
Provably Secure Threshold

Password-Authenticated Key Exchange?

Mario Di Raimondo?? and Rosario Gennaro? ? ?

Abstract. We present two protocols for threshold password authenti-
cated key exchange. In this model, the password is not stored in a single
authenticating server but rather shared among a set of n servers so that
an adversary can learn the password only by breaking into t+1 of them.
The protocols require n > 3t servers to work.

The goal is to protect the password against hackers attacks that can
break into the authenticating server and steal password information. All
known centralized password authentication schemes are susceptible to
such an attack.

Ours are the first protocols which are provably secure in the standard
model (i.e. no random oracles are used for the proof of security). More-
over our protocols are reasonably efficient and implementable in practice.
In particular a goal of the design was to avoid costly zero-knowledge
proofs to keep interaction to a minimum.

1 Introduction

Password-based authentication is arguably the most deployed mean of authen-
tication in real life applications. The reasons for its wide use are easy to under-
stand: it is mainly its user-friendliness that makes it an attractive choice. Users
must remember just a password of their choice and store no other complicated
data like long random keys or certificates.
Yet, solutions based on passwords have several security drawbacks. First of

all, users tend to choose simple, memorizable passwords. This gives a potential
attacker a non-negligible probability of guessing the password and impersonate
the user. The most trivial form of this attack (repeatedly try to login until the
right password is guessed) can be easily avoided, by careful protocol implementa-
tions steps (like disabling an account after a given number of unsuccessful login
attempts).
A more dangerous attack is the so-called off-line dictionary attack in which

the authentication protocol reveals enough information to allow efficient verifi-
cation of passwords’ guesses. In this case the attacker can just perform a search

? Extended Abstract. A full version of this paper is available from
http://www.research.ibm.com/people/r/rosario/tpassword.ps

?? Dipartimento di Matematica e Informatica, Università di Catania, Italy.
diraimondo@dmi.unict.it – Work done while visiting IBM Research

? ? ? IBM T.J.Watson Research Center. rosario@watson.ibm.com

508 Mario Di Raimondo and Rosario Gennaro

in the password dictionary without ever interacting with the server until he gets
the correct password. Thus a major research focus for password-based authen-
tication has been to design protocols that are secure against off-line dictionary
attacks. Several such protocols have been presented in a variety of models and
with various degrees of security analysis. See below for a detailed list of refer-
ences.
However, none of the above protocols offers any resistance against hackers’

attacks, i.e. against attackers who are able to compromise and break into the
authentication server itself. Indeed in such a case, the attacker will be able
to find all password information and mount a dictionary attack against the
passwords of all users subscribed to that server. Ford and Kaliski [10] identified
the problem and its potentially catastrophic consequences and proposed a new
model in which the password information is not stored in a single server, but
rather in a collection of servers, so that in order to compromise the passwords,
the attacker must break into several of them.
In this paper we present two new provably secure protocol in this model of

distributed password authentication. Our protocols can be proven secure under
the Decisional Diffie-Hellman Assumption, in the standard model of computa-
tion (i.e. no random oracles are used). The protocols are reasonably efficient and
implementable in practice. In particular no costly zero-knowledge proofs are used
in order to keep interaction to a minimum.

1.1 Prior Related Work

Research in password-authentication protocols resistant to off-line attacks started
with the work of Bellovin and Merritt [3] and continued in [15, 19]. A formal
model of security was proposed by Halevi and Krawczyk in [16], where they
also presented a provably secure protocol for the case in which the authentica-
tion server has a certified public key known to the client. For the case in which
the server’s key cannot be trusted to be authentic, formal models and provably
secure protocols (though in the random oracle model) were presented in [6, 2].
The first (and only currently known) protocol to achieve security without any
additional setup is that of Goldreich and Lindell [14]. Their protocol is based on
general assumptions (i.e., the existence of trapdoor permutations) and should be
viewed as a proof of feasibility with respect to obtaining password-based secu-
rity. Unfortunately, the [14] protocol is very inefficient and thus cannot be used
in any practical setting.
We heavily use the efficient protocol by Katz, Ostrovsky and Yung in [23]

which is provably secure in the standard model, i.e. without assuming random
oracles. It assumes the existence of a publicly known shared random string. We
will refer in the following to this protocol as the KOY protocol.
As we mentioned before, Ford and Kaliski [10] put forward the idea of sharing

the password information among several servers in order to prevent leaking the
passwords to an attacker who is able to break into the authentication server.
They present a n-out-of-n solution, i.e., the password information is shared
among n servers and they all must cooperate to authenticate the user. Although

Provably Secure Threshold Password-Authenticated Key Exchange 509

this solution guarantees that the password is secure against an attacker who
breaks into n − 1 servers, it is also less tolerant to random faults. Jablon in
[20] improves on the [10], but neither solution comes with a formal proof of
security. Independently from our work, Jakobsson, MacKenzie and Shrimpton
have presented a t-out-of-n threshold password authentication protocol, which
is provably secure in the random oracle model [21].
Thus we can say that our solutions are the first threshold protocols for pass-

word authentication which are provably secure in the standard model, i.e. with-
out using random oracles.
This line of research can be thought as applying the tools of threshold cryp-

tography to the problem of password authentication. Threshold cryptography
aims at the protection of cryptographic secrets, such as keys, by distributing
them across several servers in order to tolerate break-ins. See [8, 12] for surveys
of this research area. We use and modify several existing threshold cryptogra-
phy protocols, most importantly Feldman’s and Pedersen’s VSS protocols [9, 25],
their application to discrete-log key generation from [13] and the protocol for
multiplication of shared secrets by Abe [1].

1.2 Our Solution in a Nutshell

Our starting point was the KOY protocol from [23]. We present two protocols
which are basically t-out-of-n threshold versions of the KOY protocol. As we said
before, the schemes are provably secure. The crucial tool in proving security is
to show that our protocols are simulatable: the adversary’s view of the thresh-
old protocol can be recreated by a simulator without having access to the real
password.
The basic idea of the protocol is to share the password among n servers using

a secret sharing protocol like Shamir’s [27] (although we will use a more “redun-
dant” version of Shamir’s scheme to achieve a more efficient overall protocol).
Then the servers will cooperate to produce the messages that in the KOY pro-
tocol a single server was supposed to compute. Notice that this must be done
without ever reconstructing the password in a single server, otherwise we expose
it to a potential break-in at that server. Some of the tools developed for the full
solution are of independent interest and can potentially have more applications.
The two protocols differs in the way the client interacts with the collection of
the servers.

The first protocol. Here we enforce a transparency property: to the eyes
of the client the protocol should look exactly like a centralized KOY protocol.
The client should not be aware that at the server’s side the protocol has been
implemented in a distributed fashion, nor should he know how many servers are
involved. This is achieved by having the client interact with a gateway which to
the client’s eyes will be the authentication server. All the messages exchanged
by the client and the gateway will follow the pattern of a regular KOY protocol.
The main advantage of this solution is its efficiency on the client side: the

client’s work is independent of n and the software installed on the client side

510 Mario Di Raimondo and Rosario Gennaro

does not have to reflect security policies, such as the number n of servers and
the threshold t, implemented on the server’s side.

Notice however that because of the transparency property, the client will
establish a single key with the whole collection of servers. This means that this
key will be known to the adversary even if he breaks into a single server (for
example the gateway). Thus this protocol has the following security properties:
(i) if the adversary does not break into any servers, then the protocol is as secure
as the original KOY protocol; (ii) if the adversary breaks into less than t servers,
then the adversary learns the session key of all the clients who log in during that
period, but learns no information about the password of any client; (iii) if the
adversary breaks into more than t servers then all passwords are compromised.

Notice that we have already made substantial progress with respect to cen-
tralized password authentication protocols. Indeed remember that in that case
by breaking into a single server the adversary would learn all the passwords
stored in that server.

In this case to prove security, it will be enough to show that the view of the
adversary when the system is using password pw is identically distributed to the
case in which the system is using password p̂w (conditioned to the event that
the adversary does not guess the right password, in which case naturally the two
views are distinguishable).

The Second Protocol. To strengthen the security properties here we give
up on the transparency property. We let the client be aware of the distributed
implementation of the servers and in particular of the number n of servers1.
At the end of this protocol the client will establish n separate keys, one with
each server. The adversary will only learn the keys established by the corrupted
servers.

Here security is proven by a reduction to the security of the underlying cen-
tralized KOY protocol. I.e. we show that if there is an adversary breaking our
threshold version, then we can build another adversary which breaks an instance
of the centralized original KOY protocol. We are going to use again simulatabil-
ity to construct this reduction. We have an adversary AKOY which is trying to
break a centralized version of the KOY protocol. This adversary starts an exe-
cution of the threshold adversary Athresh, which we assume is able to break the
threshold KOY protocol. This execution is run in a “virtual world” in which all
the exchanged messages are simulated. The crucial step in the security proof will
be then to “embed” in this virtual world the execution of the centralized KOY
protocol which we want to break. Then we can show that a successful attack by
Athresh on this virtual threshold world can be translated in a successful attack
in the centralized instance.

1 We note that this information, namely n, can be transmitted to the client in a
handshaking session before starting the actual protocol. Yet the security of our pro-
tocol does not rely on the client learning this information in a reliable authenticated
matter. I.e. the adversary cannot gain any advantage (besides an obvious denial of
service attack) by relying a wrong n to the client.

Provably Secure Threshold Password-Authenticated Key Exchange 511

Proactive Security. In both solutions the password will eventually be ex-
posed if the adversary manages to break into more than t servers. It is possible
to apply proactive security solutions [24, 18, 17] to our schemes. In particular we
can show that the adversary must break into more than t servers in a single
period of time (which is determined according to security policies), in order to
gain information about the passwords. The basic idea is to refresh the shares of
the password after each time period, so that shares from different time periods
will be useless in reconstructing the secret. For lack of space this extension will
be described in the final version.

Avoiding Zero-Knowledge Proofs. A clear design goal of our protocols was
to avoid the use of costly ZK proofs in order to achieve robustness (i.e. secu-
rity against a malicious adversary). There are two reasons for this. The first is
efficiency: ZK proofs tend to be expensive and increase the amount of interac-
tion required by the protocol. The second is security: password authentication
protocols are ran concurrently – the adversary may try to schedule different ex-
ecutions so to try to gain some advantage. Typical ZK proofs are not provably
secure when executed concurrently, and modifications to make them concur-
rently secure tend to make them more complicated and expensive. By avoiding
ZK proofs altogether, we simplify the design and facilitate security proofs.

2 Preliminaries

Number Theory. In the following we denote with p, q two prime numbers such
that q|(p − 1). We consider the subgroup Gq of Z

∗
p of order q and let g be a

generator for Gq. All computations are modp unless otherwise noted.
We are going to assume that the Decisional Diffie-Hellman Assumption

(DDH) holds in Gq, i.e. no probabilistic polynomial time algorithm given as
input three values (ga, gb, gc) can decide if c = ab mod q with probability better
than 1/2. For a discussion on the DDH see [5].

Communication Model. As in previous work on password-based authentica-
tion, we assume that the communication between the client and the authentica-
tion servers, is carried on a basically insecure network. Messages can be tapped
and modified by an adversary.
On the other hand we assume that the server’s side is implemented via a

set of n servers S1, ...,Sn. They are connected by a complete network of private
(i.e. untappable) point-to-point channels. In addition, the players have access to
a dedicated broadcast channel; by dedicated we mean that if server Si broadcasts
a message, it is received by every other player and recognized as coming from Si.
These assumptions (privacy of the communication channels and dedication of the
broadcast channel) allow us to focus on a high-level description of the protocols.
However, it is worth noting that these abstractions can be substituted with
standard cryptographic techniques for privacy, commitment and authentication.
We assume that the communication channels provide a partially synchronous

message delivery. That is we assume that the messages sent during the protocol,

512 Mario Di Raimondo and Rosario Gennaro

are received by their recipients within some fixed time bound. Notice that this
will allow a malicious adversary to wait for the messages of the honest servers in
a given round before sending her own. In the cryptographic protocols literature
this is also known as a rushing adversary.

2.1 Threshold Password Authenticated Key Exchange

For the centralized case we use the formal security model for password key
exchange protocols from [6, 2] (or see full version). Here we explain how to extend
it for the case of a distributed server.

Security for the Distributed Case. In the distributed case the goal of
the adversary will remain the same (i.e. try to learn some information about a
session key). But we will modify somewhat the adversary powers. First of all the
adversary will not have total control of the internal network of the servers. We
assume that the servers have some authentication mechanism already in place in
order to create secure channels between them. Moreover we give the adversary
the power to break into servers. This will allow her to see their internal state and
totally gain control of that server. That means that the adversary will receive
all the messages sent to that server and will reply for him. Notice that we are
allowing a malicious adversary which can modify the behavior of the server in
any way. We bound the number of servers that the adversary can corrupt with t.
We assume the adversary to be static, i.e. the set of corrupted players is decided
in advance (known techniques can be used to make this protocol secure against
adaptive adversaries [7, 11, 22]).

Transparent Protocols.We say that a distributed protocol is transparent, if
the client’s work is independent of n. Thus to the client the distributed protocol
looks like a centralized one. At the end of a transparent protocol the client shares
a key sk with the n servers. In this case our definition of security imposes two
conditions:

1. If the adversary does not corrupt any servers, then the protocol is secure
according to the centralized definition;

2. If the adversary corrupts from 1 to t servers, then all we ask is that the
adversary gains no information about the clients’ passwords. I.e. the proba-
bility of guessing the right password remains 1/|Dict|. Formally we define as
view(pw) the view of the adversary during a protocol using password pw. The
requirement is that for any two passwords pw, p̂w the two views view(pw)
and view(p̂w) can be distinguished with at most probability Q/|Dict|.

Notice that condition (2) is much weaker than full security, but it is the best we
can hope for a transparent protocol. A protocol satisfying the above conditions is
called transparently secure. Such protocols guarantee the secrecy of the passwords
even against compromises of the servers. However they do not guarantee that
the session key will be secret from an adversary who breaks into a server.

Provably Secure Threshold Password-Authenticated Key Exchange 513

In practice this is not a major drawback. Usually servers’ compromises are
brief and quickly discovered: the adversary can easily be “kicked out” of the com-
promised server by operations such as rebooting and reloading of key software
components from a trusted basis. A transparently secure protocol guarantees
that during these briefs breaches only the session keys of the clients who log
in are compromised. No long-term information, in particular the password, is
leaked.
Since transparent protocols are usually much more efficient for the clients,

we think that even with this relaxed security notion, this is a useful model.

General Protocols. In this case we allow the parameters n, t to be known to
the client who will effectively interact with all n servers. Here the output of the
protocol will be n independent session keys: the client will share one key with
each server.
The definition of security is obtained by just extending the oracle calls Reveal,

Test to specify the index of the server for which the adversary wants to see
the relevant session key. The security goal (i.e. the advantage of the adversary
remains roughly the same as in the trivial attack of guessing the password)
remains unchanged.

2.2 The KOY Protocol

In this section we briefly recall the KOY protocol from [23]. The protocol can be
proven secure (according to the above definition) under the DDH Assumption.
We will not need their proof of security for our case since we will reduce the
security of our distributed version to the security of the original KOY protocol.
For details the reader is referred to [23].
The protocol uses some public information which is composed by: two primes

p, q, such q|(p − 1); five elements of order q in Z∗
p , f, g, h, c, d, and a universal

one-way hash function H. The protocol appears in Figure 1.

2.3 VSS Protocols

We assume the reader is familiar with Shamir’s Secret Sharing protocol [27].

Feldman’s VSS. Feldman’s Verifiable Secret Sharing (VSS) protocol [9], ex-
tends Shamir’s secret sharing method in a way to tolerate a malicious adversary
which corrupts up to n−1

2
servers including the dealer.

Feldman’s VSS uses the parameters p, q, g as defined earlier. Like in Shamir’s
scheme, the dealer generates a random t-degree polynomial S(·) over Zq, s.t.
S(0) = s, and transmits to each server Si a share si = S(i) mod q. The dealer
also broadcasts values VSk = gak where ak is the k

th coefficient of S(·). This will
allow the players to check that the values si really define a secret by checking
that

gsi =
∏

k

(VSk)
ik mod p (1)

514 Mario Di Raimondo and Rosario Gennaro

KOY

Public Information: p, q, f, g, h, c, d,H

1. The client C generates a key pair (VK, SK) for a one-time signature scheme.

Then he chooses r′ ∈R Zq and computes A = f r
′

, B = gr
′

, C = hr
′

fpw,

α = H(C|VK|A|B|C) and D = (cdα)r
′

.
The client C then sends to the server S the following message:
C|VK|A|B|C|D

2. The server S chooses x, y, z, w, r ∈R Zq, recomputes the hash α′ =
H(C|VK|A|B|C) and then computes: E = fxgyhz(cdα)w, F = fr, G = gr,
I = hrfpw, β = H(S|E|F |G|I) and J = (cdβ)r.
The server S then sends to the client C the following message: S|E|F |G|I|J

3. The client C chooses x′, y′, z′, w′ ∈R Zq and computes: β′ = H(S|E|F |G|I)

and K = fx
′

gy
′

hz
′

(cdβ)w
′

.
He then signes the message (β|K) with the key SK, thus obtaining the
signature Sig = Sign

SK
(β|K).

He finally sends to S the message: K|Sig.
The client computes the session key as follows: skC =
Er′F x

′

Gy′

(If−pw)z
′

Jw
′

4. The server S checks the signature using the key VK and if it is correct he
then computes the session key as follows: skS = KrAxBy(Cf−pw)zDw.

Fig. 1. The KOY Protocol

If the above equation is not satisfied, server Si asks the dealer to reveal his share
(we call this a complaint.) If more than t players complain then the dealer is
clearly bad and he is disqualified. Otherwise he reveals the share si matching
Equation (1) for each complaining Si.
Equation (1) also allows detection of incorrect shares s′i at reconstruction

time. Notice that the value of the secret is only computationally secure, e.g.,
the value ga0 = gs is leaked. However, it can be shown that an adversary that
learns t or less shares cannot obtain any information on the secret s beyond
what can be derived from gs. This is good enough for some applications, but it
is important to notice that it does not offer “semantic security” for the value s.
In particular if s is a password, then revealing gs opens the door to an off-line
dictionary search.
We will use the following notation to denote the execution of a Feldman’s

VSS protocol.

Feldman-VSS[s](g)
S

−→
t,n
[si](VSk)

Pedersen’s VSS. We now recall a VSS protocol, due to Pedersen [25], that
provides information theoretic secrecy for the shared secret. In addition to the

Provably Secure Threshold Password-Authenticated Key Exchange 515

parameters p, q, g, it uses an element h ∈ Gq, and the discrete log of h in base g
is unknown (and assumed hard to compute).
The dealer first chooses two t-degree polynomials S(·), S̃(·), with random

coefficients over Zq, subject to S(0) = s, the secret. The dealers sends to each

server Si the values si = S(i) mod q and s̃i = S̃(i) mod q. The dealer then
commits to each coefficient of the polynomials S and S̃ by publishing the values
VSk = gakhbk , where ak (resp. bk) is the k

th coefficient of S (resp. S̃).
This allows the players to verify the received shares by checking that

gsihs̃i =
∏

k

(VSk)
ik mod p (2)

The players who hold shares that do not satisfy the above equation broadcast a
complaint. If more than t players complain the dealer is disqualified. Otherwise
the dealer broadcasts the values si and s̃i matching the above equation for each
complaining player Si.
At reconstruction time the players are required to reveal both si and s̃i and

Equation (2) is used to validate the shares. Indeed in order to have an incorrect
share σ′i accepted at reconstruction time, it can be shown that player Si has to
compute the discrete log of h in base g.
Notice that the value of the secret is unconditionally protected since the only

value revealed is VS0 = gshb0 (it can be seen that for any value s′ there is exactly
one value b′0 such that VS0 = gσ

′

hb
′

0 and thus VS0 gives no information on s).
We will use the following notation to denote an execution of Pedersen’s VSS:

Pedersen-VSS[s, s̃](g, h)
S,S̃
−→
t,n
[si, s̃i](VSk)

Joint Sharings. To avoid the use of a trusted dealer, it is possible to gen-
erate jointly a random shared secret. The idea is that each player runs a copy
of Shamir’s or Pedersen’s protocols with a random secret. The resulting shared
secret is the sum of the secrets shared by each player (in the case of Peder-
sen’s VSS the sum is taken only over the players that were not disqualified as
dealers). Notice that by adding up the shares that he received, each player will
retain a share of the final secret. Similarly in the case of Pedersen’s VSS the
verification information VSk for the final secret can be obtained by multiplying
the commitments published by each player.
We will later require the following notation:

Joint-Pedersen-RVSS(g, h)
S,S̃
−→
t,n
[si, s̃i, TS](VSk, QUAL){s}

which follows the same syntax of the basic Pedersen’s protocol (with all the
parameters referred to the final secret), except that we are adding the values TS
and QUAL.

TS is the transcript of the n VSS’s executed by each player. We need to save
this information, because it will be useful later on (i.e. our protocol does not just

516 Mario Di Raimondo and Rosario Gennaro

use the final secret and “forgets” how it was created). In particular TS includes a
private part for each player Si which consists of all the shares he received, plus
a public part which consists of all the verification informations for the n VSS’s.
QUAL is the set of players which were not disqualified during the n VSS’s.

2.4 Abe’s Multiplication Protocol

The last tool we use is Abe’s multiplication protocol [1]. This protocol takes as
input the transcripts of two Pedersen-VSS protocols for secrets r, s and outputs
a new sharing of the product rs. This new sharing can be seen in the form of a
Joint-Pedersen of the value rs. See [1] for details.
We are going to use the following notation for this protocol:

Abe-Mult[TS, TR](g, h)−→
t,n
[χi, χ̃i, Tχ](Vχk, QUAL){χ = rs}

which with regards to the output part follows the same syntax as Joint-Pedersen-
RVSS (i.e. the various terms have the same meaning).
This is the only subprotocol that requires n > 3t. We notice that standard

multiparty computation techniques could be used to implement multiplication
with n > 2t. But the resulting protocols would be much more complicated. We
decided to focus on simplicity rather than optimal threshold.

3 Shared Exponentiation of Secrets

This section describes a new tool which we use as part of our main solution. This
protocol is of independent interest and may find applications in other cases.
If we look at the first message sent by the centralized server in the KOY protocol,

we see that it includes the value E = fxgyhz(cdα)w, where x, y, z, w are random
secrets. Thus, if we want to distribute this functionality we need a protocol that
can output the value gs1

1
· · · gsm

m mod p, where the si’s are random secrets which
have been generated jointly by the servers.
Let’s start for simplicity for the case m = 1, i.e. the players need to generate

a random secret s shared among them and publicize the value gs. A solution is
presented in [13]: they called their protocol DKG (for Distributed Key Genera-
tion) since its main application is the distributed generation of keys for discrete
log based cryptosystems. The DKG protocol is basically a Joint-Pedersen-RVSS
with basis g, h, which generates the shared secret s. It is then followed by a
second phase in which each player performs a Feldman’s VSS with basis g with
the same polynomial used for the Joint-Pedersen-RVSS. This second phase will
allow the players to calculate gs securely2.
We modify the DKG protocol so that it works with any combination of basis

(i.e. the basis used in the Joint-Pedersen-RVSS need not be equal to the ones

2 In [13] it is also explained why a joint version of Feldman’s VSS is not sufficient,
since it allows the adversary to bias the distribution of the secret s.

Provably Secure Threshold Password-Authenticated Key Exchange 517

Shared-Exp

Input : the transcripts TR, TS

1. Every server Si (i ∈ QUAL) computes the values:

Eik = g
αik · haik mod p for k ∈ [0..t]

and broadcasts them.
2. Every server Sj (j ∈ QUAL) checks that: for every i ∈ QUAL it holds that

g
rijh

sij ?
=

t
∏

k=0

(Eik)
jk

mod p (3)

If the checks fail for some i, then Sj complains against Si, by revealing in
broadcast the values rij , r̃ij , sij , s̃ij . These values do not satisfy the above
check but satisfy the Pedersen’s VSS checks (since Si ∈ QUAL).

3. If Si receives at least one valid complaint, then the servers run the re-
construction phase of Si’s VSS and obtain the values αik, aik and Eik for
k ∈ [0..t].

4. Now each player can compute

g
r
h
s =

∏

i∈QUAL

Ei0 mod p

Fig. 2. Two-secret version of the protocol for exponentiation of shared secrets

used to exponentiate the secrets). Moreover we extend DKG to work with any
number of secrets. In the future we will refer to an execution of this protocol
with the following notation:

Shared-Exp[TS1, . . . , TSm](g1, . . . , gm) → (gs1
1

· · · gsm
m)

The protocol appears in Figure 2. For simplicity we limit ourselves to
two secrets r, s, with basis g, h (i.e. we compute grhs). It should be clear how
to extend it to any number of secrets. The description of the protocol assumes
that two Joint-Pedersens for the secrets r, s have already been performed. Thus
the input of the players are the transcripts TR, TS. We recall exactly what these
transcripts include:

TR = {private to Si (i ∈ QUAL) : {αik}, {rji, r̃ji}; public : {VRik}}

TS = {private to Si (i ∈ QUAL) : {aik}, {sji, s̃ji}; public : {VSik}}

where aik (resp. αik) are the coefficients of the sharing polynomial used by Si
during the joint generation of s (resp. r). The set QUAL can be taken to be the
intersection of the qualified set from each previous Joint-Pedersen protocol. In

518 Mario Di Raimondo and Rosario Gennaro

the first step of the protocol each server Si reveals the values Eik which are of
the form gαikhaik . This will allow the players to check that they are correct by
matching them with the shares they hold from the previous Pedersen-VSS. If
Si gives out incorrect Eik’s then we expose his component in the Joint-VSS by
reconstruction. The desired value is then the product of the Ei0’s.
The protocol Shared-Exp is secure against an adversary which corrupts up

to n−1

2
of the servers (in other words we require n > 2t). Security is defined in

the usual terms: the execution of the protocol should not reveal any information
about r, s beyond the output value grhs. This is formally proven by a simulation
argument.

Lemma 1. If n > 2t, then the protocol Shared-Exp, is a secure protocol which
on input the transcripts of m Joint-Pedersen-RVSS for secrets s1, . . . , sm, and m
elements of Gq g1, . . . , gm, computes

∏m
i=1

gsi

i .

4 The first protocol

We now have all the tools to present our first protocol. As we said in the In-
troduction, this protocol will be transparent to the client. C will interact with
just one server, the gateway, while in the background the servers will cooperate
to produce KOY -like messages for the client. The gateway can be any of the
servers, thus we are not creating a single point of failure in the network (since
if one gateway fails, another one can always take its place). We now give an
informal description of the protocol.

How to share the password.We assume that the password has already been
“installed” in a shared form across the servers. This could be done by having
a trusted process (for example the client) share the password via Pedersen-VSS.
However for efficiency reason we will use a more redundant sharing. We simulate
a Joint-Pedersen-RVSS which has as result the password itself (this technique is
somewhat reminiscent of the share-backup technique of [26], though we use it
for different purposes).
That is, the password pw is first split in n random values pw1 . . . pwn such

that pw = pw1+ . . .+pwn mod q (we assume that we can always encode pw as a
member of Zq). The value pwi is given to server Si. Then each pwi is shared via
a (t, n) Pedersen-VSS. The sharing polynomials are also given to server Si. Each
server Sj will save the whole transcript of the execution. By summing up all the
shares received in the n previous VSS’s, server Sj will obtain values pj , p̃j which
are shares on a (t, n) Pedersen-VSS of pw. All this work can be performed locally
by the trusted process, and then the sharing information can be forwarded to
the servers.
Notice that in this Joint-VSS the qualified set of players QUAL is the whole

set, since this Joint-VSS is simulated by a trusted process.

The authentication protocol. Once the password is shared, the actual
protocol goes as follows. We follow the pattern of a KOYprotocol closely (so the

Provably Secure Threshold Password-Authenticated Key Exchange 519

reader may want to keep Figure 1 handy while reading this description). First
the client sends to the gateway the message C|VK|A|B|C|D.
On receipt of this message the servers perform five Joint-Pedersen-RVSS to

select random values r, x, y, z, w and keep shares of them. Then using the Shared-
Exp protocol (four times) they can compute E = fxgyhz(cdα)w, F = fr, G = gr,
I = hrfpw. This is where the redundant sharing of the password helps, since it
allows us to compute I via a simple invocation of the Shared-Exp protocol3. Once
E,F,G, I are public the servers can compute β and then, via another invocation
of Shared-Exp, the value J .
At the same time the servers also perform an invocation of Abe-Mult to

compute a sharing of the value z · pw.
The gateway forwards the message S|E|F |G|I|J to the client (we assume that

S is the “name” of the collective authentication server for the client). Following
the KOY protocol the client will answer with K|Sig.
The servers will first authenticate the signature and, if valid, they need to

compute the session key skS = KrAxByCzDwf−zpw. This can be computed via
another Shared-Exp invocation, since the servers have all the relevant sharings.
A detailed exposition of the protocol appears in Figure 3.

About Efficiency. It should be clear that the protocols in steps (3a, 3b, 7b)
can be performed in parallel, thus reducing the number of rounds.
Moreover we observe that the whole of step 3a, plus the computations of

F,G, I can be done offline by the servers, before starting an actual interaction
with the client. By saving the intermediate results and carefully keeping a syn-
chronized state, the servers can then use these values already prepared when the
client initiates a protocol. This reduces to a minimum the amount of compu-
tation and communication that the servers need to perform during the actual
authentication protocol. Notice that no ZK proofs are used anywhere in the
protocol.

Theorem 1. If n > 3t and the DDH Assumption holds, then the protocol Dist-
KOY1 is a transparently secure distributed password authentication protocol.

5 The second protocol

In this section we show a protocol which is not transparent, so is less efficient
than the previous one, but achieves a higher level of security. The client will
establish n separate session keys, one with each server Si. We will prove that the
adversary can only learn the keys established with the corrupted servers, and
has no information about the keys held by the good servers.
The basic idea is to run n separate KOYprotocols, one between the client and

each server. The client will use the same password for each execution. Since the
password is shared at the servers’ side, they will cooperate in the background to
produce the messages in each execution. Here is an informal description of this
protocol.

3 See the full version for a non-essential technical remark about the computation of I

520 Mario Di Raimondo and Rosario Gennaro

Dist-KOY1

Public Information: p, q, f, g, h, c, d, l,H
Input for Client C: the password pw ∈ Zq
Input for servers: TP : the output of the simulated Joint-Pedersen-RVSS for
the password pw.

1. The client runs the first step of the KOYprotocol. It results in the message:
C|VK|A|B|C|D sent to the gateway.

2. The gateway broadcasts to all the servers the previous message. The servers
compute

α = H(C|VK|A|B|C) and M = cd
α mod p

3. (a) The servers Si perform the following:

Joint-Pedersen-RVSS(f, l)
R,R̃
−→
t,n

[ri, r̃i, TR](VRk){r}

Joint-Pedersen-RVSS(f, l)
X,X̃
−→
t,n

[xi, x̃i, TX](VXk){x}

Joint-Pedersen-RVSS(f, l)
Y,Ỹ
−→
t,n

[yi, ỹi, TY](VY k){y}

Joint-Pedersen-RVSS(f, l)
Z,Z̃
−→
t,n

[zi, z̃i, TZ](VZk){z}

Joint-Pedersen-RVSS(f, l)
W,W̃
−→
t,n

[wi, w̃i, TW](VWk){w}

We denote by QUAL the intersection of all the qualified sets in the
above five protocols.

(b) The servers perform the following:

Shared-Exp[TX, TY , TZ, TW](f, g, h,M) → (E = fxgyhzMw)

Shared-Exp[TR](f) → (F = f r)

Shared-Exp[TR](g) → (G = gr)

Shared-Exp[TR, TP](h, f) → (I = hrfpw)

Abe-Mult[TZ, TP](f, l)−→
t,n

[χi, χ̃i, Tχ](Vχk, QUAL){χ = z · pw}

The servers can now compute
β = H(S|E|F |G|I) and N = cd

β mod p
where S is the “name” of the collective authentication server.

(c) The servers can now compute:

Shared-Exp[TR](N) → (J = N r)

4. The gateway sends to the client the message: S|E|F |G|I|J as in a regular
KOYprotocol.

5. The client C follows the KOYprotocol and answers with K|Sig.
6. The gateway sends to all the servers the previous message K|Sig

7. (a) The servers can verify the signature and if it is not correct, it stops.
(b) The servers perform the following:

Shared-Exp[TR, TX, TY , TZ, TW , Tχ](K,A,B,C,D,f−1) → (skS)
to compute the session key skS = KrAxByCzDwf−z·pw.

Fig. 3. Transparent Distributed Version of the KOYprotocol

Provably Secure Threshold Password-Authenticated Key Exchange 521

The client initiates n instances of the KOY protocol, sending to the servers
the message C|VKj |Aj |Bj |Cj |Dj for j = 1 . . . n.
The servers will send back n KOYmessages. That is for each server Sj the

servers will jointly select random values rj , xj , yj , zj , wj and send back to the
client Ej = fxjgyjhzj (cdα)wj , Fj = frj , Gj = grj , Ij = hrjfpw and Jj =
(cdβj)rj . As in the first protocol the servers will also perform Abe’s multiplication
protocol to get a sharing of zj · pw.
The servers also perform an additional joint sharing for a random value sj .

This value will be sent privately to server Sj (i.e. the servers will send him the
shares and he will reconstruct it).
The n messages Sj |Ej |Fj |Gj |Ij |Jj are sent to the client. He will answer with

n messages Kj |Sigj , which follow the KOY protocol.
The servers will first authenticate the signatures and, if valid, they will coop-

erate to compute “masked” session keys maskj = lsjK
rj

j C
zj

j A
xj

j B
yj

j D
wj

j f−zjpw.
As before this is another invocation of the Shared-Exp protocol.
Server Sj will then set the secret key as skj = maskj · l−sj .
A detailed exposition of the protocol appears in Figure 4. We omit the

steps regarding the gateway. As in the previous protocol the password pw is
installed in a shared form via a Joint-Pedersen-RVSS.

Theorem 2. If n > 3t and the DDH Assumption holds, then the protocol Dist-
KOY2 is a secure distributed password authentication protocol.

Acknowledgments: Thanks to Phil MacKenzie for invaluable comments at var-
ious stages of this project, Yehuda Lindell for enlightening conversations about
password protocols and Stas Jarecki for very helpful suggestions.

References

1. M. Abe, Robust distributed multiplication without interaction. In CRYPTO ’99,
Springer LNCS 1666, pp. 130–147, 1999.

2. M. Bellare, D. Pointcheval and P. Rogaway, Authenticated key exchange secure
against dictionary attacks. In EUROCRYPT 2000, Springer LNCS 1807, pp. 139–
155, 2000.

3. S. M. Bellovin and M. Merritt, Encrypted Key Exchange: Password based proto-
cols secure against dictionary attacks. In 1992 IEEE Symposium on Research in
Security and Privacy, IEEE Press, pp. 72–84, 1992.

4. M. Ben-Or, S. Goldwasser, and A. Wigderson, Completeness Theorems for Non-
cryptographic Fault-Tolerant Distributed Computations. In 20th Annual Sympo-
sium on the Theory of Computing, ACM Press, pp. 1–10, 1988.

5. D. Boneh, The Decision Diffie-Hellman Problem. In Third Algorithmic Number
Theory Symposium, Springer LNCS 1423, pp. 48–63, 1998.

6. V. Boyko, P. D. MacKenzie, and S. Patel, Provably secure password-authenticated
key exchange using Diffie-Hellman. In EUROCRYPT 2000, Springer LNCS 1807,
pp. 156–171, 2000.

7. R. Canetti, R. Gennaro, S. Jarecki, H. Krawczyk and T. Rabin, Adaptive Security
for Threshold Cryptosystems. In CRYPTO ’99, Springer LNCS 1666, pp. 98–115,
1999.

522 Mario Di Raimondo and Rosario Gennaro

Dist-KOY2

Input: as in Dist-KOY1.

1. The client runs n times the first step of the KOYprotocol. It results in the
messages: C|VKj |Aj |Bj |Cj |Dj for j = 1 . . . n sent to the gateway.

2. The servers compute

αj = H(C|VKj |Aj |Bj |Cj) and Mj = cd
αj mod p

Then for each j = 1 . . . n the following steps are performed:
(a) The servers perform

Joint-Pedersen-RVSS(f, l)
Rj ,R̃j
−→
t,n

[rji, r̃ji, TRj](VRjk){rj}

Joint-Pedersen-RVSS(f, l)
Xj ,X̃j
−→
t,n

[xji, x̃ji, TXj](VXjk){xj}

Joint-Pedersen-RVSS(f, l)
Yj ,Ỹj
−→
t,n

[yji, ỹji, TY j](VY jk){yj}

Joint-Pedersen-RVSS(f, l)
Zj ,Z̃j
−→
t,n

[zji, z̃ji, TZj](VZjk){zj}

Joint-Pedersen-RVSS(f, l)
Wj ,W̃j
−→
t,n

[wji, w̃ji, TWj](VWjk){wj}

Joint-Pedersen-RVSS(f, l)
Sj ,S̃j
−→
t,n

[sji, ji, TSj](VSjk){sj}

The servers send their private information about sj to server Sj .
(b) The servers perform the following:

Shared-Exp[TXj , TY j , TZj , TWj](f, g, h,Mj) → (Ej = fxjgyjhzjM
wj

j)

Shared-Exp[TRj](f) → (Fj = frj)

Shared-Exp[TRj](g) → (Gj = grj)

Shared-Exp[TRj , TPj](h, f) → (Ij = hrjfpw)

Abe-Mult[TZJ , TP](f, l)−→
t,n

[χji, χ̃ji, Tχj](Vχjk, QUAL){χj = zj · pw}

(c) The servers can now compute

βj = H(Sj |Ej |Fj |Gj |Ij) and Nj = cd
βj mod p

and

Shared-Exp[TRj](Nj) → (Jj = N
rj

j)
The messages Sj |Ej |Fj |Gj |Ij |Jj are sent to the client.

3. For each j = 1 . . . n, the client C runs the next step of the KOYprotocol
which results in the messages Kj |Sigj sent to the servers. The client also
computes the corresponding session key skj .

4. (a) The servers can verify the signatures and if they are not correct, they
stop. Otherwise for each j = 1 . . . n they compute:

Shared-Exp[TSj , TRj , TXj , TY j , TZj , TWj , Tχj](l,K,A,B,C,D,f
−1) → (maskj)

where maskj = lsjKrjAxjByjCzjDwjf−zj ·pw

(b) Server Sj privately computes the session key as skj = l−sj ·maskj .

Fig. 4. Distributed version of the KOYprotocol

Provably Secure Threshold Password-Authenticated Key Exchange 523

8. Y. G. Desmedt, Threshold cryptography. European Transactions on Telecommu-
nications, 5(4):449–457, July 1994.

9. P. Feldman, A Practical Scheme for Non-Interactive Verifiable Secret Sharing.
In 28th IEEE Symposium on Foundation of Computer Science (FOCS), IEEE,
pp. 427–437, 1987.

10. W. Ford and B. Kaliski, Server-assisted generation of a strong secret from a
password. In 5th IEEE International Workshop on Enterprise Security, 2000.

11. Y. Frankel, P. MacKenzie and M. Yung, Adaptively-Secure Distributed Public-Key
Systems. In European Symposium on Algorithms (ESA ’99), Springer LNCS 1643,
pp. 4–27, 1999.

12. P. Gemmell, An Introduction to Threshold Cryptography. RSA Laboratories’
CRYPTOBYTES, vol. 2, n. 3, Winter 1997.

13. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, The (in)security of distributed
key generation in dlog-based cryptosystems. In EUROCRYPT ’99, Springer
LNCS 1592, pp. 295–310, 1999.

14. O. Goldreich and Y. Lindell, Session Key Generation using Human Passwords
Only. In CRYPTO 2001, Springer LNCS 2139, pp. 408–432, 2001.

15. L. Gong, T. M. A. Lomas, R. M. Needham and J. H. Saltzer, Protecting poorly
chosen secrets from guessing attacks. IEEE Journal on Selected Areas in Commu-
nications, 11(5):648–656, 1993.

16. S. Halevi and H. Krawczyk, Public-key cryptography and password protocols.
ACM Transactions on Information and System Security, 2(3):230–268, 1999.

17. A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk, and M. Yung. Proactive
public key and signature systems. In 4th ACM Conference on Computers and
Communication Security, ACM Press, pp. 100–110, 1997.

18. A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung, Proactive secret sharing,
or: How to cope with perpetual leakage. In CRYPTO ’95, Springer LNCS 963,
pp. 339–352, 1995.

19. D. P. Jablon, Strong password-only authenticated key exchange. ACM Computer
Communication Review, ACM SIGCOMM, 26(5):5–26, October 1996.

20. D. P. Jablon, Password authentication using multiple servers. In RSA Security
Conference 2001, Springer LNCS 2020, pp. 344–360, 2001.

21. M. Jakobsson, P. MacKenzie and T. Shrimpton, Threshold Password-
Authenticated Key Exchange. In CRYPTO 2002, Springer LNCS 2442, pp. 385–
400, 2002.

22. S. Jarecki and A. Lysyanskaya, Adaptively Secure Threshold Cryptography: In-
troducing Concurrency, Removing Erasures. In EUROCRYPT 2000, Springer
LNCS 1807, pp. 221–242, 2000.

23. J. Katz, R. Ostrovsky and M. Yung, Efficient password-authenticated key exchange
using human-memorable passwords. In EUROCRYPT 2001, Springer LNCS 2045,
pp. 475–494, 2001.

24. R. Ostrovsky and M. Yung, How to Withstand Mobile Virus Attacks. In 10th

ACM Conference on Principles of Distributed Systems, ACM Press, pages 51–59,
1991.

25. T. Pedersen, Non-interactive and information-theoretic secure verifiable secret
sharing. In CRYPTO ’91, Springer LNCS 576, pp. 129–140, 1991.

26. T. Rabin, A simplified Approach to Threshold and Proactive RSA. In
CRYPTO ’98, Springer LNCS 1462, pp. 89–104, 1998.

27. A. Shamir, How to Share a Secret. Communications of the ACM, 22(11):612–613,
1979.

