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Abstract. A classical construction of stream ciphers is to combine sev-
eral LFSRs and a highly non-linear Boolean function f . Their security
is usually analysed in terms of correlation attacks, that can be seen as
solving a system of multivariate linear equations, true with some proba-
bility. At ICISC’02 this approach is extended to systems of higher-degree
multivariate equations, and gives an attack in 292 for Toyocrypt, a Cryp-
trec submission. In this attack the key is found by solving an overdefined
system of algebraic equations. In this paper we show how to substantially
lower the degree of these equations by multiplying them by well-chosen
multivariate polynomials. Thus we are able to break Toyocrypt in 249

CPU clocks, with only 20 Kbytes of keystream, the fastest attack pro-
posed so far. We also successfully attack the Nessie submission LILI-128,
within 257 CPU clocks (not the fastest attack known). In general, we
show that if the Boolean function uses only a small subset (e.g. 10) of
state/LFSR bits, the cipher can be broken, whatever is the Boolean func-
tion used (worst case). Our new general algebraic attack breaks stream
ciphers satisfying all the previously known design criteria in at most the
square root of the complexity of the previously known generic attack.
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1 Introduction

In this paper we study stream ciphers with linear feedback and a nonlinear com-
biner that produces the output, given the state of the linear part. The security
of such stream ciphers received much attention. In [13], Golic gives a set of cri-
teria that should be satisfied in order to resist to the known attacks on stream
ciphers. For example, a stream cipher should resist to the fast correlation at-
tack [15], the conditional correlation attack [1] and the inversion attack [13]. In
order to resist different types of correlation attacks, many authors focused on
proposing Boolean functions that will have no good linear approximation and
that will be correlation immune with regard to a subset of several input bits,
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see for example [5]. Recently the scope of application of the correlation attacks
have been extended. In [10], the author exploits rather correlation properties
with regard to a non-linear low degree multivariate function that uses all of the
variables, or in other words, non-linear low degree approximations. This kind
of correlations is not new, see for example in [14]. However their application to
cryptographic attacks did not receive sufficient attention, probably because only
recently people became aware of the existence of efficient algorithms for solving
systems of nonlinear multivariate equations of low degree [21, 8–10].

Following [10], stream ciphers with linear feedback are potentially very vul-
nerable to such algebraic attacks. If for one state we are able, by some method,
to deduce from the output, a multivariate equation of low degree in the state
bits, then it is also of low degree in the initial state bits. Then the same can
(probably) be done for many other states, and given many keystream bits, we
inevitably obtain a very overdefined system of equations (i.e. many equations).
Such systems can be solved efficiently by techniques such as XL [21, 8], adapted
for this purpose in [10] or the simple linearization [21].

In [10], the equations of low degree are obtained by approximating the non-
linear component f of the cipher by a function of low degree. If the probability
that the approximation holds is close to 1, then it can be used simultaneously for
many equations, and we obtain efficient attacks with XL method. For example
in [10], an attack in 292 against Toyocrypt3 is proposed, that requires only some
219 bits of the keystream. With more keystream, and if at least some 32 bits are
consecutive, a better attack is possible, due to Mihaljevic and Imai [18].

In this paper we show that algebraic attacks on stream ciphers will apply
even if there is no good low degree approximation. We propose a new method of
generating low degree equations, basically by multiplying the initial equations
by well-chosen multivariate polynomials. This method allows to cryptanalyse a
large class of stream ciphers, satisfying all the previously known design criteria.
For example, all very traditional designs using only a small subset of the state
bits, are shown to be insecure, whatever is the Boolean function used.

The paper is organized as follows: in Section 2 we give a general view of
algebraic attacks on stream ciphers. The main component of our new attack on
stream ciphers is described in Section 2.3. In Section 3 we overview Toyocrypt
and previously known attacks, then in Section 3.1 we apply our new attack for
Toyocrypt. In Sections 4 and 5 we will study LILI-128 and apply our attack.
Then in Section 6 we develop our general attack on stream ciphers using a small
subset of state bits. Finally we present our conclusions about the design of stream
ciphers.

3 Toyocrypt has been accepted to the second evaluation phase of the Japanese Cryptrec
call for primitives, and (apparently) rejected later.
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2 Algebraic Attacks Against Stream Ciphers

In this part we overview and substantially extend the general strategy given in
[10], that reduces an attack on a stream cipher, to solving a system of multivari-
ate equations.

2.1 The Stream Ciphers that May be Attacked

We consider only synchronous stream ciphers, in which each state is generated
from the previous state independently of the plaintext, see for example [17] for
precise definitions. In principle also, we consider only regularly clocked stream
ciphers, and also (it makes no difference) stream ciphers that are clocked in a
known way. However this condition can sometimes be relaxed, cf. attacks on
LILI-128 described in Sections 4-5.

For simplicity we restrict to binary stream ciphers in which the state and
keystream are composed of a sequence of bits and that generate one bit at a
time. We also restrict to the case when the ”connection function” that computes
the next state is linear over GF (2). We call L this ”connection function”, and
assume that L is public, and only the state is secret. We also assume that the
function f that computes the output bit from the state is public and does not
depend on the secret key of the cipher. This function f is called ”a nonlinear
filter”. The ciphers described here include the very popular filter generator, in
which the state of a single LFSR4 is transformed by a Boolean function, and
also not less popular nonlinear function generators, in which outputs of several
LFSRs are combined by a Boolean function [17].

The problem of cryptanalysis of such a stream cipher can be described as
follows. Let (k0, . . . , kn−1) be the initial state, then the output of the cipher (i.e.
the keystream) is given by:















b0 = f (k0, . . . , kn−1)
b1 = f (L (k0, . . . , kn−1))
b2 = f

(

L2(k0, . . . , kn−1)
)

...

Our problem is to recover the key k = (k0, . . . , kn−1) from some subset of
keystream bits bi. We are going to perform a partially known plaintext attack,
i.e. we know some bits of the plaintext, and the corresponding ciphertext bits.
The bits don’t need to be consecutive. For example if the plaintext is written
with latin alphabet, and does not use too many special characters, it is very
likely that all the characters have their most significant bit equal to 0. This
will be enough for us, if the text is sufficiently long. This would be (almost) a
ciphertext-only attack.

In our attacks we just assume that we have some m bits of the keystream bi
at some known positions.

4 A Linear Feedback Shift Register, see e.g. [17]. It is also possible to use a MLFSR,
equivalent in theory [18] but having faster diffusion, as used in Toyocrypt cipher
that we study later.
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2.2 The Summary of the Attack

For easier reading we give here a brief summary of the attack developed later.
At the time t, the current keystream bit gives an equation f(s) = bt with s
being the current state. The main new idea consists of multiplying f(s), that is
usually of high degree, by a well chosen multivariate polynomial g(s), such that
fg is of substantially lower degree, denoted by d. Then, for example if bt = 0,
we get an equation of low degree f(s)g(s) = 0. This in turn, gives a multivariate
equation of low degree d on the initial state bits ki. If we get one such equation
for each of sufficiently many keystream bits, we obtain a very overdefined system
of multivariate equations that can be solved efficiently.

2.3 Design Criteria on f and Known Attacks

Let f be the Boolean function that is used to combine the outputs of the linear
part of the cipher. For example the inputs to the function are some bits of the
state of some LFSRs. The usual requirements on such functions can be sum-
marised as follows. First, f should be balanced and have high algebraic degree.
To prevent correlation attacks, f should be highly non-linear5, and correlation
immune at high order, see [5].

An additional criterion on f is given in [10]: f should also not have a very
good correlation with respect to low-degree non-linear multivariate functions,
otherwise efficient attacks are possible, for example for Toyocrypt [10]. They are
possible when:

S1 either the Boolean function f has a low algebraic degree D (classical crite-
rion),

S2 or f can be approximated by such a function with a probability close to 1
(new criterion [10]). This probability is usually denoted 1− ε for some small
ε.

The practical attacks on Toyocrypt presented in [10] use the second case S2. In
this paper we use equations true with probability 1 (as in the first case) except
that we relax the degree condition: it is no longer necessary that f has a low
algebraic degree d:

2.4 New Assumptions on f and New Attack Scenarios

S3 The multivariate polynomial f has some multiple fg of low degree d, with
g being some non-zero multivariate polynomial.

S4 It is also possible to imagine attacks in which f has some multiple fg, such
that fg can be approximated by a function of low degree with some proba-
bility (1− ε).

5 But maybe not a perfectly non-linear (bent) function, see Section 4 in [10].
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How to Use Low Degree Multiples

In scenarios S1 and S2, for each known keystream bit at position t: bt, we obtain a
concrete value of bt = f(s), and thus we get the equation bt = f (Lt(k0, . . . , kn−1)).
For this, f has to be of low degree. In scenarios S3 and S4, for each known
keystream bit bt = f(s) at position t, we get:

f(s) · g(s) = bt · g(s),

and, since the state is at time t is s = Lt(k0, . . . , kn−1), it boils down to:

f
(

Lt(k0, . . . , kn−1)
)

· g
(

Lt(k0, . . . , kn−1)
)

= bt · g
(

Lt(k0, . . . , kn−1)
)

.

We get one multivariate equation for each keystream bit. This equation may
be of very low degree, without f being of low degree, and without f having
an approximation of low degree. In the basic version of this attack S3, we also
require that g is of low degree. There are other possibilities that are studied in
the extended version of this paper in which three basic versions of the attack
S3a, S3b and S3c are studied.

The important question is now, given a cipher, whether such polynomials g
exist, and how to find them. For this, see Section 5 and 6.

Remark 1: It can be seen that the scenarios S1 (respectively S2) are a
special case of the scenarios S3 (respectively S4). Indeed, if we put g = 1, the
equation used in scenarios S3/S4 becomes the usual equation f(s) = bt of the
previous scenarios S1/S2.

2.5 Solving Overdefined Systems of Multivariate Equations

In our attack, given m keystream bits, let R be the number of multivariate
equations of degree d, and with n variables ki, that we obtain. With one equation
we have R = m, but we may also combine several different g for the same f , and
get, for example R = 14 ·m. We solve them as follows.

Linearization Method: There are about T ≈
(

n
d

)

monomials of degree ≤ d
in the n variables ki (assuming d ≤ n/2). We consider each of these monomials
as a new variable Vj . Given R ≥

(

n
d

)

equations, we get a system of R ≥ T

linear equations with T =
(

n
d

)

variables Vi that can be easily solved by Gaussian
elimination on a linear system of size T .

XL Method:When as many as the requiredm = O(
(

n
d

)

) keystream bits, are
not available, it is still possible to use XL algorithm or Gröbner bases algorithms
to solve the system, with less keystream bits, but with more computations, see
[10] or the extended version of this paper.

About the Complexity of Gaussian Reduction Let ω be the exponent
of the Gaussian reduction. In theory it is at most ω ≤ 2.376, see [6]. However
the (neglected) constant factor in this algorithm is expected to be very big.
The fastest practical algorithm we are aware of, is Strassen’s algorithm [25] that
requires about 7 · T log27 operations. Since our basic operations are over GF (2),
we expect that a careful bitslice implementation of this algorithm on a modern
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CPU can handle 64 such operations in one single CPU clock. To summarize,
we evaluate the complexity of the Gaussian reduction to be 7 · T log27/64 CPU
clocks.

3 Cryptanalysis of Toyocrypt

We look at the stream cipher called Toyocrypt, a submission to the Japanese
government Cryptrec call for cryptographic primitives. It was, at the time of the
design, believed to resist to all known attacks on stream ciphers. In Toyocrypt,
we have one 128-bit LFSR, and thus n = 128. The Boolean function is of the
form:

f(s0, .., s127) = s127 +

62
∑

i=0

sisαi
+ s10s23s32s42 +

+s1s2s9s12s18s20s23s25s26s28s33s38s41s42s51s53s59 +

62
∏

i=0

si.

with {α0, . . . , α62} being some permutation of the set {63, . . . , 125}. This system
is quite vulnerable to an attack using low-order approximations: there is only
one monomial of degree 17, and one of degree 63. The higher-order monomials
are almost always zero. From this in [10] an attack following the scenario S2 is
described. In this attack, f is approximated by a multivariate function of degree
4 with probability 1−2−17. The attack runs in 292 CPU clocks. For more details
see [10].

3.1 New Algebraic Attack on Toyocrypt

In our attack we need to find g such that fg is of low degree (or is such with high
probability), following the assumption S3 (or S4) from Section 2.3. How do we
find a function g such that fg is of low degree ? One method we present in this
paper, is by factoring multivariate polynomials. We consider the terms of high
degree in f(s) (regardless the lower degree terms) and look if they are divisible
by a common low degree factor g′(s). Then (for polynomials over GF (2)) we
observe that f(s) · g(s) with g(s) = g′(s)− 1 is of low degree. Later in Sections
5 and 6, we will describe a different method to find polynomials g satisfying our
requirements.

In the case of Toyocrypt, we observe that the combination of the parts of
degree 4, 17 and 63, is divisible by a common factor s23s42. For each keystream
bit bt, we start from the equation f(s) = bt, and multiply both sides of it by
g(s) = (s23−1). Then we get f(s)s23−f(s) = bt(s23−1). The monomials divisible
by s23 in f will cancel out, and what remains is an equation of degree 3 true
with probability 1. We repeat the same trick for s42, i.e. we put g(s) = (s42−1).
From this, we have a simple linearization attack following the scenario S3. For
each keystream bit, we obtain 2 equations of degree 3 in the si, and thus 2
equations of degree 3 in the ki. The linearization will work as soon as R > T ,
and we have T ≈

(

128
3

)

= 218.4 monomials. We have R = 2m, and having
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m = T/2 = 217.4 keystream bits will be sufficient. Our new attack on Toyocrypt
is in 7/64 · T log27 = 249 CPU clocks, requires 16 Gigabytes of memory and only
about 20 kilobytes of (non-consecutive) keystream.

We programmed this attack to see if it works. Our simulations show that the
number of linearly dependent equations is negligible and therefore the attack
will be able to recover the key. Details are given in the extended version of this
paper.

4 Background on LILI-128 and Simple Attacks

In principle our algebraic attacks are designed only for regularly clocked stream
ciphers (or ciphers clocked in a known way). However in some cases, this difficulty
can be removed. This is the case for LILI-128, a submission to Nessie European
call for cryptographic primitives.

4.1 Eliminating the First Component

LILI-128 is a stream cipher composed of two LFSR-based filter generators, the
first being used to clock the second. There are two basic strategies to by-pass
this.

A. Since the key length of the first component is only 39 bits, we may guess
these 39 bits and attack the second component alone. In LILI-128, the first
component advances the clock of the second component by 1, 2, 3 or 4. Given the
state of the first component, we have access to some number of non-consecutive
keystream bits of the second component, at known positions. This is sufficient
for our attacks, and the complexity of the attack is multiplied by 239.

B. Given more keystream bits, it is possible to avoid repeating the whole
attack 239 times. For this, we use the Lemma 1 from [23]: after clocking the first
LFSR of LILI-128 239−1 times, the second LFSR advances exactly∆d = 5·238−1
times. Thus, we may, instead of guessing the state of the clock control subsystem,
clock it 239− 1 at a time, and apply any of the XL attacks exactly as if the first
generator did not exist.

In both cases, the bits the attacker has access to, are in some known places of
the keystream of the second component (but not in chosen places). It is perfectly
sufficient to apply directly, to the second component, all the algebraic attacks
S1-S4 described in Section 2.3: the second component is attacked exactly as if it
was a stand-alone filter generator.

Intermediate Solutions A-B. The period of the first component of LILI-
128 is not a prime, and we have 239 − 1 = 7 · 79 · 121369 · 8191. This suggests
that one should be able to design a decimation attack, in which by clocking the
generator t clocks at a time, for a suitable t, one could simulate a smaller LFSR,
see [12] for more details. It could give a version of our later attacks, intermediate
between A and B, in which both the keystream requirements and the attack
complexity would be multiplied by some quantities, being both smaller than
239.
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The Boolean Function Used in LILI-128

We call f the output function of LILI-128 (called fd in [22]). It is a highly non-
linear Boolean function of degree 6, built following [20] and specified in [22] or
the extended version of this paper. It uses a subset of 10 variables:

(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10)
def
= (s0, s1, s3, s7, s12, s20, s30, s44, s65, s80) .

4.2 First Attacks on LILI-128 (Scenarios S1 and S2)

First, it is possible to apply to LILI-128 our scenario S1. We have d = 6, ε = 0
and R = m. Then T ≈

(

89
6

)

≈ 229.2 monomials, and in order to have R > T we
will need m ≈ 229.2. It gives an attack in6 about:

239 · 7/64 · T log2 7 ≈ 2118 < 2128.

Given the Boolean function used, it is not useful to extend the attack to the
scenario S2: there is no good approximation of degree d < 6, as it gives ε > 2−6

which is by far too big. However we may improve the attack following the method
B from Section 4.1: instead of guessing the state of the clock control subsystem we
clock it 239−1 at a time, and apply the above simple linearization S1-type attack
with ε = 0, exactly as if the first generator did not exist. Now the complexity
is only 7

64T
log2 7 ≈ 279 but this version requires much more keystream bits: 268

instead of 229.

5 Better Attacks on LILI-128

First we try to apply to LILI-128 the idea of factoring multivariate polynomials
from Section 3.1. For this, we consider the part of degree 5 and 6 of f . It can be
factored as follows:

x7x9 (x3x8x10+x4x6x8+x4x6x10+x4x8x10+x5x6x8+x5x6x10+x4x6x8x10+x5x6x8x10)

It means that when we multiply f by either (x7 + 1) or (x9 + 1), the degree
collapses from 6+1 = 7 to 4+1 = 5. We consider then the factoring of the part
of degree 5 and 4 of respectively f(x) · (x7 + 1) and f(x) · (x9 + 1). Only the
second function can still be factored and it gives:

x10 (x3x7x8x9+x5x7x8x9+x3x7x8+x3x8x9+x4x7x9+x4x8x9+x5x7x8+x5x7x9+x6x7x9)

From this we deduce the remarkable fact that f(x)(x9 + 1)(x10 + 1) is of
degree 4, instead of 8.

6 This simple attack has already been described by Steve Babbage in [3].
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The function
Degree of g

Degree of fg

Nb. of g

LILI-128 fd

10 1 2 3 4 10
3 4 4 4 4 4

0 0 4 8 14 14

Random Boolean

10 1 2 3 4 10
3 4 4 4 4 4

0 0 0 0 0 0

Table 1. Simulations on the number of linearly independent g such that fg is of low
degree

5.1 Finding More Low Degree Multiples of f for LILI-128

We are looking for the number of linearly independent polynomials g, such that
fg is of low degree. In order to find them, we are looking for linear dependencies
in the following set of polynomials (stopped at maximum degree for g and some
maximum degree for fg).

{f(x), f(x) · x1, f(x) · x2, . . . , f(x) · x1x2, . . . ; 1, x1, x2, . . . , x1x2, . . .}

We note that the maximum degrees cannot be higher than 10, as there are only
10 variables. Here are our results with fg 6= 0, compared to a random Boolean
function of the same size:

We have computed and tested all these solutions. For example, one can verify
that:

f(x) · x8x10 = x8x10 (x2x9 + x3x7 + x4x7 + x5x9 + x1 + x4 + x5 + x6) .

We see that the function f of LILI-128, behaves much worse than a ran-
dom Boolean function. This shows that the design of LILI-128 is far from being
optimal against algebraic attacks.

Note: In the extended version of this paper we also study equations such
that fg = 0 and show that they also exist with d = 4 for LILI-128. Moreover
when d = 5, simulations show that they also exist for any randomly chosen
Boolean function of the same size.

Consequences for LILI-128

Following the results of Section 5.1, given m keystream bits, we obtain 14 ·m
multivariate equations of degree 4 in the key bits ki of LILI-128. We will have
to solve an overdefined system of multivariate equations of degree 4, true with
probability 1. This is done by linearization. Following Section 4.1 there are two
versions of the attack.

A In the first version (A) the state of the first generator is guessed and the com-
plexity is multiplied by 239. For each keystream bit we obtain 14 equations
of degree 4 in the ki. For linearization we have T =

(

89
4

)

= 221 monomials,
and we will need m = T/14 = 218 keystream bits in order to have R > T .
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Our best new attack on LILI-128 requires then 239 · 7 ·T log27/64 ≈ 296 CPU
clocks. This first attack version works given access to some m stream bits,
being at some known positions.

B In the second version (B), the first component is clocked 239 − 1 clocks at a
time (see Section 4.1) and thus the number of keystream bits is multiplied
by 239. We have the same T =

(

89
4

)

= 221.2, and the complexity is now 257

CPU clocks. The attack requires 762 Gigabytes of memory and 257 bits of
consecutive keystream, or, it can be seen that we only need 218 keystream
bits that are on some positions of the form α + β · (239 − 1), for a fixed α.
Once the state at the time α of the second LFSR is recovered, the state of
the first LFSR can be found very quickly within 239 tries.

Remark: This is not the the best attack known for LILI-128. In [23] it is
shown that LILI 128 can be broken with 246 bits of keystream, a lookup table
of 245 89-bit words and computational effort which is roughly equivalent to 248

DES operations. Our attack has however much more general consequences.

6 General Attack on Stream Ciphers Using a Subset of

LFSR bits

In this section we show that the case of LILI-128 is not isolated. We will show
that all very traditional stream ciphers, with linear feedback and a highly non-
linear (stateless) filtering function are insecure, for example7 when they use only
a small subset of state bits.

We consider a stream cipher with n state bits, and using only a small subset
of k state bits to derive the keystream bit. Thus we have:

{x1, x2, . . . , xk} ⊂ {s0, s1, . . . , sn−1} .

We assume that k is a small constant and n is the security parameter. For
example for the second component of LILI-128 k = 10, n = 89.

We would like to mount an attack following the scenario S3 and for this,
we are looking for low-degree polynomials g 6= 0, such that fg is also of low
degree. In order to find them, similarly as in Section 5.1, we check for linear
dependencies in the set of polynomials C = A ∪ B defined below as follows.
First, we consider all possible monomials up to some maximum degree d (this
part will later compose fg).

A = {1, x1, x2, . . . , x1x2, . . .}

Then we consider all multiples of f , multiplied by monomials of the degree up
to d (this degree corresponds to the degree of g):

B = {f(x), f(x) · x1, f(x) · x2, . . . , f(x) · x1x2, . . .}

7 Though Toyocrypt does not satisfy this assumption, it is still broken by our attack,
that will also work in many other interesting cases, see Section 7.
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Let C = A ∪ B. All elements of A,B and C, can be seen as multivariate
polynomials in the xi: for this we need to substitute f with its expression in the
xi. A set of multivariate polynomials with k variables cannot have a dimension
greater than 2k. If there are more than 2k elements in our set, linear dependencies
will exist. Such combinations allow to find a function g such that f · g is of
substantially lower degree than f . More precisely we have the following theorem:

Theorem 6.0.1 (Low Degree Relations).
Let f be any Boolean function f : GF (2)k → GF (2). Then there is a Boolean
function g 6= 0 of degree at most dk/2e such that: f(x) ·g(x) is of degree at most
d(k + 1)/2e.

Proof: If we include in A all the monomials with degrees up to dk/2e, then

|A| =

dk/2e
∑

i=0

(

k

i

)

≥
1

2
2k.

Similarly for B, we multiply f by all the monomials with degrees up to d(k +
1)/2e, then

|B| =

d(k+1)/2e
∑

i=0

(

k

i

)

>
1

2
2k

The rank of C = A∪B cannot exceed 2k. Since |C| = |A|+ |B| > 2k, some linear
dependencies must exist. Moreover there are no linear dependencies in the part
A of our set C, and therefore g 6= 0. This ends the proof.

Consequences of the Theorem

We see that for any stream cipher with linear feedback, for which the non-linear
filter uses k variables, it is possible to generate at least one equation of degree
≈ k/2 in the n keystream bits. These equations will be solved, as usual, by

linearization. We will need at most
∑k/2

i=0

(

n
i

)

≈
(

n
k/2

)

keystream bits in order to

obtain a complete saturated system solvable by linearization. Moreover, if for a
given f , there are several linear dependencies in C, we will be able to use several
linearly independent g, and for each keystream bit will obtain several equations.
Then the keystream requirements will be divided accordingly. For example in
Section 5.1 they are divided by 14. To summarise, we get the following general
attack for any Boolean function f with k inputs.

d k/2
ε 0

Data
(

n
k/2

)

Memory
(

n
k/2

)2

Complexity
(

n
k/2

)ω
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Remark. This attack deals with the worst case. For specific functions the
cipher may be much less secure. For example in LILI-128, k = 10 and, with a
strict application of Theorem 6.0.1 we obtain the worst case complexity O(n6ω)
(∀ Boolean function). In the extended version of this paper we show that, on
average (for a random Boolean function) the complexity is O(n5ω). Finally, for
the specific function used in LILI-128, our attack from Section 5.1 is in O(n4ω).

The Complexity of the Attack. This attack is polynomial when k is fixed.
This attack will only be exponential in n, if k = O(n). The number of bits used
in a non-linear filter cannot be small.

In practice, talking about polynomial (or not-polynomial) time is misleading
and should always be confronted with concrete results. Knowing that the max-
imum degree of the filtering function cannot exceed k, it can be seen that in
the scenario S1, any stream cipher with linear feedback can be broken in about
(

n
k

)ω
, given

(

n
k

)

keystream bits, by simple linearization. This simple attack is
already polynomial when k is fixed, and well known, see for example [13] or [3].
Here precisely is the problem: many stream ciphers, some of them unpublished
and proprietary, have been designed in such a way that, one has for example
(

n
k

)ω
≈ 280. In practice, since our complexity

(

n
k/2

)ω
is, very roughly the square

root of the previous one, we can break all these ciphers in roughly 240.

Resistance Criteria Against This Attack: By inspection we verify that
the requirement to achieve the best possible resistance against our attack is the
following. We need to make sure that no linear dependencies exist when both
sets A and B are generated up to any degree, strictly smaller than the degree
for which dependencies must exist, due to the theorem. It can be seen that it
boils down to assuring that:
Optimal Resistance Criterion: When both A and B are generated with
degrees in the xi up to bk/2c then the rank of the set C = A∪B is maximal. It
is easy to show that this criterion implies that the degree of f will be sufficiently
large to prevent the attack S1. However, it cannot guarantee that attacks of type
S2 (as in [10]) or S4, will not exist.

7 Consequences for the Design of Stream Ciphers

There are many interesting cases in which the attacks described in this paper will
work. For example, it can be seen that they will work for any regularly clocked
stream cipher with linear feedback and any Boolean function f such that:

1. either f uses a small subset of state bits, (e.g. 10), as in LILI-128, see Sec-
tion 6,

2. or is very, very sparse, as in Toyocrypt, see [10],

3. or can be factored with a low degree factor, as in Toyocrypt, see Section 3.1.

4. or can be approximated by one of the above (see e.g. our Scenario S4),

5. or its part of high degree is one of the above, for example in Section 5 it has
low degree factors.
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We conclude that, in a stream cipher with linear feedback, the filtering func-
tion should use many state bits, for example at least8 32, and should not be
too sparse, so it has also many terms of very high degree (for example at least
32). Moreover the part of high degree, should not have a low degree factor, and
should itself also use many state bits. Then, no approximation of the part of
high degree (for example obtained by removing or adding a few very high degree
terms) should have a low degree factor, or should use a small number of state
bits. Finally, we see in the example of LILI-128, that specific functions may be-
have worse than a random Boolean function of the same size, for no apparent
reason.

Our Algebraic Security Criterion on f . It can be seen that the attacks
described in the present paper are possible when there exist h, g such that fg+
h = 0, with either h is of low degree, or h = 0 and g is of low degree. We observe
that in both cases, the degree of fg is smaller than expected: it is less than the
sum of the degrees of f and g. Hence, ideally, to resist algebraic attacks, given
the function f , for every function g of ”reasonable” size the degree of fg should
always be equal9 to deg(f)+deg(g). This is the new design criterion we propose
for Boolean functions used in stream ciphers.

General Algebraic Attacks on Stream Ciphers.More generally, if there
are several filtering functions fi in a stream cipher, there should be no algebraic
combination of the fi and of ”reasonable” size, that would have an unusually low
degree. By extension, this criterion also applies to stream ciphers that have only
one filtering function. Indeed a cipher having only one filtering function f , can
be seen as using several functions defined as: f, f ◦ L, f ◦ L2, . . .. It can be seen
that, in all cases, our security criterion can be re-formulated as: there should
be no non-trivial multivariate relations of low degree that relate the
key bits and one or many output bits of the cipher. Otherwise, if only
one such multivariate relation exists (for any reason), an algebraic attack as
described in this paper will be possible. It is important to see that this attack
scenario (that could be called S5) applies potentially to all ciphers with linear
feedback, even for filters with memory, see [2, 11], and not only to ciphers using
stateless Boolean functions.

We obtain a design criterion, that is basically identical to the notion of non-
trivial equations defined in Section 2 of [7]. It is also very similar to the design
criterion given in [9] for the S-boxes of block ciphers.

8 Conclusion
In this paper we studied algebraic attacks on stream ciphers with linear feedback
(e.g. using LFSRs), such that the only non-linear component is a filtering func-
tion. We reduce their cryptanalysis to solving a system of algebraic equations,
namely an overdefined system of multivariate binary equations of low degree. We

8 However, a too large number of state bits used in the filter function may conflict
with certain design criteria introduced in [13] to render inversion attacks infeasible.

9 In practice, obviously, it is sufficient that the degree of fg does not become too small.
For example if it is always at least 10, all the attacks described in the present paper
become impractical.
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present a method to decrease the degree of the equations, by multiplying them
by well chosen multivariate polynomials. Thus, we are able to cryptanalyse two
well known stream ciphers.

For Toyocrypt, a Cryptrec submission, our best attack requires only 249 CPU
clocks and some 20 Kbytes of keystream, for a 128-bit cipher. Compared to
the best known attack on Toyocrypt so far by Mihaljevic and Imai [18], our
new attack has simultaneously a much lower complexity, much lower memory,
and much looser requirements on the keystream. We also attacked LILI-128, a
Nessie submission, and obtained an attack in 257 CPU clocks for a 128-bit cipher,
unfortunately far from being practical (requires 257 keystream bits).

The main contribution of the present paper is the following. If the non-linear
function of a cipher with linear feed-back uses only a small subset of state bits,
the cipher will be insecure, though satisfying all the previously known design
criteria. If only k keystream bits are used out of n, it is widely known that
an attack in

(

n
k

)ω
exists, whatever is the Boolean function, see [13] or [3]. Thus

many stream ciphers, have been designed in such a way that, one has for example
(

n
k

)ω
≈ 280. In practice, since the worst-case complexity of our attack is

(

n
k/2

)ω
,

roughly the square root of the previous one, we can break these ciphers in about
240. This attack works for any Boolean function (the worst-case). The examples
of Toyocrypt and LILI-128 show that for specific ciphers, the resistance against
algebraic attacks may be substantially worse.

It has long been known that for stateless Boolean functions used in stream
ciphers one is confronted with design criteria that may conflict each other. Our
attacks impose even stronger restrictions on the choice of such functions. Ex-
trapolating from our attack, we proposed a very general security criterion for
stream ciphers: the non-existence of multivariate relations of low degree relating
the key bits and the output bits. It turns out to be basically identical to the
security criterion defined in Section 2 of [7] for multivariate trapdoor functions,
and also to the requirements advocated in [9] for S-boxes of block ciphers.

Important Note: The attacks described in the present paper work given
any subset of keystream bits. In [11] it is shown that if the keystream bits are
consecutive, the attack complexity can be substantially reduced.

Acknowledgments:Many thanks to Philip Hawkes, Josef Pieprzyk and the
anonymous referees of Eurocrypt for their helpful comments.
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