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Abstract. In this paper, we consider the statistical decision processes
behind a linear and a differential cryptanalysis. By applying techniques
and concepts of statistical hypothesis testing, we describe precisely the
shape of optimal linear and differential distinguishers and we improve
known results of Vaudenay concerning their asymptotic behaviour. Fur-
thermore, we formalize the concept of “sequential distinguisher” and we
illustrate potential applications of such tools in various statistical at-
tacks.
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1 Introduction

Historically, statistical procedures are indissociable of cryptanalytic attacks a-
gainst block ciphers. One of the first attack exploiting statistical correlations in
the core of DES [24] is Davies and Murphy’s attack [9]. Biham and Shamir’s dif-
ferential cryptanalysis [1–3], Matsui’s attack against DES [17, 18], Vaudenay’s
statistical and χ2 cryptanalysis [29], Harpes and Massey’s partitioning crypt-
analysis [13], and Gilbert-Minier stochastic cryptanalysis [21] are attacks using
statistical procedures in their core.
To the best of our knowledge, Murphy et al., in an unpublished report [22],

proposed for the first time a general statistical framework for the analysis of
block ciphers using the technique of likelihood estimation. Other examples can
be found in the field of cryptology: recently, Coppersmith, Halevi and Jutla [7]
have devised a general statistical framework for analysing stream ciphers; they
use the concept of statistical hypothesis testing for systematically distinguishing
a stream cipher from a random function. Other examples (this list being non-
exhaustive) include Maurer’s analysis of Simmon’s authentication theory [19, 20]
and Cachin’s theoretical treatment of steganography [4, 5].
In a parallel way, some attempts of formalizing resistance of block ciphers

towards cryptanalytic attacks have been proposed: for instance, Pornin [25] pro-
poses a general criterion of resistance against the Davies and Murphy attack;
for this purpose, he makes use of statistical hypothesis testing. Vaudenay, in a
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sequence of papers (e.g. [30, 28]) proposes the decorrelation theory as a generic
technique for estimating the strength of block ciphers against various kinds of
attacks. In these papers, he notably derives bounds on the best advantage of any
linear and differential distinguishers, however without using statistical hypothe-
sis testing concepts.

As pointed out by many authors, statistical hypothesis tests are convenient in
the analysis of statistical problems, since, in certain cases, well-known optimality
results (like the Neyman-Pearson lemma, for instance) can be applied.

Contributions of this Paper

In this paper, we consider the resistance of block ciphers against linear and
differential cryptanalysis as a statistical hypothesis testing problem, which allows
us to improve Vaudenay’s asymptotic bounds on the best advantage of any linear
and differential distinguishers and to give optimality results on the decision
processes involved during these attacks.

For this, we recall some well-known statistical concepts in Section §2. In
Section §3, we treat linear distinguishers and we derive a Chernoff-like bound,
which gives the right asymptotic behaviour of the best advantage of such distin-
guishers. In §4, we do the same for differential distinguishers. In §5, we formalize
the notion of sequential distinguisher ; this kind of statistical procedure has been
recognized quite early as potentially useful (in [22, 9], for instance). We restate
this by showing, with help of a toy-example (a linear cryptanalysis of 5-rounds
DES), that sequential sampling procedures may divide the needed number of
plaintext-ciphertext pairs by a non-negligible factor in certain statistical crypt-
analysis. In §6, we discuss potential applications of statistical hypothesis testing
concepts in various attacks, and finally, we conclude in §7.

Notation. The following notation will be used throughout this paper. Random
variables1 X,Y, . . . are denoted by capital letters, while realizations x ∈ X , y ∈
Y, . . . of random variables are denoted by small letters; random vectors X,Y, . . .
and their realizations x,y, . . . are denoted in bold characters. The fact for a ran-
dom variableX to follow a distribution D is denotedX ← D, while its probability
function is denoted by PrX [x]. Finally, as usual, “iid” means “independent and
identically distributed”.

2 Statistical Hypothesis Testing

We recall some well-known facts about statistical hypothesis testing, both in the
classical and in the Bayesian approaches; details can be found in any good book
on statistics (e.g. see [26]).

1 In this paper, we are only dealing with discrete random variables.
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2.1 Classical Approach

Let D0 and D1 be two different probability distributions defined on the same fi-
nite set X . In a binary hypothesis testing problem, one is given an element x ∈ X
which was drawn according either to D0 or to D1 and one has to decide which
is the case. For this purpose, one defines a so-called decision rule, which is a
function δ : X → {0, 1} taking a sample of X as input and defining what should
be the guess for each possible x ∈ X . Associated to this decision rule are two dif-
ferent types of error probabilities: α , PrX0

[δ(x) = 1] and β , PrX1
[δ(x) = 0].

The decision rule δ defines a partition of X in two subsets which we denote by A
and A, i.e. A∪A = X ; A is called the acceptance region of δ. We recall now the
Neyman-Pearson lemma, which derives the shape of the optimal statistical test
δ between two simple hypotheses, i.e. which gives the optimal decision region A.

Lemma 1 (Neyman-Pearson). Let X be a random variable drawn according
to a probability distribution D and let be the decision problem corresponding to
hypotheses X ← D0 and X ← D1. For τ ≥ 0, let A be defined by

A ,

{

x ∈ X :
PrX0

[x]

PrX1
[x]
≥ τ

}

(1)

Let α∗ , PrX0

[

A
]

and β∗ , PrX1
[A]. Let B be any other decision region with

associated probabilities of error α and β. If α ≤ α∗, then β ≥ β∗.

Hence, the Neyman-Pearson lemma indicates that the optimum test (regarding
error probabilities) in case of a binary decision problem is the likelihood-ratio
test. All these considerations are summarized in Definition 1.

Definition 1 (Optimal Binary Hypothesis Test). To test X ← D0 against
X ← D1, choose a constant τ > 0 depending on α and β and define the likelihood
ratio

lr(x) ,
PrX0

[x]

PrX1
[x]

(2)

The optimal decision function is then defined by

δopt ,

{

0 (i.e accept X ← D0) if lr(x) ≥ τ

1 (i.e. accept X ← D1) if lr(x) < τ
(3)

We note that Lemma 1 does not consider any special hypothesis on the ob-
served random variableX. In the following, we will assume that we are interested
in taking a decision about the distribution of a random vector X , (X1, . . . , Xn)
where X1, . . . , Xn are iid random variables, i.e. X ← Dn is a random vector of
n independent samples of the random variable X. This is a typical situation
during a known-plaintext attack.
When dealing with error probabilities, one usually proceeds as follows in the

classical approach: one of the two possible error probabilities is fixed, and one
minimizes the other error probability. In this case, Stein’s lemma (we refer to [8]
for more details) gives the best error probability expression. As this approach
lacks symmetry, we won’t describe it in more details.



20 Pascal Junod

2.2 Bayesian Approach

The other possibility is to follow a Bayesian approach and to assign prior prob-
abilities π0 and π1 to both hypotheses, respectively, and costs κi,j ≥ 0 to the
possible decisions i ∈ {0, 1} and states of nature j ∈ {0, 1}. In this case, we
would like to minimize the expected cost. If we assign κ0,0 = κ1,1 , 0 and

κ0,1 = κ1,0 , 1, i.e. correct decisions are not penalized, while incorrect decisions
are penalized equally, then the optimal Bayesian decision rule is given by

δ(x) ,

{

0 if π0 PrXn
0
[x] ≥ π1 PrXn

1
[x]

1 if π0 PrXn
0
[x] < π1 PrXn

1
[x]

(4)

Clearly, the overall error probability P
(n)
e , π0α

(n) + π1β
(n) of such an optimal

Bayesian distinguisher must decrease towards zero as the number n of samples
increases. It turns out that the decrease asymptotically approaches an exponen-
tial in the number of samples drawn before the decision, the exponent being
given by the so-called Chernoff bound (see Theorem 1; in the long version [14]
of this paper, we give some information-theoretic results justifying this bound,
and we refer to [8] for a detailed and complete treatment).

Theorem 1 (Chernoff). The best probability of error of the Bayesian decision
rule defined in (4) satisfies

lim
n→+∞

1

n
log

P
(n)
e

2−nν
= 0 (5)

where ν = C(D0,D1) is the Chernoff information
2 between D0 and D1.

Note that the Bayesian error exponent does not depend on the actual value of π0
and π1, as long as they are non-zero: essentially, the effect of the prior is washed
out for large sample sizes.

3 Linear Distinguishers

In this section, we consider the classical model of a linear distinguisher and we
present several new results derived using tools of statistical hypothesis testing.

3.1 Introduction

A linear distinguisher δlin is a (possibly computationally unbounded) Turing
machine which can play with an oracle Ω implementing a permutation C; δlin is
bounded in the number n of queries to the oracle Ω. Furthermore, it uses a linear
characteristic (a,b) which is a pair of boolean vectors. Algorithm 1 defines the
classical modelization of a linear distinguisher (see [30]).

2 The Chernoff information between two discrete probability distributions D0 and D1

is

C(D0,D1) , − min
0≤λ≤1

log

(

∑

x∈X

Pr
X0

[x]λ Pr
X1

[x]1−λ
)
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1: Parameters: a complexity n, a characteristic (a,b), an acceptance region A(n)

2: Input: an oracle Ω which implements a permutation C
3: Initialize a counter u to 0.
4: for i = 1 . . . n do

5: Pick uniformly at random x and query C(x) to the oracle Ω.
6: if a · x = b · C(x) then

7: Increment u
8: end if

9: end for

10: if u ∈ A(n) then

11: Output 0
12: else

13: Output 1
14: end if

Algorithm 1: Modelization of a linear distinguisher δlin.

The statistical game is the following. One gives an oracle Ω to Algorithm
1, which is with probability π0 =

1
2 the permutation C or, with probability

π1 =
1
2 , a permutation C

∗ ∈U Cm drawn uniformly at random from the set Cm
of all permutations over inputs of size m (C∗ is often refereed as the “Perfect
Cipher”). The goal of Algorithm 1 is to decide whether Ω implements C or C∗.
One measures the performance of a distinguisher δlin by the expression

Advnδlin(C,C
∗) ,

∣

∣

∣
Pr
C
[δlin(x) = 1]− Pr

C∗
[δlin(x) = 1]

∣

∣

∣
=
∣

∣

∣
2P (n)

e − 1
∣

∣

∣
(6)

where x = (x1, . . . , xn) is the vector of the values queried to the oracle. The
distinguisher’s core is the acceptance region A(n): it defines the set of values
(x1, . . . , xn) which lead to output 0 (i.e. it decides that the oracle implements
C) or 1 (i.e. it decides that the oracle implements C∗).
As pointed out by Chabaud and Vaudenay in [6], linear cryptanalysis is

based on the quantity LPC(a,b) , (2 · PrX [a ·X = b · C(X)]− 1)2. This value
depends of the (fixed) permutation C and of the distribution of plaintext, which
is usually defined to be uniform. Actually, most of the time, a cryptanalyst
does not possess any information about the permutation (i.e. about the key), so
one is more interested in the average LPC(a,b) over the permutation space Cm
(or, equivalently, over the key space K); this quantity is denoted ELP(a,b) ,
E
[

LPC(a,b)
]

, where the expectation is taken over the permutation distribution.
When studying linear distinguishers, one is interested in bounding the advan-

tage of any linear distinguisher in terms of ELP(a,b). We review now a known
result of Vaudenay (see [28], for instance).

Theorem 2 (Vaudenay). For any distinguisher in the model of Algorithm 1

BestAdvnδlin(C,C
∗) ≤ 2.78 3

√

n · ELP(a,b) + 2.78 3

√

n

2m − 1
(7)

where m is the block size of the permutation.
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In the case of a practical linear cryptanalysis of DES [18], we have ELP(a,b) ≈

4 ·
(

1.19 · 2−21
)2
≈ 1.288 · 10−12 and m = 64, which means that (7) is useful as

long as n ≤ 235. Thus, although of great theoretical interest, we note that (7)
is not tight for large n, or, in other words, does not capture the asymptotical
behavior of the advantage. In the next part, we reconsider this problem in the
statistical hypothesis testing framework and we derive an asymptotically tight
Chernoff-like bound on the best advantage of any linear distinguisher.

3.2 New Asymptotic Bounds

First, we note that if δlin is optimal, then P
(n)
e ≤ 1

2 for all n > 0 (otherwise, we
could modify it such that it outputs the opposite decision as defined in Algorithm

1 and get a smaller error probability). Thus, we have Advnδlin(C,C
∗) = 1−2P

(n)
e .

As outlined before, the crucial part of δlin is the acceptance region A
(n). The

following lemma, which is a direct application of Lemma 1, gives the optimal

A
(n)
opt, i.e. the region producing the smallest overall error probability. Without

loss of generality, we assume that E [PrX [a ·X = b · C(X)]] , 1
2 + ε with ε > 0

where the expectation is taken over a uniformly distributed plaintext space X
and the key space K.

Lemma 2. The optimal acceptance region for δlin is

A
(n)
opt =

{

u ∈ {0, . . . , n} : u ≥ n ·
log2(1− 2ε)

log2(1− 2ε)− log2(1 + 2ε)

}

(8)

where u is defined in Algorithm 1.

See [14] for a detailed proof. Note that, for ε small, one can approximate (8)
with

A
(n)
opt ≈

{

u ∈ {0, . . . , n} : u ≥ n ·

(

1

2
+
ε

2

)}

(9)

Using a precise version of Chernoff’s theorem 1, we can bound the advantage of
the best linear distinguisher as follows (see [14] for a detailed proof):

Theorem 3. Let m be the block size of the involved permutations. For any dis-
tinguisher in the model of Algorithm 1

1−
(n+ 1)

2nν−1
≤ BestAdvnδlin(C,C

∗) ≤ 1−
1

(n+ 1) · 2nν−1
(10)

where ν = C(D0,D1) is the Chernoff information between D0, a binary distribu-
tion having a bias equal to max{ 1

2m−1 , ε} such that ELPC(a,b) = 4ε2 and the
uniform binary distribution D1.

Generally, the Chernoff information cannot be expressed explicitely, because
one has to solve a transcendental equation. However, in the case which interests
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us, ν(λ) , 2−λ · (( 12 + ε)λ + ( 12 − ε)
λ) and

C(D0,D1) = ν(λ∗) for λ∗ =
log
(

− log(1−2ε)
log(1+2ε)

)

log
(

1+2ε
1−2ε

) (11)

We give now a numerical illustration: for ε = 1.19 · 2−21 (which is the bias of the
best linear approximation of 14 rounds of DES), we obtain a useful lower bound
only for n ≥ 248.2; unfortunately, even if it captures the asymptotic exponential
shape of the best advantage curve, it is not practically useful for “interesting”
values of n; for which concerns the upper bound, it is useful for all n but it is
not tight: one may give a tighter lower bound using Bernstein’s inequality (see
Theorem 4 and [11] for a proof). In the following, we will assume that ε is small
and thus that one is using (9) as acceptance region.

Theorem 4 (Bernstein’s Inequality). Let Xi be iid discrete random vari-
ables following a Bernoulli law with parameter 0 ≤ p ≤ 1 and let Sn ,

∑

iXi.
Then

Pr [Sn ≥ n(p+ ε)] ≤ e−
1
4
nε2 for ε > 0 (12)

This allows to derive in an easy way the following lower bound:

Theorem 5. Let m be the block size of the involved permutations. For any dis-
tinguisher in the model of Algorithm 1

BestAdvnδlin(C,C
∗) ≥ 1− e−

nε2

16 (13)

where ε , max{ 1
2m−1 , ε} such that ELPC(a,b) = 4ε2.

4 Differential Distinguishers

Similarly, one can study differential distinguishers with the same tools. A dif-
ferential distinguisher δdiff is a (possibly computationally unbounded) Turing
machine which is able to submit chosen pairs of plaintexts to an oracle Ω, im-
plementing with probability π0 =

1
2 a fixed permutation C or, with probability

π1 =
1
2 , a permutation drawn uniformly at random from the set Cm of all permu-

tations on m-bit blocks. Although the cryptanalytic settings are quite different
(δdiff can submit chosen pairs of plaintext), in a statistical point of view, the
distinguishing process is very similar to linear distinguishers. In Algorithm 2,
the classical modelization of a differential distinguisher [30] is given.
If we look at Algorithm 2, we note that, although the complexity n is given in

advance as input and is (implicitly) fixed, the effective number of queries to the
oracle is merely a random variable. In other words, δdiff does not make use of all
the information that it could exploit. In fact, we can see the class of distinguishers
submitting a random number of queries to the oracle as a generalization of
the class of distinguishers submitting a fixed number of queries. We will call
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1: Parameters: a complexity n, a characteristic (a, b)
2: Input: an oracle Ω which implements a permutation C
3: for i = 1 . . . n do

4: Pick uniformly at random x and query C(x) and C(x+ a) to the oracle Ω.
5: if C(x+ a) = C(x) + b then

6: Output 0 and stop.
7: end if

8: end for

9: Output 1.

Algorithm 2: Classical modelization of a differential distinguisher δdiff .

this generalization sequential distinguishers; this new concept is formalized and
studied in Section 5.

In order to better understand the statistical decision processes, we give in Al-
gorithm 3 an “unorthodox” modelization, denoted δ′diff , which is very similar to
the linear one. As for linear distinguishers, it is well-known [23] that differential

1: Parameters: a complexity n, a characteristic (a, b), an acceptance region A(n)

2: Input: an oracle Ω which implements a permutation C
3: Initialize a counter u to 0.
4: for i = 1 . . . n do

5: Pick uniformly at random x and query C(x) and C(x+ a) to the oracle Ω.
6: if C(x+ a) = C(x) + b then

7: Increment u
8: end if

9: end for

10: if u ∈ A(n) then

11: Output 0
12: else

13: Output 1
14: end if

Algorithm 3: Unorthodox modelization of a differential distinguisher δ′diff .

cryptanalysis depends on the quantity DPC(a, b) , PrX [C(X + a) = C(X) + b],
where the plaintext space X is uniformly distributed. As this value depends on
the choice of the cipher (i.e. on the key), one defines EDP(a, b) , E

[

DPC(a, b)
]

,
where the expectation is taken over the permutation space. We note that Al-
gorithm 2 outputs 1 if and only if no differential event occurs. As for linear
distinguishers, and considering this time Algorithm 3, one can define the op-
timal acceptance region using Lemma 1 and which is given by Lemma 3. As
EDP(a, b) = 1

2m−1 (where m is the block size of the permutation), and, typi-

cally, DPC(a, b) , 1+ε
2m−1 with 0 < ε ≤ 2m − 2, we can note that the optimal
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acceptance region will make δdiff output 0 if

(

n

u

)(

1 + ε

2m − 1

)u(

1−
1 + ε

2m − 1

)n−u

≥

(

n

u

)(

1

2m − 1

)u(
2m − 2

2m − 1

)n−u

which gives the following result.

Lemma 3. The optimal acceptance region for δ′diff is

A
(n)
opt =

{

u ∈ {0, . . . , n} : u ≥ n ·
log(2m − 2)− log(2m − 2− ε)

log((2m − 2)(1 + ε))− log(2m − 2− ε)

}

(14)

where u is defined in Algorithm 3.

For small ε, (14) may be approximated by

A
(n)
opt ≈

{

u ∈ {0, . . . , n} : u ≥ n ·

(

1

2m − 1
+

2m−1 − 1

(2m − 2)(2m − 1)
· ε

)}

(15)

Thus, we have

Corollary 1. δdiff is an optimal differential distinguisher submitting n queries
to the oracle if and only if (14) is satisfied for all u ∈ N with 1 < u ≤ n and for
all 0 < ε ≤ 2m − 2.

It is not difficult to build artificially a situation where Algorithm 2 is not optimal:
it is sufficient to take a characteristic (a, b) with DPC(a, b) having a very high
probability. In this case, it is not sufficient for δdiff to wait for only one differential
event and to stop, since if it is unique during the n samplings, it would have been
better to output 1. However, if we have a look at (15), we can note that Algorithm
2 captures well real-world situations, where exploited differential probabilities are
only slightly greater than ideal ones.
A very similar proof of Theorem 3 leads to

Theorem 6. For any distinguisher in the model of δ′diff ,

1−
n+ 1

2nν−1
≤ BestAdvnδ′

diff
(C,C∗) ≤ 1−

1

(n+ 1) · 2nν−1
(16)

where ν = C(D0,D1) is the Chernoff information between D0, a binary distri-
bution with PrX0

[X0 = 0] = 1 − PrX0
[X0 = 1] = DP

C(a, b), and D1, a binary
distribution with PrX1

[X1 = 0] = 1− PrX0
[X1 = 1] =

1
2m−1 .

Usually, in the context of differential cryptanalysis, one encounters the concept of
signal-to-noise ratio, which was used by Biham and Shamir in the papers defining
the differential cryptanalysis [1–3]; it is defined as being the ratio of probability
of the right (sub-)key being suggested by a right pair and the probability of a
random (sub-)key being suggested by a random pair, given the initial difference.
By empirical evidence, they suggested that when this ratio is around 1-2, about
20-40 right pairs are sufficient for a successful attack; clearly, this is a (implicitly
defined) likelihood-ratio test which turns out to be optimal in terms of error
probabilities.
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5 Sequential Distinguishers

In this section, we formalize the concepts of generic sequential non-adaptive
distinguisher (GSNAD) and of n-limited generic sequential non-adaptive distin-
guisher (n-limited GSNAD). These kinds of distinguishers use sequential sam-
pling procedures as their statistical core. We note that this idea was used earlier
by Davies and Murphy (see Appendix of [9]) in an attempt to decrease the
complexity of their attack against DES.

In the Luby-Rackoff model [16], a non-adaptive attacker (which may be mod-
elized by an n-limited GNAD as described in Algorithm 4) is an infinitely pow-
erful Turing machine which has access to an oracle Ω. It aims at distinguishing
a cipher C from the “Perfect Cipher” C∗ by querying Ω, and with a limited
number n of inputs. The attacker must finally take a decision; usually, one is
interested in measuring the ability (i.e. the advantage as defined in (6)) to dis-
tinguish C from C∗ for a given, fixed amount n of queries. Clearly, in this model,
one is interested in maximizing the advantage given a fixed number of queries.

In a more “real-life” situation, a cryptanalyst proceeds usually in an inverse
manner: given a fixed success probability (i.e. a given advantage), she may look
for minimizing the amount of queries to Ω, since such queries are typically expen-
sive. With this model in head, we can now define a n-limited generic sequential
non-adaptive distinguisher (see Algorithm 5), which turns out to be more effi-
cient in terms of the average number of oracle queries than Algorithm 4 given a
fixed advantage. In fact, such a distinguisher is adaptive regarding the decision
process.

After having received the i-th response from the oracle, the distinguisher
compare the i responses it has at disposal towards an acceptance set Ai and a
rejection set Bi, which depend on the number of queries and on the (fixed in
advance) advantage, and can then take three different decisions: either it decides
to output “0” or “1” and to stop, or to query one more question to the oracle
and to repeat the decision process, until it has queried n questions. Note that
Ai ⊆ Y

i and Bi ⊆ Y
i are disjoint sets for all 1 ≤ i ≤ n and that An ∪ Bn = Y

n

(i.e. the distinguisher must stop and take a decision at step n). In statistics, this
process is known as a sequential decision procedure.

1: Parameters: a complexity n, an acceptance set A.
2: Input: an oracle Ω implementing a permutation C
3: Compute some messages x = (x1, . . . , xn).
4: Query y = (C(x1), . . . , C(xn)) to Ω.
5: if y ∈ A then

6: Output 0
7: else

8: Output 1
9: end if

Algorithm 4: A n-limited generic non-adaptive distinguisher (GNAD)
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We note that Algorithm 2 can be viewed as a sequential differential distin-
guisher which does not take explicitely into account a decision region, since it
always outputs 0 as soon as it observes a “differential event”.

1: Parameters: a complexity n, acceptance sets Ai, 1 ≤ i ≤ n and rejection sets
Bi, 1 ≤ i ≤ n.

2: Input: an oracle Ω implementing a permutation C
3: i← 1
4: repeat

5: Select non-adaptively a message xi and get yi = C(xi).
6: if (y1, . . . , yi) ∈ Ai then

7: Output 0 and stop.
8: else if (y1, . . . , yi) ∈ Bi then

9: Output 1 and stop.
10: end if

11: i← i+ 1
12: until i = n

Algorithm 5: A n-limited sequential generic non-adaptive distinguisher

5.1 Sequential Statistical Inference

We describe now formally the sequential decision procedure behind Algorithm 5.
Let D be the set of possible decisions.

Definition 2 (Sequential decision procedure). Let X1, X2, . . . be random
variables observed sequentially. A sequential decision procedure consists in:

1. a stopping rule σn which specifies whether a decision must be taken without
taking any further observation. If at least one observation is taken, this rule
specifies for every set of observed values (x1, . . . , xn), with n ≥ 1, whether to
stop sampling and take a decision out of D or to take another observation
xn+1.

2. a decision rule δn which specifies the decision to be taken. If n ≥ 1 observa-
tions have been taken, then one takes an action δn(x1, . . . , xn) ∈ D. Once a
decision has been taken, the sampling process is stopped.

If we consider Algorithm 5 at the light of this formalism, D = {0, 1},

δn(x1, . . . , xn) =

{

0 if (x1, . . . , xn) ∈ An

1 if (x1, . . . , xn) ∈ Bn
(17)

and

σn(x1, . . . , xn) =

{

continue sampling if (x1, . . . , xn) 6∈ An ∪ Bn
stop sampling if (x1, . . . , xn) ∈ An ∪ Bn

(18)
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5.2 Sequential Decision Procedures

We have seen that Lemma 1 defines the shape of the optimal acceptance region
for binary hypothesis testing. Theoretically, if one is able to compute the exact
joint probability distribution of the oracle’s responses when it implements both
ciphers, one is able to compute the optimal acceptance region A for a generic
n-limited distinguisher.
A sequential likelihood-ratio test uses exactly the same process to define

two types of acceptance regions, denoted A and B, respectively. So, it is always
possible to define a sequential test when one has a classical test at disposal. In
few words, a sequential test has three alternatives once it has received a response
from the oracle: either it can conclude for one of both hypotheses, or it can decide
to query more samples. In its simpler definition, a sequential ratio test has the
possibility to query as many samples as it is needed to take a decision, given
a fixed error probability. The expected number of queries required to reach one
of the two possible decision turns out to be less than it would need in order to
make the same decision on the basis of a single fixed-size sample set. Of course
it may happen that the sequential procedure will take more queries than the
fixed-size one, but sequential sampling is a definitely economical procedure.
One may define Algorithm 5, as a truncated sequential test, i.e. one fixes an

upper-bound n on the number of queries; it is still clear that such a sequential
procedure cannot be worse than a fixed-size sampling procedure. In the following,
we state some definitions and results about sequential hypothesis tests.

Definition 3 (Sequential Likelihood-Ratio Test). To test X← D0 against
X← D1, define two constants τup > τdown > 0 depending on α and β, and define
the likelihood ratio

lr(x) ,
fX1
(x)

fX0
(x)

The decision function at i-th step is

δopt ,







1 (i.e accept X← D1) if lr(x(i)) ≥ τup
0 (i.e. accept X← D0) if lr(x(i)) ≤ τdown
∅ query another sample otherwise

(19)

When the observations are independent and identically distributed, then sequen-
tial likelihood-ratio tests have the following nice property (we refer to [27] as an
excellent treatment of sequential procedures and for the proof of the following
three theorems):

Theorem 7. For testing a simple hypothesis against a simple alternative with
independent, identically distributed observations, a sequential probability ratio
test is optimal in the sense of minimizing the expected sample size among all
tests having no larger error probabilities.

The following results relate error probabilities α and β to τup and τdown, and
give an approximation of the expected number of samples.
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Theorem 8. Let be a sequential likelihood-ratio test with stopping bounds τup
and τdown, with τup > τdown and error probabilities 0 < α < 1 and 0 < β < 1,

then τdown ≥
β

1−α
and τup ≤

1−β
α

.

The approximation τdown , β
1−α

and τup , 1−β
α
is known as “Wald’s approxi-

mation”. The following theorem gives some credit to this approximation.

Theorem 9. Let us assume we select for given α, β ∈]0, 1[, where α+β ≤ 1, the
stopping bounds τ ′down , β

1−α
and τ ′up , 1−β

α
. Then it holds that the sequential

likelihood-ratio test with stopping bounds τ ′down and τ
′
up has error probabilities α

′

and β′ where α′ ≤ α
1−β

, β′ ≤ β
1−α

and α′ + β′ ≤ α+ β.

By taking into account Wald’s approximation, we can compute approximations
of the expected number of queries:

EX0
[N ] ≈

α log
(

1−β
α

)

+ (1− α) log
(

β
1−α

)

EX1
[log(fX0

(x))− log(fX0
(x))]

(20)

and

EX1
[N ] ≈

(1− β) log
(

1−β
α

)

+ β log
(

β
1−α

)

EX1
[log(fX1

(x))− log(fX0
(x))]

(21)

5.3 A Toy-Example on DES

In order to illustrate advantages of sequential linear distinguishers, we have
implemented a linear cryptanalysis of DES reduced to five rounds which uses a
sequential distinguisher for deciding the parity of the linear approximation, i.e.
the parity of the sum of involved key bits.
Using a static test, we needed 2800 known plaintext-ciphertext pairs in order

to get a success probability of 97 %. Using a sequential strategy and for the same
success probability, only 1218 samples were necessary on average. We give here
both the static and the sequential decision rules.
Let Sn denote the number of times that Matsui’s best linear characteristic

[17] on 5-rounds DES evaluates to 0, where n is the number of known plaintext-
ciphertext pairs at disposal. This linear approximation holds with probability
1
2 + 0.01907. The static decision rule is given by

{

Output “key parity = 0” if Sn ≥
n
2

Output “key parity = 1” if Sn <
n
2

(22)

With 2800 known pairs at disposal, the static rule is successful in 97% of the
cases.
For α = β , 0.025, Wald’s approximation gives τup = 48 and τdown =

1
48 .

The sequential rule is then defined by














Output “key parity = 1” if Sn ≤
n
2 −

log τup

2 log( 1+2ε
1−2ε )

Output “key parity = 0” if Sn ≥
n
2 +

log τdown

2 log( 1−2ε
1+2ε )

Query another sample, otherwise.

(23)
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where ε = 0.01907. We repeated this experiment 1’000’000 times for 5 different
keys and got the following results:

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5

Pr[ static distinguisher successful ] 0.9689 0.9687 0.9684 0.9686 0.9688

Pr[ sequential distinguisher successful ] 0.9686 0.9684 0.9683 0.9682 0.9684
Average number of queries 1218.7 1218.7 1218.3 1219.1 1218.8

6 Links to Other Statistical Attacks

Potential applications in cryptanalysis of sequential distinguishers are numerous.
As soon as one is able to derive underlying probability distributions, it is possible
to define likelihood-ratios, and thus to use a sequential distinguisher. However,
deriving even approximations of probability distributions may not be a trivial
task in certain cases.
Furthermore, even if one has the probability distributions in hand, one should

not neglect the amount of computations necessary to get the information which
will be fed into the likelihood-ratio.
Under the light of the hypothesis testing paradigm, several known statistical

attacks can be summarized (for which concerns their decisional part), and thus
potentially analyzed in a simple way. The χ2 statistical test, proposed in [29] for
the first time and then used in many cryptanalytic contributions (e.g. see [12,
15, 10, 21]), is closely related to generalized likelihood-ratio tests.
Indeed, as outlined in Section §2, likelihood ratio tests are optimal for testing

a simple versus a simple hypothesis. It is possible to develop a generalization of
this test for use in situations in which the hypotheses are not simple (e.g. one
tests a probability distribution depending of a parameter θ ∈ ω0 against θ ∈ ω1
where ω0 and ω1 are disjoint subsets of possible parameters). Such tests are not
generally optimal, but they are typically non-optimal in situations for which no
optimal test exists, and they usually perform reasonably well.
It is well-known (see for instance [26]) that Pearson’s χ2 statistic and a gen-

eralized likelihood-ratio test for a multinomial distribution are asymptotically
equivalent. Thus, the underlying statistical decision processes in linear, differen-
tial, statistical, χ2- and stochastic cryptanalysis are all equivalent in a statistical
point of view: they try to distinguish two different (families of) probability dis-
tributions with help of a generalized likelihood-ratio test.
Another interesting attack is Harpes and Massey’s partitioning cryptanaly-

sis [13]. In such an attack, one defines the imbalance of a random variable as
being a non-uniformity measure, i.e. as measure of distance between a uniform
distribution and the distribution obtained through the partitioning process. In
[13], two different imbalance measures are considered, namely the peak imbalance
and the squared Euclidean imbalance: one could consider a χ2-value or, equiva-
lently, a generalized likelihood-ratio value as well (and maybe slightly improve
its performances). Thus, the statistical problem behind this attack remains the
same.
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7 Conclusion

In this paper, we have used the power of some tools proposed by the theory of
statistical tests for considering various situations in well-known cryptanalytic at-
tacks, like linear and differential cryptanalysis; we improve known bounds on the
asymptotical behavior of the best advantage of distinguishers implementing these
attacks. Furthermore, we formalize the concept of “sequential distinguisher” and
we illustrate its potential power in a toy-example. Finally, we discuss the appli-
cation of the statistical tools in a couple of known attacks; this suggests that
statistical hypothesis testing theory may be a mean to unify, to characterize and
to analyze most of the known attacks against block ciphers.

Acknowledgments: The author would like to thank Serge Vaudenay for many
interesting and enlightning discussions.
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