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Abatract. The resymehronization attack on atrenmn dpherd with a lin-
aar nevt-gtate fanction and A nonlinenr ontpit fanction ia forther imres-
tigated. The nnwber of indtialization vectors required for the secret kay
reconstruction when the cutpat fenction is known ia stodied in more da-
tail and A connection with the as-called J-ordar linenr atrnctores of the
ottt funetion i3 estahlished. A more difflenlt problem when the ontpat
function i3 anknown s also comidered. An efcient hranching alporithon
for raconatructing this function along with the secret kay is proposed and
apalysed. The mmwber of initialization vectors required is larper in this
casa than when the ontpat fanction ia kaown, and the larger the snmber,
tha lower the complaxity.

Fegtrornds: Stranm ciphara, Boolenn fanctions, Retymchronization, Ra-
construction algorithma

1 Imtroduction

A typical stream cipher is based on a keystream peneratar as an antanomos
finite-state antamaton whose output sequence is reversibly combined with a
plaintext sequence to yield a ciphertext sequence. A practical stream cipher
alzo nses a reinitialzation algorithm which combines a sexret key and a known
parameter called initialization vector (V) inte an initial state of the keystream
peneratcr. Beinitialization enables rensage of the same secret key with different
IV's for encrypting relatively short messages by different keystreams. This is
important for resyndironization purposes as well as for late entry in {multiparty}
canmunication links.

Beinitialization can increase the secmuxity due to sharter keystreams available
frx cxyptanalys=iz, but can also decrease the security due to multiple keystreams
derived from the same secret key. It is known that reasonably secure keystream
generaters can be constructed fram a near next-state finction and a nonlinear
autput hincticn, e.g., nanlinear filter generators and memayless combiners, bath
based on linear feedback shift registers. However, it & shown in [2] that such a
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leystream peneratcr when used together with a linear reinitializaticon algorithm
¥ totally insecre if the output function depends on a relatively small number of
input variables. More preciely, frr an n-bit ontput Boolean fimetion and a &-bit
secret key, the complexdty of the attack & about £2™ evaluations of the output
hmction to obtain a system of linear equations for the secret key, which & then
reconstructed by salving the systemn. A conmon and more secure technique for
reinitialization is to produce the initial state of the keystream penerator from the
cautput of the keysiream penerator jtself when loaded with a linear combination
of the secret key and IV {e.g., see [1]}. The resynchronization attack [2] may
then be usehil for recovering the secret key from a set of previonsly reconstmocted
initial states of the keystream generator.

A lpystreamn generator can be rendered more secure by letting the secret
key control the structure, that is, the next-state and for ontpnt fimcticns. In
particnlar, only the output fimction can be chosen by the secret key. As in this
caze the resynchronizaticn attack [2] is no longer applicable, it & interesting to
investigate f other, more sophisticated attacks can then be developed.

Secticns 2, 3, and 4 are devoted to the first objective of thi paper which is
to conduct a more m-lepth analysk of the resynchronization attack and thus
obtain more precke estimates of the mumber of IV 's required for the secret key
reconstructicn given a general output Boolean fimcticn. The main properties
of the so-called (-order linear strnctires of Boolean finctions are pointed ot
and thar impact on the attack is determined. A characterization of Bodlean
hinctions in terms of (rarder and 1-order linear structures is akoestablished. The
second objective, which is to investigate the more difficnlt case when the cutput
hmction is not Jnown, is treated in Sections § and 6. An efficlent algarithm
frr reconstmucting this fimction along with the secret key is developed and its
complexdty is analyzed in terms of the number of IV ’s available. The main results
and open problems are summarized in Section 7.

2 Problem Statement

Acmrding to [2], consider a general binary keystreamn generator with a linear
next-state hmction Sy = Lo (5:), where 5; is the internal state at time
t, with a linear inftialization finction Sy = Loy (K, IV), where S, is the initial
state, K is the secret key, and IV is the mitialzation vector, and with an cotput
hmnction 2 = F{L,..(5:)), where 2, is the ootput (keystream) bit at time t, § is
a nonlinear Bodean function, and L, is a linear fonction.

Let IV, 1 <i < {Q, be given IV’ and let the corresponding ontput bits be
known at times t € T, in the nowm keystream scenaric. They define a system
of nonlinear equations in K of the frm

zi = fL{K)@ LIV}, 1<i<Q, teT, {1
where L: and L are linear fimctions derived from
Lyt Lipas {Lsce (K, TVY)) = Le(K) & LEIVE) (2)



and & denctes the bitwize addition. Ome problem, considered in [2], is to find
a solution for K when § is known. Another, mare diffionh problem is to find a
sohition for K and § when § is imlmown. Note that for a k-bit secret key K and
an w-bit function f, the exhanstive search would require 2* steps for the first
problem and 2% +* steps for the second problem.

3 Zero-Order and First-Order Linear Structures

Solving the system (1) depends on whether the mitput function has linear stmo-
tures @ not. Becall that an »-bit vector + is called a linear structure of an w-hit
Boolean fimction f if f{X) & F{X @) = comst. It is known that the set of all
bnear structures of f is a vector space. It & shown in [4] that § has nonzero linear
strnctures #f it can be expressed as g{ A{X]) where A is a linear hinction and
g iz a function that iz partially inear or that depends on less than » variables.
Acoording to [3], we can divide the linear structures into the socalled Q-arder
and l-crder linear structures. A vector «y is said to be a (-order linear strcture
o §if }{X) & f{X &+) = (. The all-zero vectar is called the trivial (Q-order)
linear structure. Similarly, a vector «y is maid to be a l-order hnear structure of
Fif (X0 & FIX & +) = 1. The lmear stmctures of § are directly related to
the antocorrelation function o F and can be determined with the coanplexdty
{n2™) by n=ing the Walsh-Hadamard transform of § {e.g., see [3]}.

Here we give withaut proof a mumber of novel properties of Boolean functions
related to (-order linear structures which are mteresting, for the resynchroniza-
tion attack. For the sake of coanpleteness, we also give some properties of Bodlean
finctions related to 1-order linear structnres. Note that the distinction between
Crorder and l-order linear strnctires enables ns to obtain novel characterzations
of Boolean himcticms, by Propositicns 4 and &, which are more precise than the
chararterizations in terms of linear structures given in [4] and [3]. In partion-
lar, Q-crder linear strctires acconnt for the degeneracy, whereas l-mrder linear
strnctures accoimt for the partisl linearity. Let £, £, and £, denote the zets of
all linear stmictures, all Q-order inear structures, and all 1-erder linear structures
of a given Boolean function §, respectively.

Proposition 1. The set Lo i7 g vector mace.

Proposition 2. The candinality |Lo| = 2™ divides god((f 1 {0}, | £~ {1)]}, where
I U = {X|f{X} =i}, { =0,1, and for nmconstant f, m atiaing itz marmum
w— 1 & f iz affine.

Proposition 3. The bingryrelafion X; 2 X f X1 & Xa € Lo e, 5 fIX &

A = fIX & X)) in an equivalence relglion. The cormesponding epuivalence
clazzes {X @& y|y € Lol all have candinality |Lq).

Proposition 4. Let Ay be an m-dimensional mbspace af {0,1}" and let Ay be
the dual {orthogonal) space of Ay, Then Lg = Ay ff FIX) = g{A{X)) where g i
an (72 — ) -bit Boolean function withowt nontrivial Q-order Enear structures and
A i g linear funclion represented by @ mairis, acling on one-column vectors,
whase rowms generate Af.



Proposition 5. The dimenmion m af £, ir the marimal nonnegative imteger |
mch that F{X) = g{A{X)) where g iz an (n — §)-bit Boolean function and A in
linear

Proposition 8. Let S{f) denote the set of all n-bit Boolean functions k auch
that for same £, 1{X) = }{X & ). Then |S(f)| =27"™ if |Lo| =2™.

Proposition 7. Either |£,| =0 or |£1] = |Lo|. & |£1] > O, then |f7H0)] =
|f {13

Proposition 8. Let A be an (m + 1)-dimenmonal mbapace of {0,117, let Aa
be an m-dimensional mbmace of A, and let A = A\ Ay. Then Ly = Ap and
Ly = Ay if f{X) = g{A{X)) where g f7 an (n —m + 1)-bit Boolean function
without nontrivig! Q-onder inear structures that fe bnegr fn the firet variable (g
has eractly one l-onder linegr structure, tha i, the wector (1,0, ,0)) and A
is @ linear function represented by a matriz whose rows generate Ay and whose
rows withowt the first row gemerate AL, Alsa, £ = Ay and £, iz empty iff
FX) =gl A(XY) where g ix an (n — m)-bit Boolean function without nontrivial
livear structwres and A iz a linear function represented by a matriz whaove rows
generate Ag-.

4 Known Output Fonction

In the system (1), let g denote the mumber of different. £2{IV;) for a given t. Tf
we assume that the rank of L is maximal, w2, then for moderately large 27, o
can be approdimated by the classical compancy probabilistic model as

g g = {1 —e” T (3)
Consequently, the system (1) can be put in the form
7 = fX:80)), 1<i<eq, teT, 4

where X; = L:{K) and £ are all different for each t € T'. For simplicity, in view
of (3}, we can amume that ¢ = g for every t € T. Let & be the bit length of K
and let = = |T| .

When f E a known w-bit hinction and = & relatively small, the systemn {4)
can be sohred by the method proposed in [2]. Namely, for each chosen ¢, find X
by exhanstive search, where the required number of different £, g, & estimated
to be about =, becanse the required mumber of different equations in X, shaukd
roughly be equal to the number of binary variables in X;. This then takes about
72" evaluations of . Az each found X, defines n lnear equations in K, T has
to be sufficiently large =0 as to obtain & lmearly independent equations in K. In
particular, # T is such that the equations determined by X;: caresponding to
different t € T are all linearly independent, then the required cardinality of T is
7 = [kfw]. Altogether, this takes about £2™ evalations of f. At the final stage,



K iz obtained by solving the resnlting systemn of linear equaticns. Onur objective
here is to stiudy in more detail the required ¢ and * for a general .

The first note is about the mumber of schitions for X,;. ¥ f has nontrivial
Crorder linear structures, ie., I the number of (-order linear structures is 2™,
> (1, then Propostion 3 implies that the number of sohiticns is a multiple of
2™ and for large encugh ¢ it & exactly 2™. More precisely, since J can then be
put in the form specified by Propositions 4 and 5, where the function g has no
nontrivial {-ader linear structures, it follows that for large encugh ¢ there £ a
unique soluticn for the linear hmction of X, A{X,). As A{X,) defines n—m
binear equaticns, the required cardinality of T then mcreaseste = = [&/{(m—m]].
Hiwever, as the number of variables & then effectively rednced from = ton —m,
the total complexity of obtaining the system of Imear equations in K reduces to
about A2 ™ evaluaticns of g.

The zecond note is abont how large ¢ has to be in order to reach the minimal
mumber of sohitions for X, inder the assumption that the vectors {4 and X,
are all chosen at random. The minimal value of ¢ needed, gmin, depends on the
chaice of these vectors and on §. As nontrivial {-order linear strctires effectively
reqince the number of variables, it is appropriate to investigate randomly chosen
J withont nontrivial Q-order linear structures. In the experiments, for a chosen
f, X: is chosen at random, and the g output bits 2z are then produced by
{4} from randomly chegen different vectoars £, It turns mit that an important
parameter affecting g.:, i= the relative mumber, p, of 1’s in the truth table
o f, p = |f71{1)|/2". Let §uin be the average of go:, over random § and
over random choices of the vectors ) and X,. A simple information-theoretic
argnment then yields a necessary condition #oi, > w/H{p), where the value of
the binary entropy function H{p) is the average number of bits of information
ahont X; provided by each equation in the system. In particular, fe p = 1/2 we
et i > n, whereas for p =0 or p = 1 we naturally get that ;. = oo, which
means that the secret key cannot be removered at all.

However, the experiments by computer simmlations show that g is larger
than =/ H{p) as well as that the probability that g:, & considerably larger than
this lower bound & not =mall. As a consequence, both the number of IV s re-
quired and the attack complexity increase. An explanation for this & that the
infarmation contents of individual {nonlinear) equaticns are generally not mitu-
ally independent. Fig. 1 display= the estimates of the probability distribution of
Gmin Gbtained from 10,000 randenly chosen 8-bit f for g = 1/2 and g = 1/4. Fig.
2 displays the average vahes of goin as a finction of p obtamed from 100,000
randomly chosen &-bit § along with the lewer bound =/H{p). Similar curves
were ako aobtained for v = §, 10. Acoordingly, more IV''s are required for non-
balanced than balanced § fr the attack to be successhul. In other words, the
cryptagraphically most interesting case g = 1/2 requires the minimal number of
IV's a average.
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Fig. 1. Probability distribntiona of guun, for 2= 8.
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6 Unknown Output Fonction - Complete I'VY Set

When § is not known, e.g., when it is defined by a secret key, the attack from
the preceding secticm is not applicable. We first consider the case when there
exists at least one value of + such that g = 2™. In accordance with {3}, this m
average requires that ) = 2™ In2™, provided that + = 1. For v 3» 1, this average
vahie is somewhat reduced, depending on +. For any such #, the set of all n-hbit
finctions £ consistent with {4} is exactly the set S{f} of ardnality 2™ from
Proposition 6. 5o, the most ane can get fram the system (4) is the set S{f),
to which § belongs. Once the set S{f) is recovered, the method then conskts
of rumning the attack from the preceding section for each candidate function
k e 5{f) and of testing the obtained secret key K on additional output bits,
n — 7% on average. Both f and K are thus recovered with the complexity only
2"~ times larger than when § is known.

8 Unknown Output Function - Incomplete IV Set

In this section, we consider a mare diffionht case when g < 2" for every t & T,
50 that the set S{f) cannot be recovered from any single walue of £. In order to
cbtain this set, we have to combine the information from different chservation
times %, and this can be achieved by the fdlowing algorithm. The times t are
first arranged m order of descending walues o g and denoted a= 1,2,.--,+.
Then initially, frr each 1 < ¢ < v, compute a partially defined function &9
representing S{kY) that & consistent with {4) at time {. More preciey, ¢: binary
vahies of 47 are defined by using {4) with the allzero vector instead of X, that

B,
HCH =21, 1<i<q, 1<i<T, {5)

while the remaining vales of A? remain 1mdefined. I we dencte the undefined
vahes by the symbal b, then each £? affectively takes three output values: Q, 1,
and b.

The algorithm essentially consists of searching through a tree of candidate
hmctions & representing all S(h) that are consitent with the current and pre-
vios observations combined. More preckely, a three-vahied function, with a
generic notation &2, is assigned to each node in the tree in the folowing way. Ini
tially, at level 1, start from a single node with the assodated candid ate function
b =AY, and then proceed iteratively. Consider a node at level § with the sssock
ated functiom k. The snecesser nodes to this node are derived from all different
¥ € {0,1}" =uch that

KX) = K0, (X 8Y) (6)

frr every X € {0,1}" such that neither 2{X) na h;.'H{x & ¥} & equal to b.
For each such ¥, then use (6) to modify & for every X =uch that 2(X) =b £
M (X &Y) by setting 2(X) = A%, (X & ¥). The modified & is the candidate
hinction associated with the sucoessor node corresponding tao Y.



T there does not exdst such an ¥, then there are no socessors to the con-
sidered node. This means that the candidate functicn b assigned to this node is
incnsistent with the cbservations and as such & incorrect, although it may be
hilly defined. Such an end node is called a failure end node. On the gther hand,
if there exists such an ¥, then the candidate finction assigned to any suocessor
node has at most ax many imdefined vahies a5 the candidate function assigned
to the considered node. Any node with a binary, filly defined candid ate function
¥ called a snceess end node if it has a (unique) suocessor and every smbsequent
node, if generated, would have a (umique) snecessor. In practice, if the tree is
examined by the depth-first search with backtraddng, with a negligible space
complexdty, this can be checked on a small mumber of additional nodes. Altern a-
tively, one can apply the width-first search by storing and examining one level
of the tree at a time. In this case, at each level, one does not have to examine
different nodes with the same candidate function more than anee, which means
that only the nodes with different candidate fiinctions assigned are further pro-
cesed. The alprithm then stops when a levd with a simgle node with a fully
defined candidate hinction is reached.

In theory, even if + = oo, it is poesible, it extremely nnlikely, that a snocess
end node is never reached. In this case, after a certain point, the new cbervation
times comtain no additional mfemation about § and the obtained candidate
hmctions are not being npdated at all.

After a snecess end node is found, the set S{f) & recovered and the rest is
the =ame as when the IV set & complete. The effectiveness of the algarithm
can be measured by the mumber of different chservation times required to reach
a solution and by the total munber of nodes examined. Both depend on the
mumnber of I'V¥'s available. The worst-case time complexdity is reflected by the
total number of nodes i the whole tree. The complexdity per node is at most. 22
elementary operations with the values {1, 1, and b.

Erample 1. Let f{z), To,73) = 1@ 3 BT G o1Te & oTs, 7 = 6, and g =
g = 4,1 £ t < 6 Further, let the ontput bits 2z} be produced by (4) from
the vectors X; and £ a= dEplayed in Fig. 3. Then all the different candidate
hinctions obtained are shown in Fig. 4, where %, stands for a peneric candidate
function at time . For each 2 < ¢ < §, the numbers of the form [, — &; are also
shown, where I} stands fr the total mumber of candidate finctions obtained and
I; stands fr the total number of {dEplayed) different functions among them,
becanse different candilate hinctims at time ¢ — 1 can give rise to the zsame
candidate function at time £.

At time £ = 3 there appear 3 hully defined candidate functions, whereas at
time £ = 4 there are also 3 mich functions, but auly 2 of them are fran time £ = 3.
Sa, at time t = 4, one fully defined mndidate himction disappears as noons=istent,
while a new one appears. At time t = § the set of candidate himctions is not
updated and at time t+ = € a wnique comsistent solution, hg, & found, which
& different from all the previonsly cbtamed fully defined candidate fincticns.
Nate that f #£ kg, but §f € S{kg). More preciely, f{X) = hg{X & X, where
X, =011 {=ee Fig. 3).
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Flg. 3. The vectors A; and £F and the ontput bits £, in Example 1.
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In the experiments, we used {4} with randanly generated distinct vectors
4, i variable vahies of . Tt tnrms out that a typical tree first grows and then
pgradnally shrinks to a smgle node with a partially defined candidate function.
Finally, it takes a number of additional levels for this fimction to be npdated into
a fully defined function, at which point the alporithms stops. Fig. 5 shows the
dependence of the logarithm to the base 2 of the mumber of nodes with different
candidate functicns uwpon the tree level, for the trees cbtamed fram the zame
randomly chesen balanced 8-bit fimction J and a mumber of different g. It & not
shown that in thi particilar experiment the sinccess end nodes were reached
after + = 68, 45,47, and 37 levels for g = 24, 23,32, and 36, respectively.

13 1

Flg. 5. Logs of tha nnwber of nodas as o fametion of the trea laval,

Let i dencte the minimal number of leveks in a tree until a level with a
single mcress end node is reached and let ¥ denote the total number of nodes
with different candidate functions at each level. Further, ket %55, = 2" In 27 /g
denote an approxdmation for voin according to the dassical ccoupancy mode.



Fig. & displays the logarithms to the base 2 of the average values of &, 7.4,
and #,i, for variable vahies of g, where the averages were cbtained over 1000
randomly generated bit functions §.

It isinteresting that for the values of g larger than a critical point g2 (g2 k= 535,
frr 2 = §), Tain ke IV, meaning that for almost all § each node in the tree has a
unique suecessor. Branching ocos for g < g, and for the vahies of g smaller than
ancther critical point, g, (g = 33, for v = &), V grows rapidly as g decreases.
In particilar, if ¢ r n, then the complexdity appears to be prohibitively high.
Recall that on average, g has to be larger than » for the rest of the attad: to be
applicable. For g < ga, fmin appears to be a very good approsdmation. Similar
behavicr is expected fr any value of n.
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T Conclmions

It is shown that the number of initialization vectrs required for a mccesshnl
resynchronization attack can be larger than the mumber of binary inputs to
the qutput functicn. The main properties of the so-called (Forder and l-ader
linear stuctizes of Boolean hinctions are establEhed and it & pointed out that
the nonzero Q-order linear structures of the output hmction can =simplify the
resynchronization attacdk.



More importantly, a new algorithm is proposed which shows that the attack
can also work when the output fimetion & not Jnosmn provided that the number
of initialization vectors is sufficiently larpge. This algorithm is able of reconstmcet-
ing both the output fimction and the secret key, and the larger the number of
nitialEzaticn vectors, the Jower the complexdty.

T the mumber of mitialzation vectors is relatively small, then the complexdty
becomes prohibitively high. In this case, analyzing the complesdty of this algo-
rithm theoretically as well 2= finding other, possibly more effective algorithms
are problems interesting for futire investigations.
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