
Derandomization in Cryptography

Boaz Barak1,?, Shien Jin Ong2,??, and Salil Vadhan3,? ? ?

1 Weizmann Institute of Science, Rehovot, Israel, boaz@wisdom.weizmann.ac.il.
2 Massachusetts Institute of Technology, Cambridge, MA, shienjin@mit.edu.

3 Harvard University, Cambridge, MA, salil@eecs.harvard.edu.

Abstract. We give two applications of Nisan–Wigderson-type (“non-
cryptographic”) pseudorandom generators in cryptography. Specifically,
assuming the existence of an appropriate NW-type generator, we con-
struct:
1. A one-message witness-indistinguishable proof system for every lan-

guage in NP, based on any trapdoor permutation. This proof system
does not assume a shared random string or any setup assumption,
so it is actually an “NP proof system.”

2. A noninteractive bit commitment scheme based on any one-way func-
tion.

The specific NW-type generator we need is a hitting set generator fooling
nondeterministic circuits. It is known how to construct such a genera-
tor if E = DTIME(2O(n)) has a function of nondeterministic circuit
complexity 2Ω(n) (Miltersen and Vinodchandran, FOCS ‘99).
Our witness-indistinguishable proofs are obtained by using the NW-type
generator to derandomize the ZAPs of Dwork and Naor (FOCS ‘00).
To our knowledge, this is the first construction of an NP proof system
achieving a secrecy property.
Our commitment scheme is obtained by derandomizing the interactive
commitment scheme of Naor (J. Cryptology, 1991). Previous construc-
tions of noninteractive commitment schemes were only known under in-
comparable assumptions.

1 Introduction

The computational theory of pseudorandomness has been one of the most fertile
grounds for the interplay between cryptography and computational complexity.
This interplay began when Blum, Micali, and Yao (BMY) [1, 2], motivated by
applications in cryptography, placed the study of pseudorandom generators on
firm complexity-theoretic foundations. They gave the first satisfactory definition
of pseudorandom generators along with constructions meeting that definition.
Their notion quickly acquired a central position in cryptography, but it turned

? Supported by Clore Foundation Fellowship and Israeli Higher Education Committee
Fellowship.

?? Supported by MIT Eloranta Fellowship and MIT Reed UROP Fund.
? ? ? Supported by NSF grants CCR-0205423 and CCR-0133096, and a Sloan Research

Fellowship.

Derandomization in Cryptography 299

out that the utility of pseudorandom generators was not limited to cryptographic
applications. In particular, Yao [2] showed that they could also be used for de-
randomization— efficiently converting randomized algorithms into deterministic
algorithms. Pseudorandom generators and their generalization, pseudorandom
functions [3], also found a variety of other applications in complexity theory and
the theory of computation (e.g., [4, 5]).

Focusing on derandomization, Nisan and Wigderson (NW) [6] proposed a
weakening of the BMY definition of pseudorandom generators which still suf-
fices for derandomization. The benefit was that such NW-type pseudorandom
generators could be constructed under weaker assumptions than the BMY ones
(circuit lower bounds for exponential time, rather than the existence of one-way
functions). Thus, a long body of work developed around the task of construct-
ing increasingly efficient NW-type pseudorandom generators under progressively
weaker assumptions. One of the highlights of this line of work is the construction
of Impagliazzo and Wigderson [7] implying that P = BPP under the plausible
assumption that E = DTIME(2O(n)) has a problem of circuit complexity 2Ω(n).
More recently, the work on NW-type pseudorandom generators has also been
found to be intimately related to randomness extractors [8], and has been used
to prove complexity-theoretic results which appear unrelated to derandomiza-
tion [9].

While allowing remarkable derandomization results such as the Impagliazzo–
Wigderson result mentioned above, NW-type pseudorandom generators have not
previously found applications in cryptography (for reasons mentioned below). In
this work, we show that a stronger form of NW-type pseudorandom generators,
namely ones fooling nondeterministic circuits [10–13], do have cryptographic
applications. Using such pseudorandom generators (which can be constructed
under plausible complexity assumptions), we:

1. Construct witness-indistinguishable “NP proofs” (i.e. one-message4 proof
systems, with no shared random string or other setup assumptions) for every
language in NP, assuming the existence of trapdoor permutations.

2. Construct noninteractive bit commitment schemes from any one-way func-
tion.

Thus, each of these results requires two assumptions — the circuit complexity
assumption for the NW-type pseudorandom generator (roughly, that E has a
function of nondeterministic circuit complexity 2Ω(n)) and a “cryptographic”
assumption (one-way functions or trapdoor permutations).

Result 1 is the first construction of witness-indistinguishable NP proofs un-
der any assumption whatsoever, and refutes the intuition that interaction is
necessary to achieve secrecy in proof systems. It is obtained by derandomizing
the ZAP construction of Dwork and Naor [14].

Result 2 is not the first construction of noninteractive commitment schemes,
but is based on assumptions that appear incomparable to previous ones (which

4 We use “messages” rather than “rounds”, as the latter is sometimes used to refer to
a pair of messages.

300 B. Barak, S. Jin Ong, S. Vadhan

were based on the existence of one-to-one one-way functions). We obtain this
result by derandomizing the Naor’s interactive bit commitment scheme [15].

These two examples suggest that NW-type pseudorandom generators (and
possibly other “non-cryptographic” tools from the derandomization literature)
are actually relevant to the foundations of cryptography, and it seems likely that
other applications will be found in the future.

NW-type Generators fooling Nondeterministic Circuits. The most important
difference between BMY-type and NW-type pseudorandom generators is that
BMY-type pseudorandom generators are required to fool even circuits with
greater running time than the generator, whereas NW-type pseudorandom gen-
erators are allowed greater running time than the adversarial circuit. Typically,
a BMY-type pseudorandom generator must run in some fixed polynomial time
(say nc), and fool all polynomial-time circuits (even those running in time, say,
n2c). In contrast, an NW-type pseudorandom generator may run in time nO(c)

(e.g. n3c) in order to fool circuits running in time nc. BMY-type pseudorandom
generators are well-suited for cryptographic applications, where the generator
is typically run by the legitimate parties and the circuit corresponds to the
adversary (who is always allowed greater running time). In contrast, NW-type
pseudorandom generators seem non-cryptographic in nature. Nevertheless we
are able to use them in cryptographic applications. The key observation is that,
in the protocols we consider, (some of) the randomness is used to obtain a string
that satisfies some fixed property which does not depend on the adversary (or its
running time). Hence, if this property can be verified in polynomial time, we can
obtain the string using an NW-type pseudorandom generator of fixed polyno-
mial running time. We then eliminate the randomness entirely by enumerating
over all possible seeds. This is feasible because NW-type generators can have
logarithmic seed length. Also, we show that in our specific applications, this
enumeration does not compromise the protocol’s security.

In the protocols we consider, the properties in question do not seem to be
verifiable in polynomial time. However, they are verifiable in nondeterministic
polynomial time. So we need to use a pseudorandom generator that fools non-
deterministic circuits. Fortunately, it is possible for an NW-type pseudorandom
generator to fool nondeterministic circuits, as realized by Arvind and Köbler [10]
and Klivans and van Melkebeek [11].5 Indeed, a sequence of works have con-
structed such pseudorandom generators under progressively weaker complexity
assumptions [10–13]. Our results make use of the Miltersen–Vinodchandran con-
struction [12] (which gives only a “hitting set generator” rather than a pseudo-
random generator, but this suffices for our applications).

Witness Indistinguishable NP Proofs. In order to make zero-knowledge proofs
possible, the seminal paper of Goldwasser, Micali, and Rackoff [17] augmented

5 It is impossible for a BMY-type pseudorandom generator to fool nondeterministic
circuits, as such a circuit can recognize outputs of the pseudorandom generator
by guessing the corresponding seed and evaluating the generator to check. Some
attempts to bypass this difficulty can be found in [16].

Derandomization in Cryptography 301

the classical notion of an NP proof with two new ingredients — interaction
and randomization. Both were viewed as necessary for the existence of zero-
knowledge proofs, and indeed it was proven by Goldreich and Oren [18] that
without either, zero-knowledge proofs exist only for trivial languages (those in
BPP). The role of interaction was somewhat reduced by the introduction of
“noninteractive” zero-knowledge proofs [19, 20], but those require a shared ran-
dom string selected by a trusted third party, which can be viewed as providing a
limited form of interaction. Given the aforementioned impossibility results [18],
reducing the interaction further seems unlikely. Indeed, a truly noninteractive
proof system, in which the prover sends a single proof string to the verifier, seems
to be inherently incompatible with the intuitive notion of “zero knowledge”: from
such a proof, the verifier gains the ability to prove the same statement to others.

Despite this, we show that for a natural weakening of zero knowledge, namely
witness indistinguishability [21], the interaction can be completely removed (un-
der plausible complexity assumptions). Recall that a witness-indistinguishable
proof system for a language L ∈ NP is an interactive proof system for L that
leaks no knowledge about which witness is being used by the prover (as opposed
to leaking no knowledge at all, as in zero-knowledge proofs) [21]. Witness indis-
tinguishability suffices for a number of the applications of zero knowledge [21],
and also is a very useful intermediate step in the construction of zero-knowledge
proofs [22].

Several prior results show that witness-indistinguishable proofs do not require
the same degree of interaction as zero-knowledge proofs. Feige and Shamir [21]
constructed 3-message witness-indistinguishable proofs forNP (assuming the ex-
istence of one-way functions), whereas the existence of 3-message zero-knowledge
proofs is a long-standing open problem. More recently, the ZAPs of Dwork and
Naor [14] achieve witness indistinguishability with just 2 messages (assuming
trapdoor permutations), whereas this is known to be impossible for zero knowl-
edge [18]. Dwork and Naor also showed that the interaction could be further
reduced to one message at the price of nonuniformity (i.e. if the protocol can
use some nonuniform advice of polynomial length); they interpret this as evi-
dence that “proving a lower bound of two [messages] is unlikely.”

We construct 1-message witness-indistinguishable proofs forNP in the “plain
model”, with no use of a shared random string or nonuniformity. Our proof sys-
tem is obtained by derandomizing the Dwork–Naor ZAPs via an NW-type gen-
erator against nondeterministic circuits. Since our verifier is deterministic, we
actually obtain a standardNP proof system with the witness indistinguishability
property. More precisely, for any language L ∈ NP with associated NP-relation
R, we construct a new NP-relation R′ for L. The relation R′ has the property
that one can efficiently transform any witness with respect to R into a distribu-
tion on witnesses with respect to R′, such that the distributions corresponding
to different witnesses are computationally indistinguishable.

Converting AM proof systems to NP proof systems was actually one of the
original applications of NW-type generators versus nondeterministic circuits [10,

302 B. Barak, S. Jin Ong, S. Vadhan

11]. The novelty in our result comes from observing that this conversion preserves
the witness indistinguishability property.

The randomness requirements of zero-knowledge proofs have been examined
in previous works. Goldreich and Oren [18] showed that only languages in BPP
have zero-knowledge proofs in which either the prover or verifier is deterministic.
Thus De Santis, Di Crescenzo, and Persiano [23–25] have focused on reducing
the number of random bits. Specifically, under standard “cryptographic” as-
sumptions, they constructed noninteractive zero-knowledge proofs with a shared
random string of length O(nε+log(1/s)) and 2-message witness-indistinguishable
proofs (actually, ZAPs) in which the verifier uses only O(nε + log(1/s)) random
bits, where ε > 0 is any constant and s is the soundness error. They posed
the existence of 1-message witness-indistinguishable proofs for NP as an open
problem. One of their main observations in [25] is that combinatorial meth-
ods for randomness-efficient error reduction, such as pairwise independence and
expander walks, preserve witness indistinguishability. As mentioned above, we
make crucial use of an analogous observation about NW-type generators.

Noninteractive Bit Commitment Schemes. Bit commitment schemes are one of
the most basic primitives in cryptography, used pervasively in the construction
of zero-knowledge proofs [26] and other cryptographic protocols. Here we focus
on perfectly (or statistically) binding and computationally hiding bit commit-
ment schemes. As usual, noninteractive bit commitment schemes, in which the
commitment phase consists of a single message from the sender to the receiver,
are preferred over interactive schemes. There is a simple construction of nonin-
teractive bit commitment schemes from any one-to-one one-way function [27, 2,
28]. From general one-way functions, the only known construction of bit commit-
ment schemes, namely Naor’s protocol [15] (with the pseudorandom generator
construction of [29]), requires interaction.

We show how to use an NW-type pseudorandom generator against nonde-
terministic circuits to remove the interaction in Naor’s protocol, yielding nonin-
teractive bit commitment schemes under assumptions that appear incomparable
to the existence of one-to-one one-way functions. In particular, ours is a “raw
hardness” assumption, not requiring hard functions with any semantic structure
such as being one-to-one.

From a different perspective, our result shows that “non-cryptographic” as-
sumptions (nondeterministic circuit lower bounds for E) can reduce the gap
between one-way functions and one-to-one one-way functions. In particular, a
noninteractive bit commitment scheme gives rise to a “partially one-to-one one-
way function”: a polynomial-time computable function f(x, y) such that x is
uniquely determined by f(x, y) and x is hard to compute from f(x, y) (for ran-
dom x, y). It would be interesting to see if this can be pushed further to actually
construct one-to-one one-way functions from general one-way functions under a
non-cryptographic assumption.

Perspective. The assumption required for the NW-type generators we use is a
strong one, but it seems to be plausible (see Section 2.4). Perhaps its most sig-

Derandomization in Cryptography 303

nificant feature is that it is very different than the assumptions typically used
in cryptography (e.g. it is a worst-case assumption); nevertheless, our results
show it has implications in cryptography. In our first result, we use it to demon-
strate the plausibility of nontrivial 1-message witness-indistinguishable proofs,
which will hopefully lead to efficient constructions for specific problems based
on specific assumptions. As for our second result, the plausibility of noninter-
active commitment schemes was already established more convincingly based
on one-to-one one-way functions [27]. What we find interesting instead is that
a “non-cryptographic” assumption can imply new relationships between basic
cryptographic primitives, and in particular reduce the gap between one-way
functions and one-to-one one-way functions.

2 Preliminaries

2.1 Pseudorandom Generators

A pseudorandom generator (PRG) is a deterministic algorithm G : {0, 1}` →
{0, 1}m, with ` < m. Pseudorandom generators are used to convert a short
random string into a longer string that looks random to any efficient observer.

Definition 1 (Pseudorandom generator).We say that G : {0, 1}` → {0, 1}m

is a (s, ε)-pseudorandom generator against circuits if for all circuits C : {0, 1}m →
{0, 1} of size at most s, it holds that |Pr[C(G(U`)) = 1]− Pr[C(Um) = 1]| < ε,
where Uk denotes the uniform distribution over {0, 1}

k.

BMY-type vs. NW-type Generators. As mentioned above, there are two main
types of pseudorandom generators: Blum-Micali-Yao (BMY) [1, 2] type and Nisan-
Wigderson (NW) [6] type generator. Both can be defined for a wide range of pa-
rameters, but here we focus on the “classic” settings which we need. A BMY-type
generator is the standard kind of pseudorandom generator used in cryptography.

Definition 2 (BMY-type generators). A function G =
⋃

mGm : {0, 1}` →
{0, 1}m is a BMY-type pseudorandom generator with seed length ` = `(m), if
G is computable in time poly(`), and for every constant c, Gm is a (mc, 1/mc)-
pseudorandom generator for all sufficiently large m.

Note that a BMY-type generator is required to have running time that is
a fixed polynomial, but must fool circuits whose running time is an arbitrary
polynomial. H̊astad, Impagliazzo, Levin, and Luby [29] proved that BMY-type
pseudorandom generators with seed length `(m) = mδ (for every δ > 0) exist if
and only if one-way functions exist.

NW-type generators differ from BMY-type generators most significantly in
the fact that the generator has greater running time than the circuits it fools.

Definition 3 (NW-type generators). A function G =
⋃

mGm : {0, 1}` →
{0, 1}m is an NW-type pseudorandom generator with seed length ` = `(m), if
G is computable in time 2O(`) and Gm is a (m

2, 1/m2)-pseudorandom generator
for all m.6

6 One can replace m2 in this definition with any fixed polynomial in m.

304 B. Barak, S. Jin Ong, S. Vadhan

We will be interested “high end” NW-type generators, which have seed length
`(m) = O(logm), and thus have running time which is a fixed polynomial in
m.7 Impagliazzo and Wigderson [7] proved that such a generator exists if E =
DTIME(2O(n)) has a function of circuit complexity 2Ω(n). Note that when the
seed length is ` = O(logm), all 2` seeds can be enumerated in time poly(m), and
hence the generator can be used for complete derandomization. In particular,
such a generator implies BPP = P.

2.2 Nondeterministic Computations and the Class AM

A significant advantage of NW-type generators that we will use is that they can
fool nondeterministic circuits, because even if such a circuit can guess the seed,
it does not have enough time to evaluate the generator on it.

Definition 4. A nondeterministic Boolean circuit C(x, y) is a circuit that takes
x as its primary input and y as a witness. For each x ∈ {0, 1}∗, we define
C(x) = 1 if there exist a witness y such that C(x, y) = 1.
A co-nondeterministic Boolean circuit C(x, y) is a circuit that takes x as its

primary input and y as a witness. For each x ∈ {0, 1}∗, we define C(x) = 0 if
there exist a witness y such that C(x, y) = 0.
Denote SN(f) to be the minimal sized nondeterministic circuit computing f .

Nondeterministic and co-nondeterministic algorithms can be defined in a
similar fashion, with the nonuniform circuit C being replaced by a uniform algo-
rithm. Naturally, we measure the running time of a nondeterministic algorithm
A(x, y) in terms of the first input x.

The classAM [30] has two equivalent formulations. The first is as the class of
languages with constant-message interactive proofs (see [31] for this definition).
The second is as the class of languages decidable by polynomial-time proba-
bilistic nondeterministic algorithms. Formally, a probabilistic nondeterministic
algorithm A(x, r, y) takes a random input r in addition to its regular input x and
nondeterministic input y. We say A computes a function f if (a) when f(x) = 1,
Prr[∃yA(x, r, y) = 1] = 1 and (b) when f(x) = 0, Prr[∃yA(x, r, y) = 1] ≤ 1

2 .
Then AM is the class of languages decidable by such algorithms A(x, r, y) run-
ning in time poly(|x|). The equivalence of the two definitions of AM is due to
[30, 32, 33]. More generally, AMTIME(t(n)) denotes the class of languages de-
cidable by probabilistic nondeterministic algorithms running in time t(n), and
i.o.−AMTIME(t(n)) is the class of languages decidable by probabilistic non-
deterministic algorithms running in time t(n) for infinitely many input lengths.

2.3 Hitting Set Generators

A hitting set generator (HSG) is a deterministic algorithm H(1m, 1s) that out-
puts a set of strings of length m. We say H is efficient if its running time is
polynomial (in m and s). Hitting set generators are weaker notions of pseudo-
random generators.
7 The running time of the generator is still greater than the size of the circuits it fools.

Derandomization in Cryptography 305

Definition 5 (Hitting set generators). We say that H is an ε-hitting set
generator against circuits, if for every circuit C : {0, 1}m → {0, 1} of size at most
s, the following holds: If Pr[C(Um) = 1] > ε, then there exists y ∈ H(1m, 1s)
such that C(y) = 1.

One can define analogously hitting set generators against nondeterministic and
co-nondeterministic circuits, and also hitting set generators against nondeter-
ministic and co-nondeterministic uniform algorithms. Hitting set generators
against co-nondeterministic uniform algorithms will be used only in Section 4.

Note that a pseudorandom generator G : {0, 1}` → {0, 1}m fooling circuits
of size s gives rise to a hitting set generator, by taking the set of outputs of G
over all seeds. The hitting set generator will be efficient if G is computable in
time poly(s,m) and has logarithmic seed length ` = O(logm + log s). In this
sense hitting set generators are weaker than pseudorandom generators. Indeed,
hitting set generators can be directly used to derandomize algorithms with one-
sided error (i.e. RP algorithms), whereas pseudorandom generators can be used
to derandomize circuits with two-sided error (BPP algorithms). Also note that
we allow the hitting set generators to run in greater time than circuits it fools, so
they correspond to NW-type generators. Since the error in AM proof systems
can be made one-sided [33], the existence of an efficient 1

2 -HSG against co-
nondeterministic circuits implies that AM = NP.

The first constructions of efficient HSG (in fact pseudorandom generators)
against co-nondeterministic circuits was given by Arvind and Köbler [10]. Their
construction was based on the assumption that there are languages in E that
are hard on average for nondeterministic circuits of size 2Ω(n). Klivans and van
Melkebeek [11] gave a construction based on a worst-case hardness assumption.
Their assumption was the existence of languages in E with 2Ω(n) worst-case SAT-
oracle circuit complexity, that is circuits with SAT-oracle gates. Miltersen and
Vinodchandran [12] managed to relax the hardness condition to nondeterministic
circuits (yet only obtained a hitting set generator rather than a pseudorandom
generator). We state their main result.

Theorem 6 ([12]). 8 If there exist a function f ∈ E such that SN(f) = 2Ω(n),
then there exist an efficient 1

2 -HSG against co-nondeterministic circuits.

Shaltiel and Umans [13] subsequently extended Theorem 6 in two ways: First,
they obtained a pseudorandom generator rather than a hitting set generator. Sec-
ond, they obtained analogous results for quantitatively weaker assumption (e.g.,
when the SN(f) is only superpolynomial rather than exponential) yielding corre-
spondingly less efficient generators. However, we will not need these extensions
in our paper.

Uniform Hitting Set Generators. Gutfreund, Shaltiel and Ta-Shma [34] extended
Theorem 6 to give a hitting set generator against co-nondeterministic uniform

8 [12] presented a (1− δ)-HSG for δ = 2m
γ

/2m, but it can be converted into a 1
2
-HSG

using dispersers as done implicitly in their paper.

306 B. Barak, S. Jin Ong, S. Vadhan

algorithms from uniform hardness assumptions. They used the same hitting set
generator as Miltersen and Vinodchandran, but proceeded with a better analysis.

Theorem 7 (implicit in [34]). If E * i.o.−AMTIME(2δn) for some δ > 0,
then an efficient 1

2 -HSG against co-nondeterministic uniform algorithms exists.

Since nonuniformity can simulate randomness, the existence of a function
f ∈ E such that SN(f) = 2Ω(n) (assumption of Theorem 6) implies that E *
i.o.−AMTIME(2δn) for some δ > 0 (assumption of Theorem 7).

2.4 Discussions

Are the Assumptions Reasonable? Our two results rely on the existence of hit-
ting set generators as constructed in Theorems 6 and 7, which in turn make
assumptions about E containing functions of high nondeterministic complexity.
In our opinion, these assumptions are plausible. The two most common reasons
to believe a hardness assumption are empirical evidence and philosophical (or
structural) considerations. The widely held P 6= NP assumption is supported
by both. Empirically, much effort has been invested to finding efficient algo-
rithms for NP problems. Philosophically, it seems unlikely that proofs should
always be as easy to find as they are to verify. Other hardness assumptions,
such as the hardness of factoring, are supported mainly by empirical evidence.
Some, like E * NP (equivalently, EXP 6= NP), are supported mainly by philo-
sophical considerations: it seems unlikely that it should always be possible to
prove the correctness of exponentially long computations with polynomial-sized
proofs. The assumptions of Theorems 6 and 7 are natural strengthenings of this
assumption, where we extend NP both by letting the running time grow from
polynomial to subexponential and by allowing nonuniformity or randomization.

How do we find the function f? Once we accept the existence of some function
f ∈ E such that SN(f) = 2Ω(n), can we find a specific function f satisfying that
condition? The answer is yes. It is not hard to show that if there exists a function
f satisfying the condition of Theorem 6, then every function that is E-complete
via linear-time reductions also satisfies that condition. In particular, we can take
the bounded halting function BH(·) defined as follows: BH(M,x, t) = 1 if the
Turing machine M outputs 1 on input x after at most t steps (where t is given
in binary), and BH(M,x, t) = 0 otherwise.

3 Witness Indistinguishable NP Proofs

In this section we use efficient hitting set generators against co-nondeterministic
circuits to derandomize the ZAP construction of Dwork and Naor [14] and obtain
a noninteractive witness indistinguishable (WI) proof system for any language in
NP. We call this an “NP proof system” because it consists of a single message
from the prover to the verifier, as is the case in the trivial NP proof of simply
sending the witness to the verifier.

Derandomization in Cryptography 307

As in the trivialNP proof system, our verifier algorithm will be deterministic.
However, our prover algorithm will be probabilistic. We stress that our proof
system is in the plain model, without assumptions of a shared random string or
nonuniformity. As far as we know, this is the first noninteractive proof system
for NP in the plain model that satisfies a secrecy property.

3.1 Definitions

Witness Relation. Let W ⊆ {0, 1}∗ × {0, 1}∗ be a relation. We define W (x) =
{w | (x,w) ∈ W}. We define L(W) = {x | ∃w s.t. (x,w) ∈ W}. If w ∈ W (x)
then we say that w is a witness for x. Recall that the class NP is the class of
languages L such that L = L(W) for a relation W that is decidable in time
polynomial in the first input. If L = L(W) is an NP language then we say that
W is a witness relation corresponding to L.

Efficient Provers. Recall the definitions of interactive proofs. Let L be an NP
language with witness relation W . We say that an interactive proof for L has
an efficient prover if the prover strategy from the completeness condition can
be implemented by an efficient algorithm that when proving that x ∈ L, gets
w ∈ W (x) as an auxiliary input. In this paper we will only be interested in
interactive proofs for NP that have efficient provers.

NP Proof Systems. An NP proof system is an interactive proof system that is
degenerate, in the sense that it consists of only a single message from the prover
to the verifier, and that it has a deterministic verifier, and satisfies both perfect
completeness and perfect soundness. Because the verifier is deterministic, an
NP proof system for a language L induces a witness relation W corresponding
to L by setting W (x) to contain all the prover messages accepted by the verifier.

Witness Indistinguishability. We recall the notion of witness indistinguishability
(WI), as defined by Feige and Shamir [21].

Definition 8 (witness indistinguishability, [21]). Let L be an NP language
with witness relation WL. Let (P, V) be a proof system for L where P is an
efficient (probabilistic polynomial-time) prover that gets a witness as auxiliary
input.

We say that (P, V) is witness indistinguishable (WI) if for every nonuniform
polynomial-time verifier V ∗ and every x ∈ L, and for any w,w′ ∈ WL(x), the
view of V ∗ when interacting with P (x,w) is computationally indistinguishable
from its view when interacting with P (x,w′).

Feige and Shamir also proved that WI is closed under concurrent composi-
tion [21].

ZAPs. A ZAP [14] is a two-round public-coin interactive proof system that is
witness indistinguishable. Dwork and Naor proved the following theorem.

308 B. Barak, S. Jin Ong, S. Vadhan

Theorem 9 ([14]). If trapdoor permutations9 exist, then every language in NP
has a ZAP.

We note that the construction of ZAPs by [14] is actually based on the
possibly weaker assumption that NIZK (noninteractive zero-knowledge in the
shared random string model) systems exist for every language in NP. Thus, our
construction can also be based on this possibly weaker assumption.

3.2 Our Result

The main theorem of this section follows.

Theorem 10. Assume that there exists an efficient 1
2 -HSG against co-nondeter-

ministic circuits and that trapdoor permutations exist. Then every language in
NP has a witness-indistinguishable NP proof system.

3.3 Proof of Theorem 10

We prove Theorem 10 by converting the ZAPs for languages in NP into WI NP
proofs. Let L be anNP language with witness relationWL, and let (P, V) be the
ZAP for L. We denote the first message in a ZAP (the verifier’s random coins
sent to the prover) by r and denote the second message (sent by the prover to
the verifier) by π. We let `(n) denote the length of the verifier’s first message in
a proof for statements of length n. Let x ∈ {0, 1}n \L. We say that r ∈ {0, 1}`(n)

is sound with respect to x if there does not exist a prover message π such that
the transcript (x, r, π) is accepting. The statistical soundness of the ZAP scheme
implies that for every x ∈ {0, 1}n\L, the probability that r ← {0, 1}`(n) is sound
with respect to x is very high, and in particular it is larger than 1

2 .
Our construction is based on the following observation. Let q(n) be a polyno-

mial that bounds the running time of the honest ZAP verifier in a proof of state-
ments of length n. For every x ∈ {0, 1}n \ L, there exists a co-nondeterministic
circuit Cx of size less than p(n) < q(n)2 that outputs 1 if and only if a string r
is sound with respect to x. We stress that the time to verify the soundness of a
string r only depends on the running time of the honest verifier (in our case it
is p(n)).

On input r, the circuit Cx will output 1 if there does not exist a prover
message π such that the transcript (x, r, π) is accepting, and 0 otherwise. Note
that Pr[Cx(U`(n)) = 1] > 1

2 . Since H is a 1
2 -HSG against co-nondeterministic

circuits, we have that for every x ∈ {0, 1}n \ L, there exists r ∈ H(1`(n), 1p(n))
such that Cx(r) = 1. In other words, for every x ∈ {0, 1}n \ L, there exists a
string r ∈ H(1`(n), 1p(n)) such that r is sound with respect to x.

Our construction is as follows.

9 We refer the reader to [31][Sec. 2.4.4] for the definition of trapdoor permutations.
Actually, the definition we use is what is called by Goldreich an enhanced trapdoor
permutation collection. See discussion on [35]. Such a collection is known to exist
based on either the RSA or factoring hardness assumptions [36, 37].

Derandomization in Cryptography 309

Protocol 11 (One-message WI NP proof for L ∈ NP) On common input
x ∈ {0, 1}n and auxiliary input w for the prover, such that (x,w) ∈ WL, do the
following.

Prover’s message

1. Compute (r1, . . . , rm)
def
= H(1`(n), 1p(n)).

2. Using the auxiliary input (witness) w and the ZAP prover algorithm,
compute for every i ∈ [1,m], a string πi that is the prover’s response to
the verifier’s message ri in a ZAP proof for x.

3. Send to verifier (π1, . . . , πm).

Verifier’s Test

1. Compute (r1, . . . , rm)
def
= H(1`(n), 1p(n)).

2. Given prover’s message (π1, . . . , πm), run the ZAP verifier on the tran-
script (x, ri, πi), for every i ∈ [1,m].

3. Accept if the ZAP verifier accepts all these transcripts.

Note that Protocol 11 is indeed a one-message system with a deterministic
verifier, that satisfies the perfect completeness property. Thus, to prove Theo-
rem 10, we need to prove that it satisfies both the perfect soundness and the
witness indistinguishability property.

Lemma 12. Protocol 11 is a perfectly sound proof system for L.

Proof. Let x /∈ L, with |x| = n. Since H is a HSG, there exists an ri ∈
H(1`(n), 1p(n)) that is sound with respect to x. This means that no prover’s
message πi will make the ZAP verifier accept the transcript (x, ri, πi). There-
fore, no string π = (π1, . . . , πm) will make the verifier of Protocol 11 accept. ¤

Lemma 13. Protocol 11 is a witness indistinguishable (WI) proof system for L.

Proof. This follows from the fact that witness indistinguishability is preserved
under parallel composition. ¤

4 Noninteractive Bit Commitment

Bit commitment schemes are basic primitives in cryptography. Informally, a
bit commitment scheme is a protocol that consists of two interacting parties,
the sender and the receiver. The first step of the protocol involves the sender
giving the receiver a commitment to a secret bit b. In the next step, the sender
decommits the bit b by revealing a secret key. The commitment alone (without
the secret key) must not reveal any information about b. This is called the
hiding property. In addition, we require that the commitment to b be binding,
that is the sender should not be able to decommit to a different bit b̄. Note that
given a bit-commitment scheme, a string-commitment scheme can be obtained
by independently committing to the individual bits of the string (cf., [31]).

In an interactive bit commitment scheme, the sender and the receiver are
allowed to interact during the commitment and decommitment steps. The formal

310 B. Barak, S. Jin Ong, S. Vadhan

definition of an interactive bit commitment scheme can be found in [31]. Often,
however, noninteractive bit commitment schemes are preferred or even crucial.
For these, a simpler definition can be given.

Definition 14 (noninteractive bit commitment). A noninteractive bit com-
mitment scheme is a polynomial-time algorithm S which takes a bit b ∈ {0, 1}
and a random key K ∈ {0, 1}poly(k), where k is the security parameter, and out-
puts a commitment C = S(b;K). The algorithm S must satisfy the following two
conditions:

1. (Binding) There do not exist keys K,K ′ such that S(0;K) = S(1;K ′).
2. (Hiding) The commitments to 0 and 1 are computationally indistinguish-
able. This means that the probability distributions {S(0;K)}K∈{0,1}poly(k) and
{S(1;K)}K∈{0,1}poly(k) are computationally indistinguishable.

There is a well known construction by Blum [27] of a noninteractive bit com-
mitment scheme based on any one-to-one one-way function (using the function’s
hard-core predicate [2, 28]). Naor [15] gave a construction of an interactive bit
commitment scheme based on any one-way function (using pseudorandom gen-
erators [29]).

4.1 Our Result

The main result of this section is the following theorem.

Theorem 15. Assume that there exists an efficient 1
2 -HSG against co-nondeter-

ministic uniform algorithms and that one-way functions exist. Then there exists
a noninteractive bit commitment scheme.

The first condition is true if E * i.o.−AMTIME(2Ω(n)) (by Theorem 7). We
stress that the assumption of efficient 1

2 -HSG against co-nondeterministic uni-
form algorithms is sufficient, even if one wants to obtain a commitment scheme
that is secure against nonuniform polynomial-sized circuits. However, to get
such schemes it will be necessary to assume that the one-way function is secure
against nonuniform polynomial-sized circuits.

Our result is incomparable to the previous results on bit commitment schemes.
Our assumption is stronger than Naor’s [15] (which only requires one-way func-
tions), but we obtain a noninteractive commitment rather than an interactive
one. Our assumption seems incomparable to assuming the existence of one-to-one
one-way functions.

“Raw” Hardness vs. Hardness with Structure. Note that unlike the assumption
of existence of one-to-one one-way functions, we do not assume in Theorem 15
that there exist a hard function with a particular structure. Rather, we only
assume that there exists functions with “raw hardness” (i.e., a one-way function
and a function in E with high AM-complexity).

Even if one is told that one-to-one one-way functions exist, it is necessary to
know a particular one-to-one one-way function to instantiate Blum’s noninter-
active commitment scheme. In contrast, we can construct a single noninteractive

Derandomization in Cryptography 311

commitment scheme that is secure as long as there exists a one-way-function and
a function f ∈ E \ i.o.−AMTIME(2δn). This is because we can instantiate our
scheme with a universal one-way-function10 and a function that is E-complete via
linear-time reductions such as the function BH(·) (see discussion in Section 2.4).

4.2 Proof of Theorem 15

Our construction is based on derandomizing Naor’s [15] interactive bit commit-
ment scheme using a hitting set generator.

LetG : {0, 1}k → {0, 1}3k be BMY-type pseudorandom generator computable
in time kd for some constant d. Such a generator can be constructed based on any
one-way function [29]. Naor [15] gave the following protocol for an interactive
bit commitment scheme, based on the existence of such a generator.

Protocol 16 (interactive bit commitment scheme [15])
Input to receiver R: 1k, where k is the security parameter.
Input to sender S: 1k and a bit b ∈ {0, 1}.

Commitment stage:

Receiver’s step Select a random r ← {0, 1}3k and sends r to S.
Sender’s step Select a random s← {0, 1}k. If b = 0, send α = G(s) to R.
Else, if b = 1, send α = G(s)⊕ r to R.

Decommitment stage: S reveals s and b. R accepts if b = 0 and α = G(s),
or b = 1 and α = G(s)⊕ r.

Observe that when the sender commits to 0, the sender’s message α is dis-
tributed according to G(Uk). When the sender commits to 1, α is distributed
according to G(Uk) ⊕ r. For every r ∈ {0, 1}3k, the distributions G(Uk) and
G(Uk)⊕ r are computationally indistinguishable. This implies that Protocol 16
is hiding. Define a string r ∈ {0, 1}3k to be good for G if for all s, s′ ∈ {0, 1}k, we
have G(s) 6= G(s′)⊕r. Naor [15] showed that the probability that a random r in
{0, 1}k will be good is very high (e.g., at least 1− 2−k). If the receiver selected
a good r in the first step of the commitment stage of Protocol 16, then there do
not exist s, s′ ∈ {0, 1}k such that G(s) = G(s′) ⊕ r, so no commitment α can
be opened as both a 0 and 1. Since the probability of selecting a good r is high,
Protocol 16 is binding.

Our Noninteractive Bit Commitment Scheme. Observe that the only
interaction involved in Protocol 16 is in the receiver sending a random r ∈
{0, 1}3k to the sender. However, one can see that the receiver does not have to
send a random string, and it is enough to send a good string. This is because
a good string r will make the distributions G(Uk) and G(Uk) ⊕ r disjoint. As

10 A construction of such a function appears in [38] (cf., [31][Sec. 2.4.1]). It uses
the observation that if there exists a one-way-function, then there exists a one-way
function that is computable in time n2.

312 B. Barak, S. Jin Ong, S. Vadhan

we show in the proof of Lemma 18, testing whether r is good can be done by
a polynomial-time co-nondeterministic uniform algorithm. Since the fraction of
good r’s is large, an efficient HSG against co-nondeterministic algorithms H can
be used to select a candidate list of r’s such that at least one element r ∈ H
is good. Thus, our protocol will be obtained by running the sender of Naor’s
protocol on each r in the hitting set. The resulting protocol follows.

Protocol 17 (noninteractive bit commitment scheme)
Input to receiver R: 1k, where k is the security parameter.
Input to sender S: 1k and a bit b ∈ {0, 1}.

Commitment stage:

1. Compute r1, . . . , rp(k)
def
= H(13k, 13kd).

2. Choose s1, . . . , sp(k) at random from {0, 1}
k.

3. If b = 0, send α = 〈G(s1), . . . , G(sp(k))〉.
If b = 1, send α = 〈G(s1)⊕ r1, . . . , G(sp(k))⊕ rp(k)〉.

Decommitment stage: S reveals b and 〈s1, . . . , sp(k)〉. R accepts if either of
the following holds:

1. The bit b = 0 and α = 〈G(s1), . . . , G(sp(k))〉.
or

2. The bit b = 1 and α = 〈G(s1)⊕ r1, . . . , G(sp(k))⊕ rp(k)〉.

To show that Protocol 17 constitutes a bit commitment scheme (and hence
proving Theorem 15), we first observe that the protocol has the hiding property.

This means that the distributions 〈G(U 1
k), G(U2

k), . . . , G(U
p(k)
k)〉 and 〈G(U1

k) ⊕

r1, G(U2
k)⊕r2, . . . , G(U

p(k)
k)⊕rp(k)〉 are computationally indistinguishable. This

fact can be proved using a standard hybrid argument. The next lemma estab-
lishes the binding property.

Lemma 18. Protocol 17 has the binding property.

Proof. Define the co-nondeterministic algorithm A such that A(r) = 1 if ∀s, s′

G(s) ⊕ G(s′) 6= r. Note that A(r) = 1 if and only if r is good. Therefore
Pr[A(U3k) = 1] ≥ 1 − 2−k > 1/2. In addition, the running time of A (on

inputs of length k) is bounded by 3kd. Hence, there exists an ri ∈ H(13k, 13kd)
such that ∀s, s′ G(s)⊕G(s′) 6= ri. Therefore, there do not exist s1, . . . , sp(k) and
s′1, . . . , s

′
p(k) such that 〈G(s1), . . . , G(sp(k))〉 = 〈G(s′1)⊕r1, . . . , G(s′p(k))⊕rp(k)〉.In

other words, no commitment α can be opened as both a 0 and 1. Thus, Proto-
col 17 is perfectly binding. ¤

4.3 Partially One-to-one One-way Functions

Another interpretation of our result is as closing the gap between one-to-one
and general one-way functions under a non-cryptographic assumption. We say
that a function f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ is a partially one-to-one one-way
function if the value of x is uniquely determined from f(x, y), yet no probabilistic

Derandomization in Cryptography 313

polynomial-time algorithm can recover x from f(x, y) (for random x, y
R
←{0, 1}k)

except with negligible probability (in k). It can be shown that partially one-to-
one one-way functions exist if and only if noninteractive commitment schemes
exist. Thus, a restatement of Theorem 15 is the following.

Corollary 19. Assume that there exists an efficient 1
2 -HSG against co-nondeter-

ministic uniform algorithms. Then one-way functions imply partially one-to-one
one-way functions.

An intriguing question is whether it can be shown that under a similar non-
cryptographic assumption, one-way functions imply truly one-to-one one-way
functions (rather than just partially one-to-one ones).

Acknowledgments. We thank the anonymous CRYPTO reviewers for helpful
comments.

References

1. Blum, M., Micali, S.: How to generate cryptographically strong sequences of
pseudo-random bits. SIAM J. Comput. 13 (1984) 850–864

2. Yao, A.C.: Theory and applications of trapdoor functions. In: Proc. 23rd FOCS,
IEEE (1982) 80–91

3. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions.
JACM 33 (1986) 792–807

4. Razborov, A.A., Rudich, S.: Natural proofs. JCSS 55 (1997) 24–35

5. Valiant, L.G.: A theory of the learnable. Commun. ACM 27 (1984) 1134–1142

6. Nisan, N., Wigderson, A.: Hardness vs. randomness. JCSS 49 (1994) 149–167

7. Impagliazzo, R., Wigderson, A.: P = BPP if E requires exponential circuits:
Derandomizing the XOR lemma. In: Proc. 29th STOC, ACM (1997) 220–229

8. Trevisan, L.: Extractors and pseudorandom generators. JACM 48 (2001) 860–879

9. Impagliazzo, R., Kabanets, V., Wigderson, A.: In search of an easy witness: Ex-
ponential time vs. probabilistic polynomial time. In: Proc. 16th Conf. on Comp.
Complexity, IEEE (2001) 2–12

10. Arvind, V., Köbler, J.: On pseudorandomness and resource-bounded measure.
Theoret. Comput. Sci. 255 (2001) 205–221

11. Klivans, A.R., van Melkebeek, D.: Graph nonisomorphism has subexponential size
proofs unless the polynomial-time hierarchy collapses. SIAM J. Comput. 31 (2002)
1501–1526

12. Miltersen, P.B., Vinodchandran, N.V.: Derandomizing Arthur-Merlin games using
hitting sets. In: Proc. 40th FOCS, IEEE (1999) 71–80

13. Shaltiel, R., Umans, C.: Simple extractors for all min-entropies and a new pseudo-
random generator. In: Proc. 42nd FOCS, IEEE (2001) 648–657

14. Dwork, C., Naor, M.: Zaps and their applications. In: Proc. 41st FOCS. (2000)
283–293

15. Naor, M.: Bit commitment using pseudorandomness. J. Cryptology 4 (1991) 151–
158

16. Rudich, S.: Super-bits, demi-bits, and NP̃/qpoly-natural proofs. In: Proc. 1st
RANDOM, Springer (1997) 85–93

314 B. Barak, S. Jin Ong, S. Vadhan

17. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18 (1989) 186–208

18. Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof sys-
tems. J. Cryptology 7 (1994) 1–32

19. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations (extended abstract). In: Proc. 20th STOC, ACM (1988) 103–112

20. Blum, M., De Santis, A., Micali, S., Persiano, G.: Noninteractive zero-knowledge.
SIAM J. Comput. 20 (1991) 1084–1118

21. Feige, U., Shamir, A.: Zero knowledge proofs of knowledge in two rounds. In: Proc.
9th CRYPTO, Springer (1989) 526–545

22. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs
under general assumptions. SIAM J. Comput. 29 (1999) 1–28

23. De Santis, A., Di Crescenzo, G., Persiano, G.: Randomness-efficient non-interactive
zero-knowledge (extended abstract). In: Proc. 24th ICALP, Springer (1997) 716–
726

24. De Santis, A., Di Crescenzo, G., Persiano, G.: Non-interactive zero-knowledge: A
low-randomness characterization of NP . In: Proc. 26th ICALP, Springer (1999)
271–280

25. De Santis, A., Di Crescenzo, G., Persiano, G.: Randomness-optimal characteriza-
tion of two NP proof systems. In: Proc. 6th RANDOM, Springer (2002) 179–193

26. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
or all languages in NP have zero-knowledge proof systems. JACM 38 (1991) 691–
729

27. Blum, M.: Coin flipping by phone. In: 24th IEEE Computer Conference (Comp-
Con). (1982) 133–137

28. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In:
Proc. 21st STOC, ACM (1989) 25–32

29. Hastad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28 (1999) 1364–1396

30. Babai, L., Moran, S.: Arthur-Merlin games: A randomized proof system and a
hierarchy of complexity classes. JCSS 36 (1988) 254–276

31. Goldreich, O.: Foundations of cryptography. Cambridge University Press, Cam-
bridge (2001)

32. Goldwasser, S., Sipser, M.: Private coins versus public coins in interactive proof
systems. Advances in Computing Research 5 (1989) 73–90

33. Furer, Goldreich, Mansour, Sipser, Zachos: On completeness and soundness in
interactive proof systems. Advances in Computing Research 5 (1989) 429–442

34. Gutreund, D., Shaltiel, R., Ta-Shma, A.: Uniform hardness vs. randomness trade-
offs for Arthur-Merlin games. In: Proc. 18th Conf. on Comp. Complexity, IEEE
(2003)

35. Goldreich, O.: Foundations of cryptography : Corrections and additions for vol-
ume 1. Available from http://www.wisdom.weizmann.ac.il/~oded/foc-vol1.

html#err (2001)
36. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures

and public key cryptosystems. Commun. ACM 21 (1978) 120–126
37. Rabin, M.: Digitalized signatures and public-key functions as intractable as factor-

ization. Technical Report MIT/LCS/TR-212, Laboratory for Computer Science,
Massachusetts Institute of Technology (1979)

38. Levin, L.: One-way functions and pseudorandom generators. Combinatorica 7

(1987) 357–363

