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Abstract. Hypothesis tests have been used in the past as a tool in a
cryptanalytic context. In this paper, we propose to use this paradigm
and define a precise and sound statistical framework in order to opti-
mally mix information on independent attacked subkey bits obtained
from any kind of statistical cryptanalysis. In the context of linear crypt-
analysis, we prove that the best mixing paradigm consists of sorting key
candidates by decreasing weighted Euclidean norm of the bias vector.
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1 Introduction

Historically, statistical hypothesis tests, although well-known in many en-
gineering fields, has not been an explicitely widely-used tool in the crypt-
analysis of block ciphers. Often, some distinguishing procedures between
two statistical distributions are proposed, but without much attention on
their optimality. To the best of our knowledge, an unpublished report of
Murphy, Piper, Walker and Wild [MPWW95] is the first work where the
concept of statistical hypothesis tests is discussed in the context of “mod-
ern” cryptanalysis. More recently, a paper of Fluhrer and McGrew [FM01]
discussed the performances of an optimal statistical distinguisher in the
cryptanalysis of a stream cipher. These tools were again used by Mironov
[Mir02], by Coppersmith et al. [CHJ02], by Golić and Menicocci [GM] in
the same context, for instance, while Junod [Jun03] makes use of them
for deriving the asymptotic behaviour of some optimal distinguishers.

1.1 Contributions of this Paper

In this paper, we propose a sound and precise statistical cryptanalytic
framework which extends Vaudenay’s one [Vau96]; furthermore, we de-



scribe an optimal distinguishing procedure that can be employed during
any statistical cryptanalysis involving subkey candidates ranking.

As illustration, we apply this distinguishing procedure to the linear
cryptanalysis of DES [DES77] as proposed by Matsui in [Mat94]. In the
first version of linear cryptanalysis of DES [Mat93], Matsui’s attack re-
turns a subkey which is the correct one with high probability, while a
refined version of the attack [Mat94] returns a list of subkeys sorted by
maximum-likelihood. This approach, which is very similar to the list de-
coding paradigm in coding theory, allows to decrease the number of known
plaintext-ciphertext pairs needed. Although very simple to implement,
Matsui’s key ranking heuristic is however not optimal. We show basically
that by sorting the subkey candidates by decreasing sum of squares of
the experimental biases, we obtain a ranking procedure which minimizes
the costs of the attack’s exhaustive search part.

At first sight, the optimisation of the exhaustive search complexity of
a cryptanalysis does not seem to be so interesting, since exhaustive search
is a ”cheap” operation for a cryptanalyst, compared to the cost, or the dif-
ficulty of finding the required amount of known plaintext-ciphertext pairs.
However, we show in this paper that by optimising the exhaustive search
part of a linear cryptanalysis of DES, it is possible to decrease in a sensible
way the number of pairs needed and to keep the computational complexity
within a reasonable area. In [Jun01], Junod did a complexity analysis and
proved that Matsui’s attack against DES performs better than expected,
which was already conjectured. He further confirmed this fact experimen-
tally with 21 linear cryptanalysis: given 243 known plaintext-ciphertext
pairs, and a success probability equal to 85 %, the computational com-
plexity had an upper bound of 240.75 DES evaluations. In this paper, the
power of this technique is illustrated by experimentally demonstrating
that one can decrease the computational complexity of Matsui’s attack
against DES by an average factor of two, or, equivalently, decrease the
number of known plaintext-ciphertext pairs needed by a non-trivial factor
(i.e 31 %) without an explosion of the computational complexity (i.e. less
than 245 DES evaluations); one can also divide the number of known pairs
by two (i.e. to 242) while keeping the computational complexity within
247 DES evaluations.

Other examples of potential direct application of our optimal ranking
rule are Shimoyama-Kaneko’s attack [SK98] on DES which uses quadratic
boolean relations, or Knudsen and Mathiassen’s chosen-plaintexts version
[KM01] of linear cryptanalysis against DES. However, the ideas behind



our ranking method are not restricted to those attacks and may be applied
in any statistical cryptanalysis.

The rest of this paper is organized as follows: in §2, we recall Vau-
denay’s statistical cryptanalysis model and Matsui’s ranking procedures;
in §3, we introduce the necessary statistical tools and we propose the
Neyman-Pearson ranking procedure. In §4, we apply it to a linear crypt-
analysis of DES, we present some experimental results on the improvment
and we discuss potential applications to other known attacks. Finally, we
give some concluding remarks in §5.

1.2 Notation

The following notation will be used throughout this paper. Random vari-
ables X, Y, . . . are denoted by capital letters, while realizations x ∈ X , y ∈
Y, . . . of random variables are denoted by small letters. The fact for a ran-
dom variable X to follow a distribution D is denoted X ← D, while its
probability density and distribution functions are denoted by fD(x) and
FD(x) = PrX←D[X ≤ x] =

∫ x
−∞ fD(t)dt, respectively. When the context

is clear, we will write simply Pr[X ≤ x]. Finally, as usual, “iid” means
“independent and identically distributed”.

2 Statistical Cryptanalysis and Key Ranking Procedures

In this paper, we will assume that a given cryptanalysis can be seen as
a statistical cryptanalysis, in the sense of Vaudenay’s model [Vau96], and
that it uses a key ranking procedure.

2.1 Statistical Cryptanalysis

We recall now briefly the principles of a statistical cryptanalysis. Let P, C
and K be the plaintext, cipertext and key space, respectively. A statistical
cryptanalysis uses three functions, denoted f1, f2 and f3 which have the
following role:

- f1 : K → L is a function which eliminates information of the key
unrelated to the cryptanalysis.

- f2 : P × C → S, where S is called the sample space, eliminates in-
formation about the plaintext and ciphertext spaces unrelated to the
attack.

- f3 : L×S → Q, where Q is a space summarizing information depend-
ing on intermediate results in the encryption.



1. Counting Phase: Collect several random samples sj = f2(Pj , Cj), for j = 1, . . . , n
and count all occurences of all the possible values of the sj ’s in |S| counters.

2. Analysis Phase: For each of the subkey candidates `i, 1 ≤ i ≤ |L|, count all
the occurences in all xi = h3(`i, sj) and give it a mark µ`i using the statistic
Σ(x1, . . . , xn).

3. Sorting Phase: Sort all the candidates `i using their mark µ`i . This list of sorted
candidates is denoted U .

4. Searching Phase: Exhaustively try all keys following the sorted list of all the
subkey candidates.

Fig. 1. Structure of a statistical cryptanalysis

In order to be efficient, a statistical cryptanalysis should fulfil the fol-
lowing conditions: the information x = f3(`, s), where ` ∈ L, s ∈ S
and x ∈ Q, should be computable with small pieces of information on
(p, c) ∈ P ×C and k ∈ K (namely, s and `); furthermore, the information
x = f3(s, `r) should be statistically distinguishable from x′ = f3(s, `w),
where `r and `w is the information given by the right key and a wrong
key, respectively. The main idea of the attack consists in assuming that
we can distinguish the right key from wrong key with help of a statistical
measurement Σ on the observed distribution of the xi’s. The attack is
described in Fig. 1. The data complexity is then defined to be the number
n of known plaintext-ciphertext pairs needed in step 1, while the com-
putational complexity is defined to be the number operations in the last
phase of the attack. We note that usually, the complexity of steps 2 and
3 is negligible, but it may not be the case in all situations.

Key ranking is a technique introduced by Matsui in [Mat94] in or-
der to increase the success probability of a linear cryptanalysis against
DES; it corresponds to step 4 in Fig. 1: instead of returning the subkey
`max possessing the highest mark µ`max , maxi µ`i

out of |L| subkey can-
didates, the idea is to return a sorted list U containing key candidates
ranked by likelihood and to search for the remaining unattacked bits in
this order.

Obviously, two central points in a statistical cryptanalysis are the def-
inition of the statistic Σ and of the mark µ which has to be assigned to a
subkey candidate. The first issue is the essence of the attack: the crypt-
analyst must find a “statistical weakness” in the cipher. In the section
§3, we will address the second issue in a general way by using concepts
of statistical hypothesis testing and we consider known techniques under
this light; before, we recall some generic facts about linear cryptanalysis
and the related ranking procedures proposed by Matsui.



2.2 Linear Cryptanalysis and Related Ranking Procedures

We recall briefly the principles of a linear cryptanalysis. The attack’s
core is unbalanced linear expressions, i.e. equations involving a modulo
two sum of plaintext and ciphertext bits on the left and a modulo two
sum of key bits on the right. Such an expression is unbalanced if it is
satisfied with probability1

p ,
1
2

+ ε, 0 < |ε| ≤ 1
2

(1)

when the plaintexts and the key are independent and chosen uniformly
at random.

Given some plaintext bits Pi1 , . . . ,Pir , ciphertext bits Cj1 , . . . ,Cjs and
key bits Kk1 , . . . ,Kkt , and using the notation X[l1,...,lu] , Xl1 ⊕Xl2 ⊕ . . .⊕
Xlu , we can write a linear expression as

P[i1,...,ir] ⊕ C[j1,...,js] = K[k1,...,kt] (2)

As this equation allows to get only one bit of information about the key,
one usually use a linear expression spanning all the rounds but one; it is
possible to identify the subkey involved in the last round. One can rewrite
(2) as

P[i1,...,ir] ⊕ C[j1,...,js] ⊕ F
(r)
[m1,...,mv ]

(
C,K(r)

)
= K[k1,...,kt] (3)

Now, one can easily identify the abstract spaces defined in the generic
model of Fig. 1: the (sub)key space L is the set of all possible values
of the involved subkey (i.e. the “interesting” bits of K(r) and those of
K[k1,...,kt]); the sample space S is the set of all possible Pi1 , . . . ,Pir and
Cj1 , . . . ,Cjs , and finally, Q consists in the binary set {0, 1} (i.e. the two
possible hyperplanes).

The first linear cryptanalysis phase consists in evaluating the bias,
or more precisely, the absolute bias, as the cryptanalyst ignores the right
part of (3), of the linear expression for all possible subkey candidates and
for all known plaintext-ciphertext pairs:

Σ ,
∣∣∣Ψ` −

n

2

∣∣∣ (4)

1 In the literature, this non-linearity measure is often called linear probability, and
expressed as LPf (a, b) , (2Pr[a · x = b · f(x)]− 1)2 = 4ε2, where a and b are the
masks selecting the plaintext and ciphertext bits, respectively. In this paper, we will
refer to the bias ε for simplicity reasons.



where Ψ` is the number of times where (3) is equal to 0 (for a given subkey
candidate `) and n is the number of known plaintext-ciphertext pairs. In
a second phase, the list of subkey candidates is sorted, and the missing
key bits are finally searched exhaustively for each subkey candidate until
the correct full key is found. The computational complexity of the attack
is then related to the number of encryptions needed in the exhaustive
search part. The (implicit) mark used to sort the subkey candidates is
the following:

Definition 1 (Single-List Ranking Procedure). The mark µ` given
to a subkey candidate ` is defined to be equal to the bias

µ` , Σ =
∣∣∣Ψ` −

n

2

∣∣∣ (5)

produced by this subkey `.

Interestingly, the refined version of linear cryptanalysis described in [Mat94]
uses two biased linear expressions involving different2 key bits subsets.
The heuristic proposed by Matsui (which was based on intuition3) is the
following:

Definition 2 (Double-List Ranking Procedure). Let U1 and U2 be
two lists of subkey candidates involving disjoint key bits subsets. Sort them
independently using the Single-List Ranking Procedure described in Def.
1. Let ρ(U)(`) be a function returning the rank of the candidate ` in the
list U . The Double-List Ranking Procedure is then defined as follows:

1. To each candidate ` = (`1, `2) ∈ U1 × U2, assign the mark

µ(`1,`2) , ρ(U1)(`1) · ρ(U2)(`2) (6)

2. Sort the “composed” candidates by increasing marks µ(`1,`2).

3 An Alternative View on Ranking Procedures

In this section, we recall some well-known statistical hypothesis testing
concepts, and we discuss the optimality of the two ranking procedures
described above.
2 The different problem consisting in dealing with multiple linear approximations has

been studied by Kaliski and Robshaw in [KR94]. However, the setting is different
than our: they handle the case where one disposes of several linear approximations
acting on the same key bits, and they compute the cumulated (resulting) bias.

3 Private communication.



3.1 Hypothesis Tests

Let D0 and D1 be two different probability distributions defined on the
same finite set X . In a binary hypothesis testing problem, one is given an
element x ∈ X which was drawn according either to D0 or to D1 and
one has to decide which is the case. For this purpose, one defines a so-
called decision rule, which is a function δ : X → {0, 1} taking a sample
of X as input and defining what should be the guess for each possible
x ∈ X . Associated to this decision rule are two different types of error
probabilities: α , PrX←D0 [δ(x) = 1] and β , PrX←D1 [δ(x) = 0]. The
decision rule δ defines a partition of X in two subsets which we denote
by A and A, i.e. A ∪ A = X ; A is called the acceptance region of δ.
We recall now the Neyman-Pearson lemma, which derives the shape of
the optimum statistical test δ between two simple hypotheses, i.e. which
gives the optimal decision region A.

Lemma 1 (Neyman-Pearson). Let X be a random variable drawn ac-
cording to a probability distribution D and let be the decision problem
corresponding to hypotheses X ← D0 and X ← D1. For τ ≥ 0, let A be
defined by

A ,

{
x ∈ X :

PrX←D0 [x]
PrX←D1 [x]

≥ τ

}
(7)

Let α∗ , PrX←D0

[
A

]
and β∗ , PrX←D1 [A]. Let B be any other decision

region with associated probabilities of error α and β. If α ≤ α∗, then
β ≥ β∗.

Hence, the Neyman-Pearson lemma indicates that the optimum test (re-
garding error probabilities) in case of a binary decision problem is the
likelihood-ratio test. All these considerations are summarized in Def. 3.

Definition 3 (Optimal Binary Hypothesis Test). To test X ← D0

against X ← D1, choose a constant τ > 0 depending on α and β and
define the likelihood ratio

lr(x) ,
PrX←D0 [x]
PrX←D1 [x]

(8)

The optimal decision function is then defined by

δopt ,

{
0 (i.e accept X ← D0) if lr(x) ≥ τ
1 (i.e. accept X ← D1) if lr(x) < τ

(9)



3.2 The Neyman-Pearson Ranking Procedure

We apply now the Neyman-Pearson paradigm to the ranking procedure.
One defines the two hypotheses as follows: H0 is the hypothesis that the
random variable modeling the statistic Σ` (we make here a slightly abuse
of notation by assigning the same name to both entities) produced by a
given subkey candidate ` is distributed according DR, i.e. it is distributed
as the right subkey candidate, while H1 is the hypothesis that Σ` follows
the distribution DW , i.e. it is distributed as a false subkey candidate
(note that we assume here that the “wrong-key randomization hypothe-
sis” [HKM95] holds, i.e. that wrong keys follow all the same distribution):

H0 : Σ` ← DR

H1 : Σ` ← DW

In this scenario, a type I error (occurring with probability α) means that
the correct subkey candidate `R, with Σ`R

← DR, is decided to be a
wrong one; a type II error (occurring with probability β) means that one
accepts a wrong candidate `W as being the right one.

When performing binary hypothesis tests, one usually proceeds as
follows: one chooses a fixed α that one is willing to accept, one computes
the threshold τ corresponding to α and one defines the following decision
rule when given the statistic Σ` produced by the candidate `:H0 is accepted if

fDR
(Σ`)

fDW
(Σ`)
≥ τ

H1 is accepted if
fDR

(Σ`)

fDW
(Σ`)

< τ

where fDR
and fDW

denote the density function of the distributions DR

and DW , respectively.
In our scenario, this means that, given a candidate `, the cryptanalyst

will define the threshold τ in such a manner that α is negligible, so that the
test will virtually always accept H0: indeed, accepting a subkey candidate
as being the right one and take a wrong decision costs an encryption,
while deciding that the right candidate is a wrong one causes the failure
of the whole attack. Then, the cryptanalyst can rank the candidates by
decreasing likelihood-ratio values: the greater the value, the more likely it
is to be the looked-for candidate. We call this ranking procedure Neyman-
Pearson Ranking Procedure:

Definition 4 (Neyman-Pearson Ranking Procedure). To each can-
didate `, assign the mark

µ` ,
fDR

(Σ`)
fDW

(Σ`)
(10)



where Σ` is the statistic produced by the candidate `, and fDR
and fDW

are the density functions of Σ` in case of the right and a wrong key,
respectively. Then, sort the candidates by decreasing values of µ`.

Multiple (note that these considerations are valid for more than two lists,
too) lists giving information on disjoint subsets of the key bits can thus
be optimally combined easily if the joint distribution of the underlying
statistics is available. Usually, reasonable heuristic statistical indepen-
dence assumptions can be taken.

We show now that, in case of a linear cryptanalysis, Matsui’s single-list
ranking procedure is equivalent to a Neyman-Pearson Ranking Procedure.
Without loss of generality, we will assume that the linear expression (3)
has a bias equal to ε (see (1) for a definition of the bias), with ε > 0.
Approximations of the Σ distributions are known (we refer to [Jun01] for
more details about the derivations of these expressions):

fDW
(x) =

√
8

nπ
e−

2x2

n , for x ≥ 0 (11)

and

fDR
(x) =

√
2

nπ

(
e−

2(x−nε)2

n + e−
2(x+nε)2

n

)
for x ≥ 0 (12)

The likelihood-ratio is then given by a straighforward calculation.

Lemma 2. In the case of a linear cryptanalysis, the likelihood-ratio is
given by

lr(Σ`) = e−2nε2 · cosh(4εΣ`), Σ` ≥ 0 (13)

We can now state the following result.

Theorem 1. Matsui’s single-list ranking procedure (as defined in Def. 1)
is equivalent to a Neyman-Pearson Ranking Procedure and is furthermore
optimal in terms of the number of key tests.

Proof:
This follows easily from the fact that (13) is a monotone increasing func-
tion for increasing Σ ≥ 0 and that the type II error probability is mono-
tonly increasing as the likelihood-ratio is decreasing.

♦

Furthermore, one can easily observe that Matsui’s double-list ranking
procedure, although very simple, is not a Neyman-Pearson Ranking Pro-
cedure, since it is not a total ordering procedure and it does not make



use of the whole information given by each subkey candidate (i.e. it does
not use the experimental bias associated to each candidate, but only their
ranks). The first observation leads to some ambiguity in the implemen-
tation of Def. 2. For instance, should the combination of two candidates
having respective ranks equal to 1 and 4 be searched for the unknown key
bits before or after the combination consisting of two candidates having
both rank 2 ? In the next section, we illustrate the use of a Neyman-
Pearson ranking procedure in the case of a linear cryptanalysis of DES.

4 A Practical Application

Matsui’s refined attack against DES [Mat94] makes use of two linear
expressions involving disjoint subsets of key bits; one is the best linear
expression on 14 rounds of DES and is used for deriving the second one
using a “reversing trick”. Each of them gives information about 13 key
bits, the remaining 30 unknown key bits having to be searched exhaus-
tively. We refer to [Mat94] for the detailed description of both linear
approximations.

In order to derive a Neyman-Pearson ranking procedure, one has to
compute the joint probability distribution of the statistics Σ`1 and Σ`2

furnished by the two linear expressions. As these statistics are dependant
of disjoint subsets of the key bits, one can reasonably take the following
assumption.

Assumption 1. For each `1 and `2, Σ`1 and Σ`2 are statistically inde-
pendent, where `1 and `2 denote subkey candidates involving disjoint key
subsets.

A second assumption neglects the effects of semi-wrong keys, i.e. keys
which behave as the right one according to a list only. This is motivated by
the fact that, in case of a linear cryptanalysis of DES, the number of such
keys is small, and thus their effect on the joint probability distribution is
negligible.

Assumption 2. For each `1 and `2, Σ , (Σ`1 , Σ`2) is distributed ac-
cording either to DR = D

(1)
R × D

(2)
R or to DW = D

(1)
W × D

(2)
W , where D

(1)
R

and D
(2)
R are the distributions of the right subkey for both key subsets, and

D
(1)
W and D

(2)
W are the distributions of a right subkey for both key subsets,

respectively.

Using these two assumptions, the probability density functions defined in
(11) and (12), and the fact that the bias of both linear expression is the



same and equal to ε, one can derive the likelihood-ratio:

µ(`1,`2) = e−4nε2 · cosh(4εΣ`1) · cosh(4εΣ`2) (14)

As (14) is not “numerically” convenient to use, we may approximate it
using a Taylor development in terms of ε, which gives a very intuitive
definition of the Neyman-Pearson ranking procedure:

µ(`1,`2) ≈ 1 + (8Σ2
`1 + 8Σ2

`2 − 4n)ε2 + O(ε4) (15)

Hence, we can note that it is sufficient to rank the subkey candidates by
decreasing values of Σ2

`1
+ Σ2

`2
, i.e. the final mark is just the Euclidean

distance between an unbiased result and a given sample.
We may generalize this result to the case where the biases, which

we denote ε1 and ε2, are different in both equations; in this case, the
likelihood-ratio is given by

µ(`1,`2) = e−2n(ε12+ε22) cosh(4ε1Σ`1) cosh(4ε2Σ`2) (16)

A first order approximation is then given by

µ(`1,`2) ≈ 1 + 8Σ2
`1ε

2
1 + 8Σ2

`2ε
2
2 − 2n(ε21 + ε22) (17)

which is equivalent to put a grade equal to µ(`1,`2) = Σ2
`1

ε21 + Σ2
`2

ε22. We
summarize these facts in the following theorem.

Theorem 2. Under Assumptions 1 and 2, in a linear cryptanalysis using
t approximations on disjoint key bits subsets having each a bias equal to
εi, 1 ≤ i ≤ t, a procedure ranking the subkey candidates by decreasing

µ(`1,...,`t) =
t∑

i=1

(Σ`i
εi)

2 (18)

is a Neyman-Pearson ranking procedure, and furthermore, it is optimal
in terms on key tests.

Sketch of the proof : The proof is similar to the one of Theorem 1 and fol-
lows from the fact that β is a monotone increasing function when µ(`1,...,`t)

is decreasing. ♦

4.1 Experimental Results

The Neyman-Pearson ranking procedure described in the previous section
has been simulated in the context of 21 linear cryptanalysis of DES, using



the data of [Jun01]. The following table summarises our experimental re-
sults on the complexity of the exhaustive search part of the attack given
243 known plaintext-ciphertext pairs; we use the following notation: µC
denotes the average experimental complexity, C85% the maximal complex-
ity given a success probability of 85 %, which is the success probability
defined by Matsui in [Mat94], Cmed the median, Cmin and Cmax being the
extremal values.

Matsui’s Ranking Optimal Ranking ∆

log2 µC 41.4144 40.8723 -31.32 %

log2 C85% 40.7503 40.6022 -9.75 %

log2 Cmed 38.1267 36.7748 -60.71 %

log2 Cmin 32.1699 31.3219 -40.00 %

log2 Cmax 45.4059 44.6236 -41.86 %

These results lead to following observations:

– The average complexity is decreased by a factor of about 30 %. Actu-
ally, the average complexity is not a good statistical indicator for the
average behavior of the linear cryptanalysis, because most cases have
a far lower complexity and only 3 cases have a complexity greater
than the average. Thus, those three cases have a considerable influ-
ence on the average complexity and it is worth examining the median
behavior.

– A perhaps more significant result is that the median complexity is
decreased by a factor of about 60 %. Although one have to be careful
with this result because of the small size of the statistical samples
number, this value seems to be more accurate regarding the real im-
pact of the improved rule as the average one.

– Although the optimal rule decreases the exhaustive search part com-
plexity on average, “pathological” cases where Matsui’s heuristic is
better than the Neyman-Pearson ranking procedure can occur. One
can explain this by the fact that the Σ densities are sometimes bad
approximations of the real ones, several heuristic assumptions being
involved.

As the data complexity and the computational complexity of a linear
cryptanalysis are closely related, it is possible (and desirable in the con-
text of a known-plaintext attack) to convert a gain in the first category
to a gain in the second one: even if we decrease sensibly the number of



known plaintext-ciphertext pairs, the complexity will remain within rea-
sonable areas: for instance, given 242.46 known plaintext-ciphertext pairs,
Ĉ85% = 244.46 DES evaluations, and with only 242 pairs, Ĉ85% = 246.86;
these experimental values are summarized in the following table:

Data complexity 242.00 242.46 243.00

Time complexity 246.86 244.46 240.60

Success probability 85 % 85 % 85 %

4.2 Other Attacks

Several published attacks (to the best of our knowledge, all are derived
from Matsui’s paper) use key ranking procedures or suggest them as po-
tential improvment. In [SK98], Shimoyama and Kaneko use quadratic
boolean approximations of DES’ S-boxes possessing a larger bias. The
first part of their attack consists in a traditional linear cryptanalysis, and
thus we can apply our optimal ranking procedure; furthermore, another
part of their attack consists also in a sorting procedure using Matsui’s
heuristic.

In [KM01], Knudsen and Mathiassen show how to modifiy Matsui’s
attack into a chosen-plaintexts attack in order to reduce the needs of
pairs. Their attack can also use the ”reversing trick”, i.e. one can apply
the same linear characteristic on both encryption and decryption function,
in order to derive twice as much key bits. A new time, one could use a
key-ranking procedure and our optimal rule to define the order of the
subkey candidates during the exhaustive search part.

5 Conclusion

In this paper, we show that considering a statistical cryptanalysis in a
hypothesis testing framework allows to define the shape of an optimal
distinguisher. We note that one can apply such a distinguisher to various
published attacks, all of them being more or less related to Matsui’s linear
cryptanalysis as applied against DES.

We demonstrate experimentally that our distinguisher, in the case of
a classical linear cryptanalysis of DES, allows a non-trivial computational
complexity decrease. Simulations on 21 real attacks suggest an average
complexity of 240.87 DES evaluations instead of 241.41, as stated in [Jun01].



If one accepts a 15 % failure probability, which is the usual setting, the
complexity had upper bound 240.61.

Equivalently, as exhaustive search operations are typically less costly
than the collection of known plaintext-ciphertext pairs, this technique
allows to decrease the number of needed pairs and to keep the computa-
tional complexity of the attack in cryptanalyst-friendly areas. Our exper-
iments led, with a success probability of 85 %, to 244.85 DES evaluations
given 242.46 pairs, or to 246.86 DES evaluations given only 242 pairs.

Finally, we would like to outline that statistical hypothesis testing
concepts seem to be very useful when considering distinguishing proce-
dures in both theoretical and experimental settings. This seems to be
confirmed by the increasing interest of the cryptology community in this
kind of mathematical tools.
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