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Abstract

In this paper, we investigate the security, in the Luby-Rackoff secu-
rity paradigm, of blockcipher modes of operation allowing to expand a
one-block input into a longer t-block output under the control of a secret
key K. Such “one-block-to-many” modes of operation are of frequent use
in cryptology. They can be used for stream cipher encryption purposes,
and for authentication and key distribution purposes in contexts such as
mobile communications. We show that although the expansion functions
resulting from modes of operation of blockciphers such as the counter
mode or the output feedback mode are not pseudorandom, slight modi-
fications of these two modes provide pseudorandom expansion functions.
The main result of this paper is a detailed proof, in the Luby-Rackoff se-
curity model, that the expansion function used in the construction of the
third generation mobile (UMTS) example authentication and key agree-
ment algorithm MILENAGE is pseudorandom.

1 Introduction

In this paper, we investigate the security of modes of operation of blockciphers
allowing to construct a length increasing function, i.e. to expand a 1-block
input value x into a longer t-block output (z1, z2, . . . , zt) (where t ≥ 2), under
the control of a secret key K.

Such length increasing modes of operation of blockciphers associated with a
one block to t blocks expansion function are of extremely frequent use in cryp-
tology, mainly for pseudo-random generation purposes. They can be considered
as a kind of dual of length decreasing modes of operation associated with a t
blocks to one block compression function used for message authentication pur-
pose (e.g. CBC MAC). In both cases, the essential security requirement is that
the resulting one block to t blocks (respectively t blocks to one block) function
be pseudorandom, i.e. (informally speaking) indistiguishable, by any reason-
able adversary, from a perfect random function with the same input and output
sizes. Thus the Luby and Rackoff security paradigm [LR88], which allows to
relate the pseudo-randomness of a function resulting from a cryptographic con-
struction to the pseudorandomness of the elementary function(s) encountered at
the lower level of the same construction, represents a suitable tool for analysing



the security of both kinds of modes of operation. However, the security and the
efficiency of length increasing modes of operation have been much less investi-
gated so far than the one of length decreasing modes of operation such as CBC
MAC [BKR94, PR00], R-MAC [JJV02], etc., or than constructions of length-
preserving functions or permutations such as the Feistel scheme [LR88, Pa91].

The practical significance of length increasing modes of operation of block-
ciphers comes from the fact that they provide the two following kinds of pseu-
dorandom generation functions, which both represent essential ingredients for
applications such as mobile communications security.

Example 1: Stream cipher modes of operation of blockciphers.

It has become usual for stream ciphers (whether they are derived or not from a
mode of operation of a blockcipher) to require that the generated pseudo-random
sequences used to encrypt data be not only dependent upon a secret key, but
also upon an additional (non secret) input value x, sometimes referred to as an
initialization vector or as an initial value (IV). This holds for most recently pro-
posed stream ciphers, e.g. SEAL [RC98], SCREAM [HCCJ02], SNOW [EJ02],
BGML [HN00], and for the stream cipher mode of operation of the KASUMI
blockcipher used in the third generation mobile system UMTS [Ka00]. As a con-
sequence, stream ciphers are more conveniently modelled as a length increasing
pseudo-random function FK : {0, 1}n → {0, 1}nt; x �→ FK(x) = (z1, z2, · · · , zt)
than as a mere pseudo-random numbers generator allowing to derive a pseudo-
random sequence (z1, z2, · · · , zt) of nt bits from a secret seed K. The advantage
of modelling a stream cipher as a length increasing function generator rather
than as a numbers generator is that it allows to reflect the security conditions on
the dependance of the pseudo-random sequence in the input value, by requiring
that FK be a pseudo-random function, indistinguishable from a perfect random
function with the same input and output sizes by any reasonable adversary.

Example 2: Combined authentication and key distribution.

In mobile communication systems (GSM, UMTS, etc.) and more generally in
most secret key security architectures where authentication and encryption are
provided, protected communications are initiated with a kind of “handshake”
where authentication or mutual authentication between the user’s device and
the network and session key(s) distribution are performed. Such an initial hand-
shake is followed by a protected communication, where the session key(s) re-
sulting from the handshake phase are used to encrypt and/or to authenticate
the data exchanges. In order for the handshake protocol not to delay the actual
protected communication phase, it is essential to restrict it to two passes and
to minimize the amount of data exchanged. For that purpose one of the parties
(typically the network in the case of mobile communications) sends a random
challenge (accompanied by additional data such as a message authenticated
counter value if mutual authentication is needed), and this random challenge
serves as an input to a secret key function allowing to derive an authentication
response and one or several session key(s). In recent mobile communication
systems such as UMTS, the length of the outputs to be produced (measured in
128-bit blocks) far exceeds the 1-block length of the random challenge. Thus,
one single operation of a blockcipher does not suffice to produce the various



outputs needed. In order to base the security of the cryptologic computations
performed during the handshake upon the security of a trusted blockcipher,
a suitable one-block-to-many mode of operation of the underlying blockcipher
has to be defined. The security requirements are not only that each of the out-
put blocks be unpredictable by an adversary. In addition, the information on
one subset of the outputs (say for instance an authentication response) should
not help an adversary to derive any information about the rest of the outputs
(say for instance the session key used to encrypt the subsequent exchanges).
These various security requirements can be again reflected, as in the example
of stream cipher modes of operation, in saying that the one to t blocks func-
tion FK : {0, 1}n → {0, 1}n.t ;x �→ FK(x) = (z1, z2, · · · , zt) used to derive the
various output values must be indistiguishable from a perfect random function
with the same input and output sizes.

In this paper, we show that although the one block to t blocks functions as-
sociated with well known modes of operation of blockciphers such as the Out-
put Feedback mode (OFB) or the so-called Counter mode are not pseudoran-
dom, slightly modified modes of operation in which the one-block input is first
“prewhitened” before being subject to an expansion process are pseudorandom
in a formally provable manner. The main result of this paper is a detailed
pseudorandomness proof, in the Luby and Rackoff security model, for the one
to t blocks mode of operation of a blockcipher used in the UMTS example au-
thentication and key distribution algorithm MILENAGE [Mi00], which can be
considered as a modified counter mode. We also provide pseudorandomness
proofs for a modified version of the OFB mode.

Related work

The study of pseudorandomness properties of cryptographic constructions ini-
tiated Luby and Rackoff’s seminal paper [LR88] has represented a very active
research area for the last decade. In particular, Patarin clarified the link be-
tween the best advantage of a q-queries distinguisher and the q-ary transition
probabilities associated with f and proved indistinguihability bounds for nu-
merous r-round Feistel constructions [Pa91], Maurer showed how to generalise
indistinguishability results related to perfect random functions to indistinguisha-
bility results related to nearly perfect random functions [Ma92], Bellare, Kilian,
Rogaway [BKR94], and later on several other authors [PR00, JJV02, BR00]
investigated the application of similar techniques to various message authenti-
cation modes of operation, Vaudenay embedded techniques for deriving indistin-
guishability bounds into a broader framework named the decorrelation theory
[Va98, Va99]. In this paper, we apply general indistinguishability proof tech-
niques due to Patarin [Pa91] in an essential manner.
Our approach to expansion functions constructions based on blockcipher modes
of operation has some connections, but also significant differences, with the fol-
lowing recently proposed blockcipher based expansion function constructions:
- in [DHY02], Desai, Hevia and Yin provide security proofs, in the Luby-Rackoff
paradigm, for the ANSI X9.17 pseudo random sequences generation mode of
operation of a blockcipher, and for an improved version of this mode which is
essentially the same as the modified OFB mode considered in this paper. How-
ever, the security model considered in [DHY02] is quite distinct (and somewhat



complementary): we consider the pseudorandomness properties of the one to
t blocks expansion function resulting from the considered mode of operation,
whereas [DHY02] models a PRG mode of operation as the iteration a “smaller”
keyed state transition and keystream output function, and consider the pseudo-
randomness properties of such state transition functions.
-in [HN00], Hastad and Näslund propose a pseudorandom numbers generator
named BMGL. BGML is based on a “key feedback” mode of operation of a
blockcipher. The security paradigm underlying BMGL (namely the indistin-
guishability of pseudorandom numbers sequences from truly random sequences,
based upon a combination of the Blum-Micali PRG construction [BM84] and
a variant of the Goldreich Levin hard core bits construction [GL89], in which
the conjectured onewayness of the key dependance of the blockcipher is used to
construct PR sequences of numbers) is quite different from the one considered
here (namely the indistinguishability of the constructed expansion function from
a perfect random function, assuming that the underlying blockcipher is indis-
tinguishable from a perfect random one-block permutation). The advantage of
the BGML approach it that it relies upon less demanding security assumptions
for the underlying blockcipher than in our approach, but the disadvantage is
that it leads to less efficient constructions in terms of the number of blockcipher
invocations per output block.
-in [BDJR97], Bellare, Desai, Jokipii and Rogaway provide security proofs for
stream cipher modes of operation, namely the XOR scheme and a stateful vari-
ant named CTR schemes. These two modes have some connections with the
insecure one block to t blocks mode of operation referred to as the counter mode
in this paper. However, a major difference between these modes is that in the
XOR and CTR schemes, and adversary has no control at all of the inputs to
the underlying blockcipher f (she can only control the plaintext), whereas in
all the one to many blocks modes we consider in this paper, an adversary can
control the one-block input value. Thus, there is no contradiction between the
facts that the XOR and CTR encryption schemes are shown to be secure in
[BDJR97] and that the counter mode of operation can easily be shown to be
totally insecure.
This paper is organized as follows: Section 2 introduces basic definitions and
results on random functions and security proof techniques in the Luby-Rackoff
security model. Section 3 describes various “one-block-to-many” modes of op-
eration of blockciphers, and introduces a modified variant of the counter mode
used in MILENAGE and an improved variant of the OFB mode. Sections 4
and 5 present pseudorandomness proofs for the two latter modes.

2 Security Framework

2.1 The Luby-Rackoff Security Paradigm

A key dependent cryptographic function such as a blockcipher or a mode of
operation of a blockcipher can be viewed as a random function associated with
a randomly selected key value. It is generally defined using a recursive con-
struction process. Each step of the recursion consists of deriving a random
function (or permutation) F from r previously defined random functions (or
permutations) f1, · · · , fr , and can be represented by a relation of the form



F = Φ(f1, · · · , fr).
One of the strongest security requirement one can put on such a random

function or permutation F is that F be impossible to distinguish with a non
negligible success probability from a perfect random function or permutation F ∗

uniformly drawn from the set of all functions (or permutations) with the same
input and output sizes, even if a probabilistic testing algorithm A of unlimited
power is used for that purpose and if the number q of adaptively chosen queries
of A to the random instance of F or F ∗ to be tested is large.

It is generally not possible to prove indistiguishability properties for “real
life” cryptologic random functions and large numbers of queries, because this
would require a far too long key length. However, it is often possible to prove
or disprove that if a random function F encountered at a given level of a cryp-
tologic function construction is related to random functions encountered at the
lower recursion level by a relation of the form f = Φ(f1, · · · , fr), then if we
replace the actual f1 to fr random functions of the cipher by independent per-
fect random functions or permutations f∗

1 to f∗
r (or, in a more sophisticated

version of the same approach, by f ′
1 to f ′

r functions which are sufficiently in-
distinguishable from f∗

1 to f∗
r ), then the resulting modified random function F

is indistinguishable from a random function (or permutation). This provides a
useful method for assessing the soundness of blockcipher constructions.

For instance, in the case of a three-round Feistel construction, a well known
theorem first proved by Luby and Rackoff [LR88] provides upper bounds on
the |p − p∗| advantage of any testing algorithm A in distinguishing the 2n-bit
random permutation F = Ψ(f∗

1 , f∗
2 , f∗

3 ) deduced from three independent per-
fect random functions f∗

1 , f∗
2 and f∗

3 from a perfect random 2n-bit permutation
F ∗ with q adaptively chosen queries to the tested instance of F or F ∗. This
advantage is less than q2

2n . Another example is for the F = ΦCBCMAC(f) CBC-
MAC construction allowing to derive a tn-bit to n-bit message authentication
function from chained invocations of a an n-bit to n-bit function f . It was
shown by Bellare, Kilian and Rogaway in [BKR94] that if q2t2 ≤ 2n+1, then
the advantage of any testing algorithm A in distinguishing the random function
F = ΦCBCMAC(f∗) derived from a perfect nt -bit to n-bit random function
using q adaptively chosen queries is less than 3 q2t2

2n+1 .
In this paper, we will consider constructions of the form F = Φ(f), allowing

to derive a n-bit to nt-bit function from several invocations of the same instance
of an n-bit permutation f , representing a blockcipher of blocksize n. We will
show that for suitable modes of operation Φ, the random function F = Φ(f∗)
derived from a perfect n-bit random permutation is indistinguishable from a
perfect n-bit to nt-bit random function F ∗.

2.2 Random Functions

Through the rest of this paper we are using the following notation:
- In denotes the set {0, 1}n

- Fn,m denotes the set In
Im of functions from In into Im. Thus |Fn,m| = 2m.2n

- Pn denotes the set of permutations on In. Thus |Pn| = 2n!.

A random function of Fn,m is defined as a random variable F of Fn,m, and
can be viewed as a probability distribution (Pr[F = ϕ])ϕ∈Fn,m

over Fn,m, or



equivalently as a family (Fω)ω∈Ω of Fn,m elements. In particular:
- A n-bit to m-bit key dependent cryptographic function is determined by a ran-
domly selected key value K ∈ K, and can thus be represented by the random
function F = (fK)K∈K of Fn,m.
-A cryptographic construction of the form F = Φ(f1, f2, · · · , fr) can be viewed
as a random function of Fn,m determined by r random functions fi ∈ Fni,mi

,
i = 1 · · · r.

Definition 1 We define a perfect random function F ∗ of Fn,m as a uniformly
drawn element of Fn,m. In other words, F ∗ is associated with the uniform
probability distribution over Fn,m. We define a perfect random permutation f∗

on In as a uniformly drawn element of Pn. In other words, f∗ is associated with
the uniform probability distribution over Pn.

Definition 2 (q-ary transition probabilities associated to F ). Given a random
function F of Fn,m, we define the transition probability Pr[x F�→ y] associated
with a q-tuple x of Ininputs and a q-tuple y of Im outputs as

Pr[x F�→ y] = Pr[F (x1) = y1 ∧ F (x2) = y2 ∧ ... ∧ F (xq) = yq]
= Prω∈Ω[Fω(x1) = y1 ∧ Fω(x2) = y2 ∧ ... ∧ Fω(xq) = yq]

In the sequel we will use the following simple properties:

Property 1 Let f∗ be a perfect random permutation on In. If x = (x1, ..., xq)
is a q-tuple of pairwise distinct In values and y = (y1, ..., yq) is a q-tuple of

pairwise distinct Invalues then Pr[x
f∗
�→ y] = (|In| − q)!/|In|! = (2n−q)!

(2n)!

Property 2 Let f∗ be a perfect random permutation on In. If x and x′ are two
distinct elements of In and δ is any fixed value of In, then Pr[f∗(x)⊕ f∗(x′) =
δ] ≤ 2

2n .

Proof: Pr[f∗(x)⊕f∗(x′) = 0] = 0 since x �= x′. If δ �= 0, Pr[f∗(x)⊕f∗(x′) =
δ] = 2n·2n−2···1

2n! = 1
2n−1 ≤ 2

2n . So, Pr[f∗(x) ⊕ f∗(x′) = δ] ≤ 2
2n .

2.3 Distinguishing two random functions

In proofs of security such as the one presented in this paper, we want to upper
bound the probability of any algorithm to distinguish whether a given fixed ϕ
function is an instance of a F = Φ(f∗

1 , f∗
2 , .., f∗

r ) random function of Fn,m or an
instance of the perfect random function F ∗, using less than q queries to ϕ.

Let A be any distinguishing algorithm of unlimited power that, when input
with a ϕ function of Fn,m (which can be modelled as an “oracle tape” in the
probabilistic Turing Machine associated with A) selects a fixed number q of
distinct chosen or adaptively chosen input values xi (the queries), obtains the q
corresponding output values yi = F (xi), and based on these results outputs 0
or 1. Denote by p (resp by p∗) the probability for A to answer 1 when applied
to a random instance of F (resp of F ∗). We want to find upper bounds on
the advantage AdvA(F, F ∗) = |p − p∗| of A in distinguishing F from F ∗ with q
queries.

As first noticed by Patarin [Pa91], the best advantage AdvA(F, F ∗) of any
distinguishing algorithm A in distinguishing F from F ∗ is entirely determined



by the q-ary transition probabilities Pr[x F�→ y] associated with each x =
(x1, · · · , xq) q-tuple of pairwise distinct In values and each y = (y1, · · · , yq)
q-tuple of Im values. The following Theorem, which was first proved in [Pa91]
and an equivalent version of which is stated in [Va99], is a very useful tool for
deriving upper bounds on AdvA(F, F ∗) based on properties of the Pr[x F�→ y]
q-ary transition probabilities.

Theorem 1 Let F be a random function of Fn,m and F ∗ be a perfect random
function representing a uniformly drawn random element of Fn,m. Let q be
an integer. Denote by X the subset of In

q containing all the q-tuples x =
(x1, · · · , xq) of pairwise distinct elements. If there exists a subset Y of Im

q and
two positive real numbers ε1 and ε2 such that

1) |Y | ≥ (1 − ε1) · |Im|q (i)
2) ∀x ∈ X∀y ∈ Y Pr[x F�→ y] ≥ (1 − ε2) · 1

|Im|q (ii)
then for any A distinguishing algorithm using q queries

AdvA(F, F ∗) ≤ ε1 + ε2.

In order to improve the selfreadability of this paper, a short proof of Theo-
rem 1, which structure is close to the one of the proof given in [Pa91], is provided
in appendix at the end of this paper.

3 Description of length increasing modes of op-
eration of blockciphers

We now describe a few natural length increasing modes of operation of a block-
cipher. Let us denote the blocksize (in bits) by n, and let us denote by t a fixed
integer such that t ≥ 2. The purpose of one to t blocks modes of operation is
to derive an n-bit to tn-bit random function F from an n-bit to tn-bit random
function f (representing a blockcipher associated with a random key value K)
in such a way that F be indistinguishable from a perfect n-bit to tn bit random
function if f is indistinguishable from a perfect random permutation f∗. We
show that the functions associated with the well known OFB mode and with
the so-called counter mode of operation are not pseudorandom and introduce
enhanced modes of operation, in particular the variant of the counter mode en-
countered in the UMTS example authentication and key distribution algorithm
MILENAGE.

3.1 The expansion functions associated with the counter
and OFB modes of operation are not pseudorandom

Definition 3 Given any t fixed distinct one-block values c1, · · · , ct ∈ {0, 1}n

and any random permutation f over {0, 1}n, the one block to t blocks function
FCNT associated with the Counter mode of operation of f is defined as follows:

FCNT (f) : {0, 1}n → {0, 1}nt x �→ (z1, · · · , zt) = (f(x ⊕ c1), · · · , f(x ⊕ ct))

Given any random permutation f over {0, 1}n, the 1 block to t blocks function
FOFB associated with the output feedback mode of operation of f is defined as



Figure 1: The counter and OFB modes of operation

follows:
FOFB(f) : {0, 1}n → {0, 1}nt x �→ (z1, · · · , zt)

where the zi are recursively given by z1 = f(x); z2 = f(z1); · · · ; zt = f(zt−1)

It is straightforward that FCNT and FOFB are not a pseudorandom. As
a matter of fact, let us consider the case where FCNT and FOFB are derived
from a perfect random permutation f∗. Let x denote any arbitrary value of
{0, 1}n, and (z1, · · · , zt) denote the FCNT (x) value. For any fixed pair (i, j) of
distinct elements of {1, 2, .., t}, let us denote by (z′1, · · · , z′t) the FCNT output
value corresponding to the modified input value x′ = x ⊕ ci ⊕ cj . The obvious
property that z′i = zj and z′j = zi provides a distinguisher of FCNT from a
perfect one block to t-blocks random function F ∗ which requires only two oracle
queries. Similarly, to proof that FOFB is not pseudorandom, let us denote by
x and (z1, · · · , zt) any arbitrary value of {0, 1}n and the FCNT (x) value. With
an overwhelming probability, f∗(x) �= x, so that z1 �= x. Let us denote by x′

the modified input value given by x′ = z1, and by (z′1, · · · , z′t) the corresponding
FOFB output value. It directly follows from the definition of FOFB that for
i = 1, · · · , t−1, z′i = zi+1. This provides a distinguisher of FOFB from a perfect
one block to t-blocks random function F ∗ which requires only two oracle queries.

The above distinguishers indeed represent serious weaknesses in operational
contexts where the input value of FCNT or FOFB can be controlled by an adver-
sary. For instance if FCNT or FOFB is used for authentication and key distribu-
tion purposes, these distinguishers result in a lack of cryptographic separation
between the output values zi. For certain pairs (i, j) of distinct {1, · · · , t} values,
an adversary knows how to modify the input x to the data expansion function



Figure 2: Milenage

in order for the i-th output corresponding to the modified input value x′, which
may for instance represent a publicly available authentication response), to pro-
vide her with the j-th output corresponding to the input value x, which may
for instance represent an encryption key.

3.2 Modified counter mode: the MILENAGE construc-
tion

Figure 2 represents the example UMTS authentication and key distribution
algorithm MILENAGE [Mi00]. Its overall structure consists of 6 invocations of
a 128-bit blockcipher EK , e.g. AES associated with a 128-bit subscriber key K.
In Figure 2, c0 to c4 represent constant 128-bit values, and r0 to r5 represent
rotation amounts (comprised between 0 and 127) of left circular shifts applied
to intermediate 128-bit words. OPC represents a 128-bit auxiliary (operator
customisation) key.

MILENAGE allows to derive four output blocks z1 to z4 (which respectively
provide an authentication response, an encryption key, a message authentica-
tion key, and a one-time key used for masking plaintext data contained in the
authentication exchange) from an input block x representing a random authen-
tication challenge. It also allows to derive a message authentication tag z0 from
the x challenge and a 64-bit input word y (which contains an authentication
sequence number and some additional authentication management data) using
a close variant of the CBC MAC mode of EK . The security of the MAC func-
tion providing z0, the independence between z0 and the other output values are
outside of the scope of this paper. Some analysis of these features can be found



Figure 3: The MILENAGE modified counter mode construction

in the MILENAGE design and evaluation report [Mi00]. Let us also ignore the
involvement of the OPc constant, and let us focus on the structure of the one
block to t block construction allowing to derive the output blocks z1 to z4 from
the input block x . This construction consists of a prewhitening computation,
using EK , of an intermediate block y, followed by applying to y a slight variant
(involving some circular rotations) of the counter mode construction.

More formally, given any random permutation f over {0, 1}n, the 1 block
to t blocks function FMIL(f) associated with the MILENAGE construction is
defined as follows (cf Figure 3):

FMIL(f) : {0, 1}n → {0, 1}nt x �→ (z1, · · · , zt)

where zk = f(rot(f(x), rk) ⊕ ck) for k = 1 to t

A detailed statement and proof of the pseudorandomness of the MILENAGE
construction are given in Theorem 2 in the next Section. Theorem 2 confirms,
with slightly tighter indistinguishability bounds, the claim concerning the pseu-
dorandomness of this construction stated (without the underlying proof) in the
MILENAGE design and evaluation report [Mi00].

3.3 Modified OFB construction

Figure 4 represents a one block to t blocks mode of operation of an n-bit permu-
tation f which structure consists of a prewhitening computation of f providing
an intermediate value y, followed by an OFB expansion of y.



Figure 4: The modified OFB mode of operation

More formally, the FMOFB(f) expansion function associated with the mod-
ified OFB construction of Figure 4 is defined as follows:

FMOFB(f) : {0, 1}n → {0, 1}nt x �→ (z1, · · · , zt)

where z1 = f((f(x)) and zk = f(f(x) ⊕ zk−1) for k = 2 to t

A short proof of the pseudorandomness of this modified OFB construction
is given in Section 5 hereafter.

It is worth noticing that the construction of the above modified OFB mode
operation is identical to the one of the ANSI X9.17 PRG mode of operation
introduced by Desai et al in [DHY02], so that the pseudorandomness proof (re-
lated the associated expansion function) provided in Section 5 is to some extent
complementary to the pseudorandomness proof (related to the the associated
state transition function) established in [DHY02]. The modified OFB mode of
operation is also similar to the keystream generation mode of operation of the
KASUMI blockcipher used in the UMTS encryption function f8 [Ka00], up to
the fact that in the f8 mode, two additional precautions are taken: the key used
in the prewhitening computation differs from the one in the rest of the com-
putations, and in order to prevent collisions between two output blocks from
resulting in short cycles in the produced keystream sequence, a mixture of the
OFB and counter techniques is applied.



4 Analysis of the modified counter mode used
in MILENAGE

In this Section we proof that if some conditions on the constants ck, k ∈ {1 · · · t}
and rk, k ∈ {1 · · · t} encountered in the MILENAGE construction of Section 3
are satisfied, then the one block to t blocks expansion function FMIL(f∗) re-
sulting from applying this construction to the perfect random one-block permu-
tation f∗ is indistinguishable from a perfect random function of Fn,tn, even if
the product of t and the number of queries q is large.

In order to formulate conditions on the constants ck and rk, we need to
introduce some notation:

• the left circular rotations of a n-bit word w by r bits is denoted by
rot(w, r). Rotation amounts (parameter r ) are implicitly taken modulo
n.

• for any GF (2)-linear function L : {0, 1}n �→ {0, 1}n, Ker(L) and Im(L)
respectively denote the kernel and image vector spaces of L.

With the above notation, these conditions can be expressed as follows:

∀k, l ∈ {1 · · · t}k �= l ⇒ (ck ⊕ cl) /∈ Im(L) (C)
where L = rot(., rk) ⊕ rot(., rl)

The purpose of the above condition is to ensure that for any y ∈ {0, 1}n

and any two distinct integers k and l ∈ {1 · · · t}, the values rot(y, rk) ⊕ ck and
rot(y, rl)⊕ cl be distinct. If t is less than 2n, it is easy to find constants ck and
rk satisfying condition (C) above. In particular, if one takes all rk equal to zero,
condition (C) boils down to requiring that the ci constants be pairwise distinct.

Theorem 2 Let n be a fixed integer. Denote by f∗ a perfect random permu-
tation of In. Let F = FMIL(f∗) denote the random function of Fn,tn obtained
by applying the MILENAGE construction of Figure 3 to f∗, and F ∗ denote a
perfect random function of Fn,t·n. If the constants ck and rk (k = 1 · · · t) of the
construction satisfy condition (C) above, then for any distinguishing algorithm
A using any fixed number q of queries such that t2q2

2n ≤ 1
6 we have

AdvA(F, F ∗) ≤ t2q2

2n+1

Proof Let us X denote the set of q-tuples x = (x1, · · · , xq) of pairwise
distinct In values and Z denote the set of q-tuples z = (z1 = (z1

1 , · · · , z1
t ), z2 =

(z2
1 , · · · , z2

t ), · · · , zq = (zq
1 , · · · , zq

t )) of pairwise distinct Int values, such that the
tq values z1

1 , · · · , z1
t , · · · , zq

1 , · · · , zq
t be pairwise distinct. We want to show that

there exist positive real numbers ε1 and ε2 such that:

|Z| > (1 − ε1)|Int|q (i)

and
∀x ∈ X∀z ∈ ZPr[x F�→ z] ≥ (1 − ε2) · 1

|Int|q (ii)

so that that Theorem 1 can be applied.



We have

|Z|
|Int|q =

2n · (2n − 1) · · · (2n − tq + 1)
2nqt

= 1 · (1 − 1
2n

) · · · (1 − qt − 1
2n

)

≥ 1 − 1
2n

· (1 + 2 + · · · + (qt − 1))

Since 1
2n ·(1+2+ · · ·+(qt−1) = (qt−1)qt

2n+1 ≤ q2t2

2n+1 , we have |Z| > (1−ε1)|Int|q,
with ε1 = q2t2

2n+1 .

Let us now show that for any fixed q-tuple of In values x ∈ X and any
q-tuple of Int values z ∈ Z, we have Pr[x F�→ z] ≥ 1

2ntq .
For that purpose, let us consider from now on any two fixed q-tuples x ∈ X

and z ∈ Z. Let us denote by Y the set of q-tuples of pairwise distinct In values
y = (y1, .., yq). We can partition all the possible computations x F�→ z according
to the intermediate value y = (f∗(x1), · · · , f∗(xq)) in the F computation.

Pr[x F�→ z] =
∑

y∈Y

Pr[x
f∗
�→ y ∧ ∀i ∈ {1..q}∀k ∈ {1..t}(rot(yi, rk) ⊕ ck)

f∗
�→ zi

k]

Let us denote by Y ′ the Y subset of those values y satisfying the three fol-
lowing additional conditions, which respectively express the requirement that
all the f∗ input values encountered in the q F computations be pairwise dis-
tinct (first and second condition), and that all the f∗ outputs encountered in
the same computations be also pairwise distinct (third condition).

(I) ∀i ∈ {1..q}∀j ∈ {1..q}∀k ∈ {1..t}xi �= rot(yj , rk) ⊕ ck

(II) ∀i ∈ {1..q}∀j ∈ {1..q}∀k ∈ {1..t}∀l ∈ {1..t}
(i, k) �= (j, l) ⇒ rot(yi, rk) ⊕ ck �= rot(yj , rl) ⊕ cl

(III) ∀i ∈ {1..q}∀j ∈ {1..q}∀k ∈ {1..t}yi �= zj
k

We have

Pr[x F�→ z ≥
∑

y∈Y ′
Pr[x

f∗
�→ y ∧ ∀i ∈ {1..q}∀k ∈ {1..t}(rot(yi, rk) ⊕ ck)

f∗
�→ zi

k]

However, if y ∈ Y ′, Property 1 of Section 2 can be applied to the (t+1)q pairwise
distinct f∗ input values xi, i ∈ {1..q} and rot(yi, rk) ⊕ ck, i ∈ {1..q}, k ∈ {1..t}
and to the (t + 1)q distinct output values xi, i ∈ {1..q} and zi

k, i ∈ {1..q}, k ∈
{1..t}, so that

Pr[x
f∗
�→ y ∧ ∀i ∈ {1..q}∀k ∈ {1..t}(rot(yi, rk) ⊕ ck)

f∗
�→ zi

k] = (|In|−(t+1)q)!
In!

= (2n−(t+1)q)!
2n!

Therefore, Pr[x F�→ z] ≥ |Y ′| (2n−(t+1)q)!
2n! (1)



A lower bound on |Y ′| can be established, based on the fact that

|Y | =
2n!

(2n − q)!
(2)

and on the following properties:

• The fraction of y vectors of Y such that condition (I) is not satisfied is less
than q2t

2n since for any fixed i ∈ {1..q}, j ∈ {1..q} and k ∈ {1..t} the number
of y ∈ Y q-tuples such that xi = rot(yj , rk)⊕ck is (2n−1) · · · (2n−q+1) =
|Y |
2n and the set of the y vectors of Y such that condition (I) is not satisfied
is the union set of these q2t sets.

• The fraction of y vectors of Y such that condition (III) is not satisfied is
less than q2t

2n , by a similar argument.

• The fraction of y vectors of Y such such that condition (II) is not satisfied
is upper bounded by q(q−1)

2 · t(t−1)
2 · 1

2n−1 . As a matter of fact, given any
two distinct pairs (i, k) �= (j, l) of {1 · · · q}×{1 · · · t}, we can upper bound
the number of y vectors of Y such that rot(yi, rk) ⊕ ck = rot(yj , rl) ⊕ cl

by distinguishing the three following cases:

case 1: i = j and k �= l. Since condition (C) on the constants in-
volved in F is satisfied, there exists no y vector of Y such that rot(yi, rk)⊕
ck = rot(yi, rl) ⊕ cl. So case 1 does never occur.

case 2: i �= j and k = l. For any y vector of Y , yi �= yj . But the
rot(·, rk)⊕ck GF(2)-affine mapping of In is one to one. Thus, rot(yi, rk)⊕
ck �= rot(yj , rk) ⊕ ck. In other words, case 2 does never occur.

case 3: i �= j and k �= l The number of Y q-tuples such that
rot(yi, rk)⊕ ck = rot(yj , rl)⊕ cl is 2n · (2n − 2) · (2n − 2) · (2n − 3) · · · (2n −
q + 1) = |Y |

2n−1 .

Consequently, the set of y vectors of Y such such that condition (II) is
not satisfied is the union set of the q(q−1)

2 · t(t−1)
2 sets of cardinal |Y |

2n−1
considered in case 3, so that the fraction of y vectors of Y such such that
condition (II) is not satisfied is upper bounded by q(q−1)

2 · t(t−1)
2 · 1

2n−1 , as
claimed before.

As a consequence of the above properties, the overall fraction of the Y vectors
which do not belong to Y ′ is less than 2q2t

2n + q(q−1)
2 · t(t−1)

2 · 1
2n−1 , i.e.

|Y ′| ≥ (1 − (
2q2t

2n
+

q(q − 1)
2

t(t − 1)
2

1
2n − 1

))|Y | (3)

Now (1) (2) and (3) result in the following inequality:

Pr[x F�→ z] ≥ (1 − (
2q2t

2n
+

q(q − 1)
2

· t(t − 1)
2

· 1
2n − 1

)) · (2n − (t + 1)q)!
(2n − q)!

The (2n−(t+1)q)!
(2n−q)! term of the above expression can be lower bounded as follows



(2n − (t + 1)q)!
(2n − q)!

=
1

(2n − q)(2n − q − 1) · · · (2n − ((t + 1)q − 1))

=
1

2ntq
· 1

(1 − q
2n ) · (1 − q+1

2n ) · · · (1 − (t+1)q−1
2n )

≥ 1
2ntq

· (1 +
q

2n
) · (1 +

q + 1
2n

) · · · (1 +
(t + 1)q − 1

2n
)

(due to the fact that if u < 1,
1

1 − u
≥ 1 + u)

≥ 1
2ntq

· (1 +
q

2n
+

q + 1
2n

+ · · · + (t + 1)q − 1
2n

)

=
1

2ntq
(1 + tq

(t + 2)q − 1
2n

)

Thus we have

Pr[x F�→ z] ≥ 1
2ntq

(1 − (
2q2t

2n
+

q(q − 1)
2

· t(t − 1)
2

· 1
2n − 1

)) · (1 + tq
(t + 2)q − 1

2n
)

=
1

2ntq
(1 + ε)(1 − ε′)

where ε
∆= tq

(t + 2)q − 1
2n

and ε′ ∆=
2q2t

2n
+

q(q − 1)
2

· t(t − 1)
2

· 1
2n − 1

Let us show that ε > 4
3ε′. Due to the inequality 1

2n−1 ≤ 2
2n , we have

ε′ ≤ qt

2n+1
(qt + 3q − t + 1)

On the other hand, ε can be rewritten

ε =
qt

2n+1
(2qt + 4q − 2)

Therefore

ε − 4
3
ε′ ≥ qt

2n+1
(
2
3
qt +

4
3
t − 10

3
)

≥ 0 since t ≥ 2 and q ≥ imply (
2
3
qt +

4
3
t − 10

3
) ≥ 0

Moreover, it is easy to see (by going back to the definition of ε and using the
fact that t ≥ 2) that ε ≤ 2t2q2

2n , so that the condition t2q2

2n ≤ 1
6 implies ε ≤ 1

3 .
The relations ε ≥ 4

3ε′ and ε ≤ 1
3 imply (1 + ε)(1 − ε′) ≥ 1 As a matter of

fact

(1 + ε)(1 − ε′) = 1 + ε − ε′ − εε′

≥ 1 + ε − ε′ − ε′

3

= 1 + ε − 4
3
ε′

≥ 1



Thus we have shown that Pr[x F�→ z] ≥ 1
2ntq .

We can now apply Theorem 1 with ε1 = q2t2

22n+1 and ε2 = 0, so that we obtain
the upper bound

AdvA(F, F ∗) ≤ q2t2

2n+1
QED

The unconditional security result of Theorem 2 is easy to convert (using a
standard argument) to a computational security analogue.

Theorem 3 Let f denote any random permutation of In. Let F = FMIL(f)
denote the random function of Fn,tn obtained by applying to f the MILENAGE
construction of Figure 3 (where the constants ck and rk (k = 1 · · · t) are assumed
to satisfy condition (C)). Let F ∗ denote a perfect random function of Fn,t·n. For
any q number of queries such that t2q2

2n ≤ 1
6 , if there exists ε > 0 such that for

any testing algorithm T with q(t + 1) queries and less computational resources
(e.g. time, memory, etc.) than any fixed finite or infinite bound R the advantage
AdvT (f, f∗) of T in distinguishing f from a perfect n-bit random permutation
f∗ be such that AdvT (f, f∗) < ε, then for any distinguishing algorithm A using
q queries and less computational resources than R,

AdvA(F, F ∗) < ε +
t2q2

2n+1

Proof Let us show that if there existed a testing algorithm A capable to
distinguish FMIL(f) from a perfect random function F ∗ of Fn,nt with an ad-
vantage |p − p∗| better than ε + q2t2

2n+1 using less computational resources than
R, then there would exist a testing algorithm T allowing to distinguish f from
a perfect random permutation with q(t + 1) queries and less computational re-
sources than R with a distinguishing advantage better that ε. The test T of a
permutation ϕ would just consist in performing the test A on FMIL(ϕ). The
success probability p′ of the algorithm A applied to F (f∗) would be such that
|p′ − p∗| ≤ q2t2

2n+1 (due to Theorem 2), and therefore, due to the triangular in-
equality |p − p′| + |p′ − p∗| ≥ |p − p∗|, one would have |p − p′| ≥ ε, so that the
advantage of T in distinguishing f from f∗ would be at least ε QED.

The following heuristic estimate of the success probability of some simple
distinguishing attacks against the MILENAGE mode of operation indicates that
the q2t2

2n+1 bound obtained in Theorem 2 is very tight, at least in the case where
the ri rotation amounts are equal to zero. Let us restrict ourselves to this case.
Let us consider a z = (z1, · · · , zq) q-tuple of FMIL output value, where each
zi represents a t-tuple of distinct In values zi

1, · · · , zi
t Given any two distinct

indexes i and j, the occurrence probability of a collision of the form zi
k = zj

l

can be approximated (under heuristic assumptions) by t2

2n , so that the overall
collision probability among the qt output blocks of FMIL is about q(q−1)

2
t2

2n .
Moreover, each collision represents a distinguishing event with an overwhelming
probability, due to the fact that zi

k = zj
l implies zj

k = zi
l . Thus the distinguishing

probability given by this “attack” is less than (but close to) q2t2

2n+1 . This does not
hold in the particular case where q = 1, but in this case then another statistical



bias, namely the fact that no collisions never occur among the t output blocks,
provides a distinguishing property of probability about t(t−1)

2n+1 , which is again
close to q2t2

2n+1 .

5 Analysis of the modified OFB mode of oper-
ation

The following analogue of Theorem 2 above can be established for the modified
OFB mode of operation (cf Figure 4) introduced in Section 3 .

Theorem 4 Let n be a fixed integer. Denote by f∗ a perfect random permuta-
tion of In. Let F = FMOFB(f∗) denote the random function of Fn,tn obtained
by applying the modified construction of Figure 4 to f∗, and F ∗ denote a perfect
random function of Fn,t·n. For any distinguishing algorithm A using any fixed
number of queries q such that t2q2

2n ≤ 1 we have

AdvA(F, F∗) ≤ 7t2q2

2n+1

Proof sketch: the structure of the proof is the same as for the MILENAGE
construction. We consider the same X and Z sets of q-tuples as in Section 4.
As established in Section 4, |Z| ≥ (1 − ε1), where ε1 = q2t2

2n+1 . For any fixed
x ∈ X and z ∈ Z q-tuples of input and output values, it can be shown that

Pr[x
FMOF B(f∗)�→ z] ≥ 1

2ntq (1 − ε2), with ε2 = 3q2t2

2n . We can now apply Theorem
1 with ε1 = q2t2

2n+1 and ε2 = 3q2t2

2n , so that we obtain the upper bound

AdvA(F, F∗) ≤ 7q2t2

2n+1
QED

6 Conclusion

We have given some evidence that although “one-block-to-many” modes of op-
eration of blockciphers are not as well known and systematically studied so far
as “many-blocks-to-one” MAC modes, both kinds of modes are of equal signifi-
cance for applications such as mobile communications security. We have given
security proofs, in the Luby-Rackoff security paradigm, of two simple one to
many blocks modes, in which all invocations of the underlying blockciphers in-
volve the same key. We believe that the following topics would deserve some
further research:

• systematic investigation of alternative one to many blocks modes, e.g.
modes involving more than one key, or modes providing security “beyond
the bithday paradox” ;

• formal proofs of security for hybrid modes of operation including an expan-
sion function, for instance for the combination of the expansion function
x �→ (z1, z2, z3, z4) and the message authentication function (x, y) �→ z0

provided by the complete MILENAGE construction.
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Appendix: A short proof of Theorem 1

Let us restrict ourselves to the case of any fixed deterministic algorithm A which
uses q adaptively chosen queries (the generalization to the case of a probabilistic
algorithm is easy).

A has the property that if the q-tuple of outputs encountered during an A
computation is y = (y1, · · · , yq), the value of the q-tuple x = (x1, · · · , xq) of
query inputs encountered during this computation is entirely determined. This



is easy to prove by induction: the initial query input x1 is fixed ; if for a given
A computation the first query output is y1, then x2 is determined, etc.. We
denote by x(y) the single q-tuple of query inputs corresponding to any possible
y q-tuple of query outputs, and we denote by SA the subset of those y ∈ Im

q

values such that if the q-tuples x(y) and y of query inputs and outputs are
encountered in a A computation, then A outputs the answer 1.

The probabilities p and p∗ can be expressed using SA as
p =

∑
y∈SA

Pr[x(y) F�→ y] and

p∗ =
∑

y∈SA
Pr[x(y) F∗

�→ y]
We can now lower bound p using the following inequalities:
p ≥ ∑

y∈SA∩Y (1 − ε2) · Pr[x(y) F∗
�→ y] due to inequality (ii)

≥ ∑
y∈SA

(1 − ε2) · Pr[x(y) F∗
�→ y] − ∑

y∈Im
q−Y (1 − ε2) · Pr[x(y) F∗

�→ y]

But
∑

y∈SA
(1 − ε2) · Pr[x(y) F∗

�→ y] = (1 − ε2) · p∗
and∑

y∈Im
q−Y (1− ε2) ·Pr[x(y) F∗

�→ y] = (1− ε2) · |Im|q−|Y |
|Im|q ≤ (1− ε2) · ε1 due to

inequality (i).
Therefore, p ≥ (1 − ε2)(p∗ − ε1) = p∗ − ε1 − ε2 · p∗ + ε1 · ε2
thus finally (using p∗ ≤ 1 and ε1 · ε2 ≥ 0)
p ≥ p ∗ −ε1 − ε2 (a)
If we now consider the distinguisher A′ which outputs are the inverse of

those of A (i.e. A′ answers 0 iff A answers 1), we obtain an inequality involving
this time 1 − p and 1 − p∗:

(1 − p) ≥ (1 − p∗) − ε1 − ε2 (b)
Combining inequalities (a) and (b), we obtain |p − p∗| ≤ ε1 + ε2 QED.


