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Abstract. We use the notion of covering sequence, introduced by C.
Carlet and Y. Tarannikov, to give a simple characterization of bent
functions. We extend it into a characterization of plateaued functions
(that is bent and three-valued functions). After recalling why the class
of plateaued functions provides good candidates to be used in cryptosys-
tems, we study the known families of plateaued functions and their draw-
backs. We show in particular that the class given as new by Zhang and
Zheng is in fact a subclass of Maiorana-McFarland’s class. We introduce
a new class of plateaued functions and prove its good cryptographic
properties.
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1 Introduction

In the design of cryptographic functions, there is need to consider various charac-
teristics simultaneously (balancedness, high nonlinearity, high algebraic degree,
good propagation characteristics, high order correlation immunity, non-existence
of non-zero linear structures...). The importance of each characteristic depends
on the choice of the cryptosytem. Balancedness and nonlinearity are most im-
portant criteria in all situations.

By achieving optimum nonlinearity, bent functions permit to resist linear
attacks in the best possible way. But, being not balanced they are improper for
direct cryptographic use. Moreover, they exist only in even dimensions. This led
cryptographers to search for new classes of Boolean functions whose elements still
have good nonlinearities and can be balanced (and moreover resilient) for both
odd and even dimensions. The class of partially-bent functions was first investi-
gated [9]. These functions are built by identifying in the space Fn2 two subspaces
E and F whose direct sum equals Fn2 and by defining the functions as the sums of
linear functions defined on E and of bent functions defined on F . But in spite of
their potentially good properties (good nonlinearity, resiliency and propagation
characteristics) partially-bent functions, when they are not bent, have by defi-
nition non-zero linear structures and so do not give full satisfaction. The class



of plateaued functions 3 is a natural extension of the notion of partially bent
function. It provides some examples of good trade-offs between all the proper-
ties needed for a cryptosystem. For instance, it has been shown by Sarkar and
Maitra [34] that the order of resiliency and the nonlinearity of Boolean functions
were strongly bounded (this result was partly also obtained by Tarannikov [36]
and Zheng and Zhang [39]); the best compromise between those two properties
is achieved by plateaued functions only. Tarannikov gave examples of functions
achieving this best possible compromise. These examples [33] and almost all
the other existing examples were obtained through iterative constructions. The
functions obtained this way often have cryptographic weaknesses such as lin-
ear structures (see [4]). The only known general class of non iteratively defined
plateaued functions is obtained through Maiorana-McFarland’s construction (or
its generalization by Carlet [12]). It contains functions which reach Sarkar et
al.’s bound but only for very high resiliency orders (cf. [12]).

By extending the notion of covering sequence of balanced functions intro-
duced by Carlet and Tarannikov [14] we give in this paper a characterization of
bent functions and extend it to a characterization of plateaued functions. We
recall some basic properties of plateaued functions and we give a list of all the
known constructions of such functions. For each of them, we recall the main
drawbacks. In the last part of this paper, we introduce and we study a new
class of plateaued functions which have not the weaknesses of the Maiorana-
McFarland’s functions.

2 Preliminaries

We shall have to distinguish in the whole paper between the additions of integers
in R, denoted by + and

∑
i, and the additions mod 2, denoted by ⊕ and

⊕
i.

So all the sums computed in characteristic 0 will be denoted by
∑
i and all the

sums computed modulo 2 will be denoted by
⊕

i. For simplicity and because
there will be no ambiguity, we shall denote by + the addition of vectors of Fn2
(words).

We first recall basic facts about Boolean functions. A Boolean function f in
n variables is an F2-valued function on the space Fn2 of n-tuples over F2. We call
support of f the set {x ∈ Fn2/f (x) = 1} and we denote it by Supp (f). Its size
is by definition the weight of f and is denoted by W (f). A Boolean function f
is balanced if W (f) = 2n−1.

3 The term of “plateaued” was proposed by Zhang and Zheng [40] and denotes the
functions which either are bent or have a Walsh spectrum with three values 0 and
±λ. Some of these functions had been studied already in Sequence designs [2, 16,
19–21] and in Codes [31].



Every Boolean function f on Fn2 admits a unique representation as a poly-
nomial over F2 in n binary variables of the form:

f (x1, · · · , xn) =
⊕

I⊆{1,··· ,n}

aI
∏

i∈I

xi. (1)

This representation is called the algebraic normal form (A.N.F.) of f . We will
call (algebraic) degree of f and denote by deg f the degree of its A.N.F. and
we denote by R (d, n) the set of all Boolean functions on Fn2 whose degrees are
upper bounded by d (the so-called Reed-Muller code of order d on Fn2 ).

To make easier the study of the properties of f , we classically introduce

the “sign” function χf of f defined as χf (x) = (−1)f(x). The Fourier trans-
form χ̂f of χf will be called the Walsh transform of f . By definition χ̂f (b) =∑

x∈F
n
2

(−1)f(x)+x·b. It satisfies Parseval’s relation :

∑

b∈F
n
2

χ̂f
2 (b) = 22n (2)

and the inverse Fourier formula,

̂̂χf = 2nχf (3)

(which is more generally valid for every real-valued function).

We recall now the definition of the convolutional product between two nu-
merical functions ϕ and ψ on Fn2 . It is denoted by ϕ ⊗ ψ and defined on Fn2
by:

(ϕ⊗ ψ) (x) =
∑

a∈F
n
2

ϕ (a)ψ (a+ x) . (4)

A well-known fact is that the Fourier transform of ϕ ⊗ ψ equals the product of
ϕ̂ and ψ̂, that is:

ϕ̂⊗ ψ = ϕ̂ψ̂. (5)

A useful tool to study a Boolean function f is the notion of derivative. The
derivative of f with respect to a vector a ∈ Fn2 is the function Daf : x −→
f (x)⊕f (x+ a). The derivatives play an important role in crytpography, related
to the differential attack [1]. They are also naturally involved in the definition of
the Strict Avalanche Criterion SAC and of the Propagation Criterion PC [32].
These criteria evaluate some kind of diffusion of the function.

The Hamming distance between two Boolean functions f1 and f2 on Fn2 equals
by definition the weight of f1 ⊕ f2. We call nonlinearity of f and we denote by
Nf the minimum distance between f and all affine functions. The nonlinearity
of a function quantifies the level of confusion put in the system by the Boolean



function. Cryptographic functions used in stream or block ciphers must have
high nonlinearities to prevent these systems from linear attacks (see [37, 27]).

For every Boolean function f , the nonlinearity Nf and the Walsh transform
χ̂f satisfy the relation:

Nf = 2n−1 − 1

2
max
b∈F

n
2

|χ̂f (b) |. (6)

Because of Parseval’s relation (2), Nf is upper bounded by 2n−1 − 2n/2−1. This
bound is tight for every n even. The functions achieving it are called bent.
We recall now the different known characterizations of bent functions:

Proposition 1. A Boolean function f on Fn2 is bent if and only if one of the
two following statements is satisfied:

1. ∀b ∈ Fn2 , χ̂f (b) = ±2
n
2 ,

2. ∀a ∈ Fn2
∗,W (Daf) = 2n−1.

Thus, derivatives play also a role with respect to the notion of confusion, since
they permit a characterization of bent functions; recent results [5] show that
they play more generally a role with respect to nonlinearity, even for non-bent
functions.

Remark: the notion of bent function being invariant under addition of affine
functions, it would be more natural to characterize bent functions by means
of their second-order derivatives DaDbf and not by means of their first-order
derivatives Daf (indeed, the affine functions are those Boolean functions whose
second-order derivatives all vanish). This will be done at Proposition 3.

3 A characterization of bent functions through their

second-order derivatives

In [14], Carlet and Tarannikov introduced the notion of covering sequence of a
Boolean function.

Definition 1. A covering sequence of a function f : Fn2 7→ F2 is any sequence

of reals λ = (λa)a∈F
n
2

such that the real summation
∑

a∈F
n
2

λaDaf is equal to a

constant function ρ. The value of ρ is called the level of this sequence. If ρ 6= 0,
then we say that the covering sequence is non-trivial.

The next proposition gives complete characterization of the balancedness of
Boolean functions by means of their covering sequences.

Proposition 2. [14] Any Boolean function f on Fn2 is balanced if and only if
it admits a non-trivial covering sequence. The same covering sequence – the
constant sequence 1 – can be taken for all balanced functions. The level of this
sequence with respect to any balanced function equals 2n−1.



We denote the second-order derivatives of f by DaDbf ; we have DaDbf(x) =
f (x) ⊕ f (x+ a) ⊕ f (x+ b) ⊕ f (x+ a+ b).
As seen in Proposition 1, all the derivatives Daf , a 6= 0, of a bent function f are
balanced and so, according to Proposition 2, satisfy:

∀x ∈ Fn2 ,
∑
b∈F

n
2
DbDaf (x) = 2n−1.

Thus, all bent functions are such that:

∀x ∈ Fn2 ,
∑
a,b∈F

n
2
DbDaf (x) = 22n−1 − 2n−1,

that is ∀x ∈ Fn2 ,
∑

a,b∈F
n
2

(−1)
DbDaf(x)

= 2n, since (−1)
DbDaf(x)

= 1 −
2DbDaf(x).

Let us prove now that this necessary condition is in fact a necessary and sufficient
one.

Proposition 3. A Boolean function f defined on Fn2 is bent if and only if:

∀x ∈ Fn2 ,
∑

a,b∈F
n
2

(−1)
DaDbf(x)

= 2n. (7)

Proof. Set θ = 2n. A Boolean function f satisfies:

∀x ∈ Fn2 ,
∑

a,b∈F
n
2

(−1)
DaDbf(x)

= θ

if and only if

∀x ∈ Fn2 ,
∑

a,b∈F
n
2

(−1)
f(x+a)+f(x+b)+f(x+a+b)

= θ(−1)f(x),

or equivalently:

∀x ∈ Fn2 ,
∑
a,b∈F

n
2

(−1)
f(a)+f(b)+f(x+a+b)

= θ(−1)f(x),

which can be rewritten using the convolutional product in the form

χf ⊗ χf ⊗ χf = θ χf .

According to the bijectivity of the Fourier transform and according to Relation
(5), this is equivalent to :

∀u ∈ Fn2 , χ̂f
3 (u) = θ χ̂f (u) .

Thus, we have
∑

a,b∈F
n
2

(−1)
DaDbf(x)

= θ if and only if, for every u ∈ Fn2 , χ̂f (u)

equals ±
√
θ or 0. Since θ = 2n and according to Parseval’s relation (2), the value

0 is then never achieved by χ̂f .

Since we could characterize those Boolean functions satisfying relation (7) as the
bent functions, a natural idea is to try to characterize similarly those Boolean
functions such that

∀x ∈ Fn2 ,
∑

a,b∈F
n
2

(−1)DaDbf(x) = θ (8)

where θ is no more necessarily equal to 2n.

We shall see that this relation characterizes the class of plateaued functions.



4 Characterization of plateaued functions through their

second-order derivatives

4.1 Plateaued functions

A Boolean function f : Fn2 7→ F2 is said to be plateaued if its Walsh transform χ̂f
only takes the three values 0 and ±λ, where λ is some positive integer. We shall
call λ the amplitude of the plateaued function. Because of Parseval’s relation, λ
cannot be null and must be a power 2r with r ≥ n/2.

Clearly, the nonlinearity Nf of a plateaued function of amplitude λ equals
2n−1 − λ

2 .

These functions have been studied by many researchers in sequence design when
they studied the cross-correlation between m-sequences and their decimations by
an integer d (cf. Annex A.2) and by Canteaut, Carlet, Charpin and Fontaine [5,
6]. In the standard model of stream ciphers, a Boolean function is used to com-
bine the outputs of n linear feedback shift registers. To resist divide-and-conquer
attacks, called correlation attacks, this function called combining function, has
to be balanced and to stay balanced if any m of the inputs are fixed. This prop-
erty, called correlation-immunity, can be characterized by means of the Fourier
transform :

Proposition 4 ([38]). A Boolean function f on Fn2 is m-th order correlation
immune if and only if its Walsh transform χ̂f satisfies χ̂f (u) = 0 for every
vector u in Fn2 such that 1 ≤ wH (u) ≤ m, where wH denotes the Hamming
weight. Balanced mth-order correlation-immune functions are called m-resilient.

As proved in [34], [36] and [41], the resiliency order m of a Boolean function
defined on Fn2 and its nonlinearity satisfy the relation Nf ≤ 2n−1 − 2m+1. Thus,
the resiliency order m is upper bounded by log2

(
2n−1 −Nf

)
−1. Moreover,

Sarkar and Maitra have shown in [34] that the values of the Walsh Transform
of an n-variable, m-resilient (resp. m-th order correlation-immune) function are
divisible by 2m+2 (resp. 2m+1) if m ≤ n − 2. Thus, if an m-resilient function
achieves nonlinearity 2n−1 − 2m+1, then the function is plateaued. Indeed, ac-
cording to Relation (6), the value of maxb∈Fn2

|χ̂f (b) | equals 2m+2. By applying
Relation (6) again, we see that the nonlinearity of plateaued functions with
amplitude λ = 2r being equal to 2n−1 − 2r−1, their resiliency order is upper
bounded by r−2. A function whose nonlinearity and resiliency order are respec-
tively 2n−1 − 2r−1 and r − 2 is a good candidate to be used in stream ciphers,
since it gives a best possible tradeoff between resiliency and nonlinearity (and
it has then also maximum possible algebraic degree, cf. [36]). Tarannikov and
other authors exhibited some functions with non-linearity Nf = 2n−1−2r−1 and
resiliency order achieving the bound r − 2.



4.2 The characterization

The proof of Proposition 3 (except its last sentence) extends straightforwardly
to any value of θ:

Theorem 1. A Boolean function f is plateaued on Fn2 if and only if there exists

θ such that for every x ∈ Fn2 ,
∑
a,b∈F

n
2

(−1)
DaDbf(x)

= θ. If this condition is

satisfied, then the amplitude of the plateaued function f equals
√
θ, and θ is a

power of 2 whose exponent is even and greater than or equal to n.

Remark:
1. The fact that quadratic functions are plateaued is a direct consequence of
Theorem 1, since their second-order derivatives are constant. And Theorem 1
gives more insight on the relationship between the nonlinearity of a quadratic
function and the number of its nonzero second-order derivatives.
2. The second-order derivatives of Boolean functions of degree 3 being affine,
Theorem 1 shows a relationship between the ability of constructing plateaued
functions of degree 3 and producing sets of affine hyperplanes which are multi-
coverings of Fn2 . �
In the next section, we present the different existing ways to construct plateaued
functions. By identifying their drawbacks we motivate the search for new classes
and exhibit one.

5 Known constructions of plateaued functions

In this section, we investigate the known constructions of Boolean functions and
we determine precisely which ones allow us to obtain plateaued functions (for
completeness, we list in Appendix A.2 the plateaued functions constructed in
sequence designs).

5.1 Maiorana-McFarland’s functions as well as others

We recall the primary contructions, in which one does not suppose the existence
of previously defined functions to define new ones (see Appendix A.1 for sec-
ondary constructions).
All affine functions are plateaued, but they have null nonlinearity. All quadratic
functions are also plateaued, but they are improper for cryptographic use be-
cause of their low degree (see [25, 26]).
The two main primary constructions of bent functions are given by Dillon
[17] and McFarland [29] and lead to the classes called respectively PSap and
Maiorana-McFarland.

For any integer n, a function in PSap takes the form g(xy ) (xy = 0 if x = 0

or y = 0) where x and y belong to F
n
2
2 , the Galois Field of order 2

n
2 , and g is a

balanced Boolean function on F
n
2
2 . We have checked that one cannot derive from



PSap a construction of plateaued functions by choosing g non-balanced instead
of balanced.

Camion et al. generalized in [3] the class of Maiorana Mc-Farland’s functions.
We shall call M the generalized class defined as follows:

Definition 2. Class M is the set of functions fφ,h which can be written in the
form:

fφ,h (x, y) = x · φ (y) ⊕ h (y) (9)

where r and s are any positive integers, n = r + s, φ is any function from Fs2
into Fr2 and h is any Boolean function on Fs2.

Notice that for r = 1, we obtain all Boolean functions on Fn2 .
Let fφ,h be a function in M. For any pair (a, b) ∈ Fr2 × Fs2, the value at (a, b) of

the Walsh transform χ̂fφ,h of fφ,h equals 2r
∑
y∈φ−1(a) (−1)

b·y+h(y)
. Then fφ,h

is plateaued if and only if
∑
y∈φ−1(a) (−1)

b·y+h(y)
takes three values 0 and ±λ

when (a, b) ranges over Fr2 × Fs2. The following proposition gives two sufficient
conditions to ensure that a given function fφ,h in M is plateaued.

Proposition 5. Let fφ,h be a function defined on Fr2 × Fs2 and belonging to M.
If φ is injective (resp. takes exactly 2 times each value of Im (φ)), then fφ,h is
plateaued of amplitude 2r (resp. 2r+1).

Proof. If φ is injective, then every pre-image by φ has cardinality 1 or 0. This

implies that χ̂fφ,h (a, b) is null if φ−1 (a) = ∅ and equals 2r (−1)
b·φ−1(a)+h◦φ−1(a)

otherwise. We deduce that fφ,h is plateaued of amplitude 2r.
If φ is two-to-one, i.e. takes exactly 2 times each value of Im (φ), then φ−1 (a) has
cardinality 2 or 0. Let a be an element of Fr2 such that #φ−1 (a) = 2, we denote

by {y1, y2} the set φ−1 (a). Then, for any b ∈ Fs2, 2r
∑
y∈φ−1(a) (−1)

b·y+h(y)

equals to 2r[(−1)b·y1+h(y1) + (−1)b·y2+h(y2)] which is either 0 or ±2r+1.

We shall denote by Mi the class of plateaued functions of amplitude 2i obtained
by applying Proposition 5 (i = r in the first case and i = r + 1 in the second).
We study now the conditions in which we can achieve best tradeoff between
resiliency and nonlinearity.

Proposition 6. Let fφ,g be a Maiorana-McFarland function on Fr2 × Fs2. Let k
denote the minimum Hamming weight of elements of φ (Fs2). If φ is injective,
the resiliency order m of fφ,g equals k − 1 and k is upper bounded by max{t ∈
N;

∑t
i=0

(
r
i

)
≤ 2r−2s}+1. If φ is two-to-one, then the resiliency order m of fφ,g

is either equal to k or to k−1 and k is upper bounded by max{t ∈ N;
∑t
i=0

(
r
i

)
≤

2r − 2s−1} + 1.

A drawback of Maiorana-McFarland functions is that their restrictions obtained
by keeping y constant in their input are affine. Affine functions being cryp-
tographically weak functions, there is a risk that this property be used in at-
tacks. Moreover, Maiorana-McFarland functions having high divisibilities of their
Fourier and Walsh spectra, there is also a risk that this property be used in at-
tacks as it is used in [15] to attack block ciphers.



5.2 On Zhang and Zheng’s class of plateaued functions

In [40], Zhang and Zheng introduce a subclass of the class of plateaued functions
whose elements are not partially bent. We show that these functions belong to
class M and satisfy the hypothesis of Proposition 5.
Before presenting the construction of Zhang and Zheng, we recall that the
truth table of any Boolean function f on Fn2 results in the binary word of
length 2n defined by (f(α0), f(α1), · · · , f(α2n−1)) where α0 = (0, 0, · · · , 0),
...,α2n−1−1 = (1, 1, · · · , 1). If ξi and ξj are two binary words of length 2n, we
denote by ξiξj the word of length 2n+1 resulting from their concatenation. We
recall now the proposition of Zheng and Zhang leading to their “new” class of
plateaued functions.

Proposition 7. [40] Let t and k be two integers such that k < 2t < 2k and let
E ⊆ Fk2 be a subset of 2t elements such that any linear non null function on Fk2
is not constant on E. For every element ei of E, let ξi denote the truth table
of the linear function x 7→ x · ei on Fk2. Then, the Boolean function f on F

k+t
2

having ξ0ξ1 · · · ξ2t−1 for truth table is plateaued on Fk+t2 and its amplitude equals
2k.

Viewed as binary vectors of length 2k+t, plateaued functions constructed
in such a way are concatenations of distinct linear functions. We deduce that
the functions constructed in Proposition 7 belong to M and satisfy the first
hypothesis of Proposition 5. Indeed, for any subset E ⊆ Fk2 of 2t elements, one
can define an injective function φ from Ft2 into Fk2 such that φ (Ft2) = E: the
function f associated to E in Proposition 7 can be rewritten on the product
space Fk2 × Ft2 in the form f(x, y) = x · φ(y). Moreover, we notice that the
condition k < 2t and the condition on E are not necessary to insure that f is
plateaued since one only uses the fact that the cardinality of E is a power of 2
to rewrite f as an element of Mk.

5.3 A recent class

A construction generalizing construction M and avoiding the drawback that
these functions are the concatenations of affine functions was proposed in [12].
We shall denote it by M′. The functions it produces are concatenations of
quadratic functions (i.e. functions of degrees at most 2) instead of affine func-
tions.

Definition 3. Let n and r be positive integers such that r < n. Denote the
integer part

⌊
r
2

⌋
by t and n− r by s. Let ψ be a mapping from Fs2 to Ft2 and let

ψ1, · · · , ψt be its coordinate functions. Let φ be a mapping from Fs2 to Fr2 and let
φ1, · · · , φr be its coordinate functions. Let g be a Boolean function on Fs2. The
function fψ,φ,g is defined on Fn2 = Fr2 × Fs2 as

fψ,φ,g(x, y) =

t⊕

i=1

x2i−1x2iψi(y) ⊕ x · φ(y) ⊕ g(y); x ∈ Fr2, y ∈ Fs2.



Maiorana-McFarland’s functions correspond to the case where ψ is the null map-
ping. The following theorem is proved in [12].

Theorem 2. Let fψ,φ,g be defined as in Definition 3. Then for every a ∈ Fr2
and every b ∈ Fs2 we have

χ̂fψ,φ,g (a, b) =
∑

y∈Ea

2r−wH(ψ(y))(−1)
∑
t
i=1(φ2i−1(y)+a2i−1)(φ2i(y)+a2i)+g(y)+y·b,

where Ea is the superset of φ−1(a) equal if r is even to

{y ∈ Fs2/ ∀i ≤ t, ψi(y) = 0 ⇒ (φ2i−1(y) = a2i−1 and φ2i(y) = a2i)} ,

and if r is odd to

{
y ∈ Fs2/

{
∀i ≤ t, ψi(y) = 0 ⇒ (φ2i−1(y) = a2i−1 and φ2i(y) = a2i)
φr(y) = ar

}
.

We deduce straightfowardly:

Proposition 8. Let fψ,φ,g be defined as in Definition 3. If ψ has constant weight
and if Ea has size 0 or 1 for every a (respectively 0 or 2 for every a), then fψ,φ,g
is plateaued.

Thus, this construction easily allows us to obtain plateaued functions. A suffi-
cient condition for fψ,φ,g being m-resilient is given in [12], as well as examples of
functions achieving good tradeoffs between resiliency and nonlinearity. It seems
difficult to give numerous such examples, all the more if we add this condition
that Ea has size 0 or 1 (or 0 or 2) for every a. So, searching for other con-
structions still seems to be necessary. Notice that the examples given in [12] of
functions fψ,φ,g having nonlinearities of the form 2n−1 − 2i − 2j with i 6= j (the
m-resilient functions achieving best possible nonlinearities, with m ≤ n/2 − 2
must have such nonlinearities, at least if n is even) cannot be plateaued.

6 A new construction of Boolean functions leading to two

classes of plateaued functions

Functions fψ,φ,g in the class M′ are built as the concatenations of quadratic
functions chosen in such a way that we can efficiently compute their Walsh spec-
tra. The aim of this section is to present another way of concatenating quadratic
functions, whose Walsh spectra can also be efficiently computed. As in the cases
of the functions fφ,g and fψ,φ,g, the definition of the new class shall lead to two
sufficient conditions implying two constructions of plateaued functions.
The quadratic functions we shall concatenate are those functions whose associ-
ated symplectic forms (cf. [35]) have rank at most 2:



Lemma 1. Let r be a positive integer and let f be any Boolean function on
Fr2 of the form (u · x)(v · x) ⊕ w · x, where u, v and w are three vectors in Fr2.
Assume first that u and v are linearly independent (i.e. u 6= 0, v 6= 0 and u 6= v).
Then f is balanced if and only if w does not belong to the vectorspace < u, v >=
{0, u, v, u+ v} spanned by u and v. If w ∈ {0, u, v}, then

∑
x∈F

r
2
(−1)f(x) equals

2r−1, and if w = u+ v, then it equals −2r−1.
Assume now that u and v are linearly dependent. If (u = 0 or v = 0) and w = 0
or if u = v = w, then

∑
x∈F

r
2
(−1)f(x) equals 2r. Otherwise,

∑
x∈F

r
2
(−1)f(x) is

null.

Proof
Assume first that u and v are linearly independent. We have

∑

x∈F
r
2

(−1)f(x) =
∑

x∈u⊥

(−1)w·x +
∑

x∈(u⊥)c

(−1)(w+v)·x.

The sum
∑

x∈u⊥(−1)w·x is null if w 6= 0 and w 6= u. The sum
∑

x∈(u⊥)c(−1)(w+v)·x

is null if w 6= v and w 6= u + v. Hence if w does not belong to the vectorspace
{0, u, v, u+v}, then

∑
x∈F

r
2
(−1)f(x) is null, and thus f is balanced. It is a simple

matter to see that if w ∈ {0, u, v}, then
∑

x∈F
r
2
(−1)f(x) equals 2r−1 and that if

w = u+ v then it equals −2r−1.
Assume now that u and v are linearly dependent. Then f is linear. If u = 0 or
v = 0 then f is null if and only if w = 0. If u = v 6= 0 then f is null if and only if w
equals u. If f is not null, then it is balanced. �

Remark: If v 6= 0 and if u, v are linearly dependent (i.e. u = 0 or u = v), then
the sum

∑
x∈F

r
2
(−1)f(x) equals 2r if and only if w = u. This observation will be

useful for Proposition 9 and Corollary 2 below.

We concatenate now the functions studied in Lemma 1 and their comple-
ments :

Definition 4. We call Q the class of all Boolean functions f of the form

∀(x, y) ∈ Fr2 × Fs2, fφ1,φ2,φ3,g(x, y) = (x · φ1(y)) (x · φ2(y)) ⊕ x · φ3(y) ⊕ g(y)

where φ1, φ2 and φ3 are three functions from Fs2 into Fr2 and g is any Boolean
function on Fs2.

Remark:
1. Class Q has a simpler definition than the class M′ recalled at subsection 5.3.
And we shall see that its Walsh spectrum is also simpler to compute. Notice that

its size
[
(2r)2

s]3 × 22s = 2(3r+1)2s is larger than the size
[
22s

]t × (2r)2
s × 22s =

2(t+r+1)2s (where t =
⌊
r
2

⌋
) of M′.

2. The bent functions constructed in [11] (cf. Proposition 4) belong to class Q.�



The restrictions of fφ1,φ2,φ3,g obtained by fixing y in its input being quadratic
functions of the form (u · x)(v · x) ⊕ w · x, as a direct consequence of Lemma 1
we have:

Proposition 9. Let fφ1,φ2,φ3,g be a function in Q such that φ2(y) 6= 0 for every
y ∈ Fs2. Let E be the set of all y ∈ Fs2 such that the vectors φ1(y) and φ2(y) are
linearly independent. Then, for every a ∈ Fr2 and every b ∈ Fs2, ̂χfφ1,φ2,φ3,g

(a, b)
equals

2r−1
∑

y∈E;
φ3(y)+a∈{0,φ1(y),φ2(y)}

(−1)g(y)+b·y − 2r−1
∑

y∈E;
φ3(y)+a=φ1(y)+φ2(y)

(−1)g(y)+b·y +

2r
∑

y∈Fs2\E;

φ3(y)+a=φ1(y)

(−1)g(y)+b·y.

6.1 Two constructions of plateaued functions in Q

We deduce from Proposition 9 two sufficient conditions to insure that an element
in Q is plateaued. These conditions are used to construct two new classes Q1

and Q2 of plateaued functions.

Corollary 1. Let fφ1,φ2,φ3,g be defined as in Definition 4. Assume that, for
every y ∈ Fs2, the vectors φ1(y) and φ2(y) are linearly independent. If the 2-
dimensional flats φ3(y) + 〈φ1(y), φ2(y)〉 (where y ranges over Fs2) are pairwisely
disjoint, then fφ1,φ2,φ3,g is plateaued of amplitude 2r−1.

Proof. According to the hypothesis, for every a ∈ Fr2, there exists at most one
vector y ∈ Fs2 such that a is included in φ3(y)+ < φ1(y), φ2(y) >. According
to Proposition 9, ̂χfφ1,φ2,φ3,g

(a, b) equals then 0 or ±2r−1 for every a ∈ Fr2 and
every b ∈ Fs2.

Thus, from every family of 2s pairwisely disjoint 2-dimensional flats of Fr2, Corol-
lary 1 allows us to derive a plateaued function on Fr2 × Fs2 belonging to Q : for
every y ∈ Fs2, we choose one of these flats and we choose two distinct nonzero
elements in its direction. Denote these two elements by φ1(y) and φ2(y) and
denote by φ3(y) any element of the same flat. The function fφ1,φ2,φ3,g satisfies
then the hypothesis of Corollary 1. We denote by Q1 the class of those plateaued
Boolean functions in Q constructed in this way.
Similarly, if for every y ∈ Fs2 the vectors φ1(y) and φ2(y) are linearly independent
and if, denoting by Fa the set {y ∈ Fs2/a ∈ φ3(y) + 〈φ1(y), φ2(y)〉}, the cardinal-
ity of Fa equals 0 or 2 for every a ∈ Fr2, then fφ1,φ2,φ3,g is plateaued of amplitude
2r.
This condition seems more difficult to satisfy than the condition obtained in
Corollary 1. But since it leads to an amplitude of 2r, we can relax the condition
that the vectors φ1(y) and φ2(y) are linearly independent. We obtain :

Corollary 2. Let fφ1,φ2,φ3,g be defined as in Definition 4. Assume that φ2(y) is
nonzero for every y ∈ Fs2. For every a ∈ Fr2, let F ′

a be the set of all y ∈ Fs2 such



that φ1(y) and φ2(y) are linearly independent and such that a belongs to the flat
φ3(y) + 〈φ1(y), φ2(y)〉. Let F ′′

a be the set of all y ∈ Fs2 such that φ1(y) and φ2(y)
are linearly dependent and a = φ3(y) + φ1(y). If, for every a ∈ Fr2, the number
#F ′

a + 2#F ′′
a equals 0 or 2, then fφ1,φ2,φ3,g is plateaued of amplitude 2r.

Proof. According to the hypothesis, for every a ∈ Fr2, either F ′′
a = ∅ and the size

of F ′
a equals 0 or 2, or F ′

a = ∅ and F ′′
a has size at most 1. Thus, fφ1,φ2,φ3,g is

plateaued of amplitude 2r, according to Proposition 9.

Corollary 2 leads to a second construction of plateaued functions belonging to
Q. Let B and A be two disjoint subsets of Fr2 such that #B + 2#A = 2s. Let F
be a family of 2-dimensional flats included in A and such that, for every a ∈ A,
there exist two 2-dimensional flats of F which contain a. We derive a plateaued
function in the following way:
1. To every a ∈ B, we associate injectively y ∈ Fs2, we choose φ2(y) in Fr2 \ {0},
φ1(y) in {0, φ2(y)} and we set φ3(y) = a+ φ1(y).
2. For every a ∈ A, we consider the two flats F1 and F2 in F which contain a and
we choose injectively two vectors y1 and y2 among those of Fs2 which have not
been chosen at step 1. We choose two distinct nonzero elements in the direction
of F1 (resp. F2). We denote these elements by φ1(y1) (resp. φ1(y2)) and φ2(y1)
(resp. φ2(y2)). We denote by φ3(y1) (resp. φ3(y2)) any element of the same flat.
At the end of step 2, every y ∈ Fs2 has been affected a value for φ1(y), φ2(y) and
φ3(y) and the function fφ1,φ2,φ3,g satisfies the hypothesis of Corollary 2.
We call Q2 the class of those plateaued Boolean functions in Q constructed this
way.

7 Study of the new classes Q1 and Q2

7.1 Algebraic degree and nonlinearity

In the next proposition, we denote by φj (1 ≤ j ≤ r) the j-th component function
of any function φ from Fs2 into Fr2.

Proposition 10. The algebraic degree of the function fφ1,φ2,φ3,g of Q equals

max(max
i,j≤r

deg(φj1φ
i
2 ⊕ φi1φ

j
2) + 2 ; max

i≤r
deg

(
φi3 ⊕ φi1φ

i
2

)
+ 1 ; deg g). (10)

and is upper bounded by 2 + s.

The degree of fφ1,φ2,φ3,g equals s+ 2 if and only if there exists a pair of distinct

indices {i, j} such that deg(φj1φ
i
2 ⊕ φi1φ

j
2) = s.

The nonlinearity of any Boolean function of Q1 (resp. Q2) is 2n−1 − 2r−2

(resp. 2n−1 − 2r−1), according to Equality (6) and to Corollaries 1 and 2.



7.2 Resiliency

Proposition 11. Let fφ1,φ2,φ3,g be a Boolean function on Fr2 × Fs2 belonging to
Q1 and let D1 denote the set

⋃
y∈F

s
2
(φ3(y)+〈φ1(y), φ2(y)〉). Let k be the minimum

weight of the elements of D1. Then, we have k − 1 ≤ max{t ∈ N;
∑t

i=0

(
r
i

)
≤

2r − 2s+2} and fφ1,φ2,φ3,g is exactly (k − 1)-resilient.

Proof. According to Proposition 9 and to Corollary 1, ̂χfφ1,φ2,φ3,g
(a, b) equals

±2r−1 if and only if a ∈ D1. If (a, b) has weight smaller than or equal to k − 1,
then a has weight smaller than or equal to k − 1 and does not belong to D1:
this implies ̂χfφ1,φ2,φ3,g

(a, b) = 0. Thus, fφ1,φ2,φ3,g is at least (k − 1)-resilient.
Moreover, suppose that fφ1,φ2,φ3,g has a resiliency order m larger than or equal
to k, then ̂χfφ1,φ2,φ3,g

(a, 0) = 0 for any a ∈ Fr2 having weight k wich contradicts
the hypothesis on k and D1. Since, by hypothesis, every word of weight smaller
than or equal to k− 1 belongs to Dc

1, and since D1 is the union of 2s pairwisely

disjoint 2-dimensional flats, we deduce that 2r − 2s+2 ≥ ∑k−1
i=0

(
r
i

)
and then

k − 1 ≤ max{t ∈ N;
∑t
i=0

(
r
i

)
≤ 2r − 2s+2}.

As recalled at section 4, for every Boolean function f on Fn2 , the nonlinearity
Nf and the resiliency order m satisfy the relation Nf ≤ 2n−1 −2m+1. When f is
plateaued of amplitude 2r−1, this relation implies that m is upper bounded by
r − 3. The functions whose nonlinearity and resiliency order equal 2n−1 − 2r−2

and r− 3 respectively are good candidates to be used in stream ciphers and are
proved to be necessarily plateaued by Sarkar and Maitra [34]. For this reason, it
would be interesting if Q1 could contain such functions. The aim of the following
corollary is to give a necessary condition, wich must be satisfied by any element
of Q1 having 2r−1 for amplitude and r − 3 for resiliency order.

Corollary 3. If a Boolean function fφ1,φ2,φ3,g on Fr2 × Fs2 belonging to Q1

achieves maximum possible resiliency order r − 3, then s is upper bounded by
log2(r

2 +r+2)−3 and thus have a degree upper bounded by log2(r
2 +r+2)−1 ≤

log2(n
2 + n+ 2) − 1.

Proof. According to Proposition 11, if fφ1,φ2,φ3,g is (r− 3)-resilient then r− 3 is

upper bounded max{t ∈ N;
∑t

i=0

(
r
i

)
≤ 2r − 2s+2}. We deduce that r satisfies∑r−3

i=0

(
r
i

)
≤ 2r − 2s+2. Since

∑r−3
i=0

(
r
i

)
equals 2r −

(
r
0

)
−

(
r
1

)
−

(
r
2

)
, we obtain

2s+2 ≤ 1 + r + r(r−1)
2 that is s ≤ log2(r

2 + r + 2) − 3.

The Walsh spectra of the elements of Q2 can be more complex than the Walsh
spectrum of the elements of Q1. However, we shall see that their resiliency ap-
proximatively have the same behavior as the elements of Q1 with respect to their
amplitude.

Proposition 12. Let fφ1,φ2,φ3,g be a function in Q2. For every a ∈ Fr2, let F ′
a

and F ′′
a be the sets defined in Corollary 2. Let A denote the set {a ∈ Fr2; #F

′
a = 2}

and let B denote the set {a ∈ Fr2; #F
′′
a = 1}. Let k and k′ denote the minimum

weights of the elements of A∪B and B respectively. Then fφ1,φ2,φ3,g is m-resilient
with min(k′ − 1, k) ≥ m ≥ k − 1.



Proof. Let D2 denote the set B∪A. According to Proposition 9 and to Corollary
2, if a is inDc

2, then ̂χfφ1,φ2,φ3,g
(a, b) equals zero. Thus, if (a, b) has weight smaller

than or equal to k − 1, then a has weight smaller than or equal to k − 1 and
belongs to Dc

2. This implies that ̂χfφ1,φ2,φ3,g
(a, b) = 0 : we deduce that fφ1,φ2,φ3,g

is at least (k−1)-resilient. We notice that, by definition, k and k′ satisfy k′ ≥ k.
Suppose that a is an element of B admitting k′ for weight. Due to Proposition
9, for every b ∈ Fs2, ̂χfφ1,φ2,φ3,g

(a, b) = ±2r. This implies that the resiliency of
fφ1,φ2,φ3,g is upper bounded by k′ − 1.
Suppose that a is an element of A admitting k for Hamming weight and denote
by y1 and y2 the two elements of Fs2 such that a ∈ φ3(y1)+ < φ1(y1), φ2(y1) >
and a ∈ φ3(y2)+ < φ1(y2), φ2(y2) >. Due to Proposition 9, the restriction of

̂χfφ1,φ2,φ3,g
to {a} × Fs2 is defined by one of the two following relations:

∀b ∈ Fs2,
1

2r−1 ̂χfφ1,φ2,φ3,g
(a, b) = ±[(−1)g(y1)+b·y1 +(−1)g(y2)+b·y2 ] = ±2[b · (y1 +

y2) ⊕ g(y1) ⊕ g(y2) ⊕ 1]
∀b ∈ Fs2,

1
2r−1 ̂χfφ1,φ2,φ3,g

(a, b) = ±[(−1)g(y1)+b·y1 − (−1)g(y2)+b·y2 ] = ±2[b · (y1 +
y2) ⊕ g(y1) ⊕ g(y2)]
Since the linear function b 7→ b · (y1 + y2) is not constant on the set {b ∈
Fs2;ωH(b) ≤ 1} when y1 and y2 are distinct, then there always exists an element
b ∈ Fs2 of weight ωH(b) ≤ 1 such that ̂χfφ1,φ2,φ3,g

(a, b) is not null. This implies
that the resiliency of fφ1,φ2,φ3,g is stricly upper bounded by k + 1.

7.3 Constructions of Highly Nonlinear Resilient Functions from the
class Q

We have seen in the previous section, that the elements of Q1 and Q2 which
achieve optimum tradeoff between nonlinearity and resiliency must have a low
degree. We show now that it is possible to construct functions in Q with very
good (but not optimal) characteristics.

Let r be any integer, we denote by 1 the vector in Fr2 having all its co-
ordinates equal to 1. We construct functions in Q as follows: we choose two
distinct elements e1 and e2 in the canonical basis of Fr2 (we recall that for
every i ≤ r, ωH(ei) = 1) and we denote by F the flat 1+ < e1, e2 >. We
choose an integer t lower than or equal to r − 2 and we denote by Ut the set
{u ∈< e1, e2 >

⊥; ωH(u) ≤ t}. By construction of the set Ut, (u + F )u∈Ut is
a family of pairwisely disjoint 2-dimensional flats whose elements have weights
greater than or equal to r − t− 2. This family leads to construct Boolean func-
tions in Q1 and Q2 such that the nonlinearity and the resiliency order can easily
be computed.

Construction 1 Let s denote blog2

∑t
i=0

(
r−2
i

)
c. For every y ∈ Fs2 choose an

element u ∈ Ut and choose two distinct nonzero elements in {e1, e2, e1 + e2}
(i.e. nonzero elements in the direction of F ). Denote these elements by φ1(y)
and φ2(y) and denote by φ3(y) any element of the flat u + F . For any choice
of Boolean function g on Fs2, the function fφ1,φ2,φ3,g belongs to Q1. Denoting



r + s by n, its nonlinearity and resiliency order equal 2n−1 − 2r−2 and r − t− 3
respectively (indeed the minimum weight of the elements of Ut+F equals r−t−2
and Propostion 11 permits to conclude).

In the following construction of highly nonlinear resilient functions from Q2, we
choose the set B defined in Proposition 12 empty.

Construction 2 Let s−1 denote blog2

∑t
i=0

(
r−2
i

)
c. For every u ∈ Ut such that

ωH(u) = t, we choose injectively two vectors y1 and y2 in Fs2 : we define φ1(y1) =
φ2(y2) = e1 and φ2(y1) = φ1(y2) = e2; then we set φ3(y1) = φ3(y2) = u+ 1. For
every element u of Ut such that ωH(u) < t we choose injectively two vectors y1

and y2 among those of Fs2 which have not been chosen at the previous step and
we choose two pairs of distinct nonzero elements in < e1, e2 >: we denote these
pairs by (φ1(y1), φ2(y1)) and by (φ1(y2), φ2(y2)); we denote by φ3(y1) and by
φ3(y2) two elements of the same flat u + F . After defining a Boolean function
g on Fs2 such that g(y1) = g(y2) ⊕ 1 when wH [φ1(y1) + φ2(y1) + φ3(y1)] =
wH [φ1(y2) + φ2(y2) + φ3(y2)] = r − t− 2, we obtain a function fφ1,φ2,φ3,g in Q2

having 2n−1 − 2r−1 for nonlinearity and having r − t− 2 for resiliency.
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A Other constructions of plateaued functions

A.1 Secondary constructions

A first construction is given in [17]. Let g : Fr2 7→ F2 and h : Fs2 7→ F2 be two
plateaued functions. The function f defined on Fr+s2 by f (x, y) = g (x) ⊕ h (y)



is plateaued on Fr+s2 . Indeed we have

χ̂f (a, b) = χ̂g(a) × χ̂h(b).

But such function f does not have good cryptographic properties. For instance,
the degree of f is upper bounded by max(deg g, deg h). And J. Dillon himself
says that the “decomposable” functions this construction produces are not sat-
isfactory.

Two other secondary constructions of plateaued functions can be adapted
from classical secondary constructions of resilient functions (cf. [3, 30, 36]).

Proposition 13. 1. Let g and h be two plateaued Boolean functions on Fn2 of
the same amplitude 2r.
The functions defined by f(x1, · · · , xn, xn+1) = g(x1, · · · , xn−1, xn ⊕ xn+1) and
f ′(x1, · · · , xn, xn+1) = g(x1, · · · , xn−1, xn⊕xn+1)⊕xn are plateaued of amplitude
2r+1 on Fn+1

2 . If g is mth-order correlation immune (resp. m-resilient) then f
is mth-order correlation immune (resp. m-resilient) and f ′ is m-resilient. If
χ̂g(a1, . . . , an−1, 1) = 0 for every ((a1, . . . , an−1), then f ′ is (m+ 1)-resilient.
2. If for all a ∈ Fn2 , the numbers χ̂g(a) and χ̂h(a) either are both null or are both
nonzero, then the function f ′′(x1, · · · , xn, xn+1) = (xn+1 ⊕ 1)g(x1, · · · , xn) ⊕
xn+1h(x1, · · · , xn) is plateaued of amplitude 2r+1 on Fn+1

2 .
If for all a ∈ Fn2 , at least one of the numbers χ̂g(a) and χ̂h(a) is null, then the
function f ′′(x1, · · · , xn, xn+1) is plateaued of amplitude 2r on F

n+1
2 .

If g and h are m-resilient then f ′′ is m-resilient.

Proof. 1. For every (a1, . . . , an+1) ∈ F
n+1
2 , we have

χ̂f (a1, . . . , an+1) =
∑

(x1,...,xn+1)∈F
n+1
2

(−1)
⊕n+1
i=1 aixi⊕g(x1,...,xn−1,xn⊕xn+1) =

∑

(x1,...,xn+1)∈F
n+1
2

(−1)
⊕n−1
i=1 aixi⊕an(xn⊕xn+1)⊕an+1xn+1⊕g(x1,...,xn) =

∑

(x1,...,xn+1)∈F
n+1
2

(−1)
⊕
n
i=1 aixi⊕(an⊕an+1)xn+1⊕g(x1,...,xn).

Thus, χ̂f (a1, . . . , an+1) equals 2χ̂g(a1, . . . , an) if an = an+1 and 0 otherwise.
Consequently, χ̂f ′(a1, . . . , an+1) equals 2χ̂g(a1, . . . , an) if an = an+1 ⊕ 1 and 0
otherwise. The consequences are then straightforward.
2. For every (a1, . . . , an+1) ∈ Fn+1

2 , we have χ̂f ′′(a1, . . . , an+1) = χ̂g(a1, . . . , an)+
(−1)an+1χ̂h(a1, . . . , an). Thus, χ̂f ′′(a1, . . . , an+1) equals 0 or ±2r+1 (resp. ±2r)
thanks to the condition on χ̂g and χ̂h.

The classes of Boolean functions these constructions permit to build are
small. Moreover, f and f ′ have the nonzero linear structure (0, . . . , 0, 1, 1) which
can be used to attack the system in which it is implemented.



A.2 Plateaued Functions from Sequence Designs

An important problem in sequence designs is to study the cross-correlation
between a binary maximum-length sequence (called m-sequence) and its dec-
imation by an integer d. Let s [1] = (s0, s1, s2, . . . , sj , . . . ) denote a binary m-
sequence of length 2n − 1 and let s [d] = (s0, sd, s2d, . . . , sjd, . . . ) denote its
decimation by an integer d, co-prime with 2n − 1. We denote by Cd (t) the
cross-correlation function between the m-sequences s [1] and s [d], defined by

Cd (t) =
∑2n−2

j=0 (−1)sjd+sj+t for t = 0, 1, . . . , 2n−2. These cross-correlations are
known to take at least three different values. The special case when exactly three
values occur was the subject of many works [7, 16, 19, 20].
The study of binary sequences can be related to Boolean functions through their
trace representation. Let Tr : F2n 7→ F2 denote the usual trace function on
the Galois Field F2n and let α be a primitive element of F2n . Since the cross-
correlation spectrum only depends on d and not on the choice of the m-sequence
s [1], we may assume with no loss of generality that s [1] is given by sj = Tr

(
αj

)
.

Then to each sequence obtained by decimating s [1] by an integer d, one can asso-
ciate its trace representation i.e. the function fd : x 7→ Tr

(
xd

)
. When t varies in

{0, · · · , 2n − 2}, the functions associated to the sequences sj+t are the functions
of the form x 7→ Tr (βx) where β = αt that is all the non-zero linear functions
on F2n . The Walsh transform of the function fd and the cross-correlation Cd of
s [1] are connected through the relation:

χ̂fd (u) = Cd (t) + 1 (11)

where u = αt is in F ∗
2n

The Boolean function fd is plateaued on F2n if and only if the associate sequence
has a three-valued cross-correlation function.

In [22], T. Helleseth and P. V. Kumar give the list of all the values d known at
that time for which Cd is three-valued. We recall here this list and add the two
constructions presented in [7] and [24]:

1. d = 2k + 1, n/gcd (n, k) odd,
2. d = 22k − 2k + 1, n/gcd (n, k) odd,

3. d = 2
n
2 + 2

n+2
4 + 1, n ≡ 2 (mod 4),

4. d = 2
n+2
2 + 3, n ≡ 2 (mod 4),

5. d = 2
n−1

2 + 3, n odd,
6.

d =

{
2
n−1

2 + 2
n−1

4 − 1 if n ≡ 1 (mod 4)

2
n−1

2 + 2
3n−1

4 − 1 if n ≡ 3 (mod 4)

From cryptographic viewpoint, these classes are too small to provide satisfaction.
In the case 1, introduced by Gold [19], the algebraic normal form has degree 2
and the constructed trace function belong to R (2, n) which was already known to



be a set of plateaued functions. In the other cases respectively found by Kasami,
Cusick and Dobbertin [16], Canteaut-Charpin-Dobbertin [7] and Hollmann and
Xiang [24], the algebraic degree of the functions is greater than 2 but it equals
3 in the cases 4 and 5. It is a hard problem to test cryptographic properties as
resiliency on these functions and more generally on Boolean functions defined
on the field F2n .


