x
(β−1)d+1
α−1 || · · · ||xβd

α−1 6= y
(β−1)d+1
α−1 || · · · ||yβd

α−1. (2)
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We will exploit this below.

Assume that A = (A1, A2) is an adversary who breaks TRl[H ] with inputs of
equal-length in the UOWHF sense. We use it to make the adversary B = (B1, B2)
who works in Game(UOWHF(r),B, H) as follows.

Game(UOWHF(r),B, H)

K
R
←− Σk; Q← Ø

if r > 0 do:
for u = 1, ..., l − 1 do:

for v = 1, ..., dl−u do:
B1(Q) do:

if (u, v) = (1, 1) do:
A1(null)→ (x, StateA)
query x1

0|| · · · ||x
d
0 to OH(K,·)

if (u, v) 6= (1, 1) do:

query x
(v−1)d+1
u−1 || · · · ||xvd

u−1 to OH(K,·)

xv
u ← O

H(K,x
(v−1)d+1
u−1 ||···||xvd

u−1)

Q← {(x
(v−1)d+1
u−1 || · · · ||xvd

u−1, x
v
u)} ∪Q

B1(Q) do:

i
R
←− {1, ..., l}; j

R
←− {1, ..., dl−i}

output (x
(j−1)d+1
i−1 || · · · ||xjd

i−1, StateB)

B2(K, x
(j−1)d+1
i−1 || · · · ||xjd

i−1, StateB) do:
A2(K, x, StateA)→ y

output y
(j−1)d+1
i−1 || · · · ||yjd

i−1

The adversary B works in the game as follows. When (u, v) = (1, 1), Q is

empty and B1 runs A1 to obtain (x, StateA) where x = x1
0|| · · · ||x

dl

0 ∈ Σdl

c .
Then, B1 sends a query x1

0|| · · · ||x
d
0 to the oracle OH(K,·). When (u, v) 6= (1, 1),

Q is nonempty. B1 sends a query x
(v−1)d+1
u−1 || · · · ||xvd

u−1 to the oracle OH(K,·).
After collecting r adaptive query-answer pairs, B1 randomly selects i and j from

{1, ..., l} and {1, ..., dl−i}, respectively. The B1 outputs x
(j−1)d+1
i−1 || · · · ||xjd

i−1 as
the target message and StateB = (i, j, x, StateA) as an additional state informa-

tion for B2. On the input (x
(j−1)d+1
i−1 || · · · ||xjd

i−1, StateB), B2 runs A2 by giving
(K, x, StateA). Once A2 outputs its sibling message x′, B2 computes and outputs

y
(j−1)d+1
i−1 || · · · || yjd

i−1 as its sibling message.

Now we must bound the probability that x
(j−1)d+1
i−1 || · · · ||xjd

i−1, y
(j−1)d+1
i−1 || · · ·

||yjd
i−1 is a collision for H(K, ·). The number of possibilities for (i, j) is at most

d0 + · · ·+ dl−1 = (dl − 1)/(d− 1). Note that i and j were chosen randomly and
independently, so if x, y is a collision for TRl[H ](K, ·) then we have (i, j) = (α, β)
with probability (d − 1)/(dl − 1), where (α, β) is the pair in Equation (2). So,
ε′ > ε(d− 1)/(dl − 1).
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The running time of B is that of A plus the overhead, which is equal to
Θ(dl)(TH + dc). ut

The tree construction can hash the messages of variable lengths like the
Merkle-Damg̊ard construction. We assume that we are given a message x. When

dlogd
|x|
c e = l, we pad x such that the length of the padded message x∗ is the

smallest value larger than |x| of the form |x∗| = (dl − qd + q)c for some integer
0 < q < dl−1. Then, the number of applications of the underlying hash function

is 1 + d + d2 + · · · + dl−1 − q = dl−1
d−1 − q. See Fig. 4, 5, 6 and 7 for the case of

l = 2, d = 4. We denote the set of the padded messages in such way by

S(c, d) = {x ∈ Σ∗||x| = (dl − qd + q)c for some integers l > 0 and

0 ≤ q < dl−1}

Now we generalize Theorem 3.

� � � � � � � � � � � � � � � �

� �� �

�

Fig. 4. |x|/c = 16 = 42

� � � � � � � � � � � �

� �� �

�

Fig. 5. |x|/c = 13 = 42 − 1 · 4 + 1

� �

� � � � � � � �

��

�

Fig. 6. |x|/c = 10 = 42 − 2 · 4 + 2

� ��

� � � �

�

�

Fig. 7. |x|/c = 7 = 42 − 3 · 4 + 3

Theorem 4. Suppose H : Σk × Σd
c → Σc be a (t′, ε′)-UOWHF(r). Suppose

µi = dli − qid + qi for i = 1, 2. Then for µ1 ≤ c(r(d − 1) + d) and a proper
µ2, TR[H ] : Σk × S(c, d) → Σc is a (t, ε)-UOWHF, where ε = σminε′ and

t′ = t + Θ(σmax)(TH + dc) for σmin = min{dl1−1
d−1 − q1,

dl2−1
d−1 − q2} and σmax =

max{dl1−1
d−1 − q1,

dl2−1
d−1 − q2} .

Proof. The proof is similar to that of Theorem 3. ut
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6 Conclusion

We defined the order of a UOWHF family and showed how much the efficiency
of known constructions for UOWHFs is improved by the notion of the order.
Our main results are as follows.

– If the order of the underlying UOWHF H is r, then the (r+1)-round Merkle-
Damg̊ard construction MDr+1[H ] is also a UOWHF. If the resulting function
MDr+1[H ] is used as a building block in existing constructions with linear
structure, the key size can be reduced with at most a factor of (r + 1).

– If the order of the underlying UOWHF H : Σk × Σd
c → Σc is r = dl−d

d−1 ,
then the l-level tree construction TRl[H ] is also a UOWHF. If the resulting
function TRl[H ] is used as a building block in existing constructions with
tree structure, the key size can be reduced with at most a factor of l.
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