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Abstract. Recently, algebraic attacks were proposed to attack several
cryptosystems, e.g. AES, LILI-128 and Toyocrypt. This paper extends
the use of algebraic attacks to combiners with memory. A (k, l)-combiner
consists of k parallel linear feedback shift registers (LFSRs), and the
nonlinear filtering is done via a finite automaton with k input bits and
l memory bits. It is shown that for (k, l)-combiners, nontrivial canceling
relations of degree at most dk(l+1)/2e exist. This makes algebraic attacks
possible. Also, a general method is presented to check for such relations
with an even lower degree. This allows to show the invulnerability of
certain (k, l)-combiners against this kind of algebraic attacks. On the
other hand, this can also be used as a tool to find improved algebraic
attacks.
Inspired by this method, the E0 keystream generator from the Bluetooth
standard is analyzed. As it turns out, a secret key can be recovered by
solving a system of linear equations with 223.07 unknowns. To our know-
ledge, this is the best published attack on the E0 keystream generator
yet.

1 Introduction

Stream ciphers are designed for online encryption of secret plaintext bitstreams
E = (e1, e2, · · ·) which have to pass an insecure channel. Depending on a given
secret information x∗ ∈ {0, 1}n, the stream cipher produces a keystream Z(x∗) =
(z1, z2, · · ·) which is bitwise XORed with E. Knowing x

∗, the decryption can be
performed by using the same rule. It is common to evaluate the security of a
stream cipher relative to the pessimistic scenario that an attacker has access
not only to the encrypted bitstream, but even to a sufficiently long piece of
keystream. Thus, the cryptanalysis problem of a given stream cipher consists in
computing the secret information x∗ from a sufficiently long prefix of Z(x∗).
We call a stream cipher LFSR-based, if it consists of a certain number k of

linear feedback shift registers (LFSRs) and an additional device, called the non-
linear combiner, which transforms the internal linear bitstream, produced by the
LFSRs, into a nonlinear output keystream. Because of the simplicity of LFSRs
and the excellent statistical properties of bitstreams produced by well-chosen
LFSRs, LFSR-based stream ciphers are widely used in practice. A lot of dif-
ferent nontrivial approaches to the cryptanalysis of LFSR-based stream ciphers
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Fig. 1. A (k, l)-combiner

(fast correlation attacks, backtracking attacks, time-space tradeoffs, BDD-based
attacks etc.) were discussed in the relevant literature, and a lot of corresponding
design criterions (correlation immunity, large period and linear complexity, good
local statistics etc.) for such stream ciphers were developed (see, e.g., Rueppel
(1991)).

A (k, l)-combiner consists of k LFSRs and a finite Mealy automaton with k
input bits, one output bit and l memory bits. Let n be the sum of the lengths of
the k LFSRs. Starting from a secret initial assignment x∗ ∈ {0, 1}n, the LFSRs
produce an internal linear bitstream L(x∗), built by blocks xt of k parallel bits
for each clock t. Starting from a secret initial assignment c1 ∈ {0, 1}l to the
memory bits, in each clock t the automaton produces the t-th keystream bit zt
corresponding to xt and ct and changes the inner state to ct+1 (see figure 1). The
secret information is given by x∗ and c1. Numerous ciphers of this type are used
in practice. Note, e.g., that the E0 keystream generator used in the Bluetooth
wireless LAN system (see Bluetooth SIG (2001)) is a (4, 4)-combiner.

The aim of this paper is to analyze the security of (k, l)-combiners with re-
spect to algebraic attacks, a new method for attacking stream and block ciphers.
Algebraic attacks exist against AES and Serpent (Courtois and Pieprzyk (2002))
and Toyocrypt (Courtois (2002)). Related algebraic attacks were used to attack
the HFE public key cryptosystem (Courtois (2001), cf. also Kipnis and Shamir
(1999)).

Courtois and Meier (2003) discussed algebraic attacks on general LFSR-based
stream ciphers and presented the best known attacks on Toyocrypt and LILI-128
so far. Very recently, Courtois introduced fast algebraic attacks on LFSR-based
stream ciphers, an improved version of the algebraic attacks (Courtois (2003)).

An algebraic attack is based on a nontrivial low degree relation p for r clocks,
i.e. a relation which holds for any sequence of r consecutive bits of the keystream
and the corresponding kr internal bits. Given such a relation p of small degree d
and a sufficiently long piece of a keystream Z(x∗, c1), p can be used to produce
an overdefined system of T nonlinear equations in the initial bits of the LFSRs,
which can be thought of as system of linear equations in the monomials of length
at most d. If T is large enough then we get a unique solution which is induced
by x∗, and from which x∗ can be derived in a straightforward way.
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Obviously, a higher value of d increases the running time significantly. Con-
sequently, the nonexistence of nontrivial low degree relations is an important
design criterion for (k, l)-combiners. One contribution of this paper is to provide
an algorithm FindRelation which computes for a given (k, l)-combiner, repre-
sented by its automaton, and given d and r the set of all nontrivial degree d
relation for r clocks (Section 3). One consequence is that nontrivial relations of
degree dk(l + 1)/2e relations for l + 1 clocks (Theorem 1) cannot be avoided.
Note that the running time is only polynomial in n if k and l are supposed
to be constant. Hence, for each (k, l)-combiner exists a value n′, such that the
algebraic attack is more efficient than exhaustive search if n ≥ n′.
E.g., this general bound implies a nontrivial degree 10 relation for 5 clocks

for the E0 generator, which yields, for n = 128, an algebraic attack of running
time 2141, which is much worse than exhaustive key-search. The algebraic attack
would be better than exhaustive search if n ≥ 142. Surprisingly, a nontrivial
degree-4 relation for 4 clocks (Section 4) exists. This implies an algebraic attack
of running time around 267.58 and represents a serious weakness of this stream
cipher. On the other hand, by using our method we can prove the nonexistence
of nontrivial relations of degree smaller than 4, at least for 4 and 5 clocks. In the
following section 2, we give basic definitions on boolean functions, LFSRs, and
some notions around algebraic attacks.

2 Basics

2.1 Boolean Functions and GF (2)-polynomials

In the following, we consider for all k ≥ 1 the set Bk of k-ary boolean functions
f : {0, 1}k −→ {0, 1} as a 2k-dimensional vector space over the field GF (2). It
is a well known fact that each f ∈ Bk has a unique representation as GF (2)-
polynomial

p(x1, · · · , xk) =
⊕

α∈{0,1}k

aαmα, (1)

where for all α ∈ {0, 1}k the monomial mα is defined as mα = Πi,αi=1xi, and
aα ∈ GF (2). Let us denote |α| = |{i, αi = 1}| for all α ∈ {0, 1}

k. The degree
deg(p) of the polynomial p is defined as max{|α|, aα = 1}. For all f ∈ Bk we
denote by deg(f) the degree of the unique GF (2)-polynomial for f . Given a
set B ⊆ Bk we denote by H(B) the set of all linear combinations of functions
from B. Note that the set of all k-ary boolean functions of degree at most d
equals H(M(k, d)), where M(k, d) = {mα, α ∈ {0, 1}

k, |α| ≤ d}. The crucial
computational problem here is FindNullspace(B,X), where B ⊆ Bk and X ⊆
{0, 1}k for some k ≥ 1, which consists in the computation of all h ∈ H(B) for
which h(x) = 0 for all x ∈ X. Clearly, all h ∈ H(B) can be represented as
h =

∑

b∈B a(h)bb, and the set of all coefficient vectors a(h) ∈ GF (2)B solving
FindNullspace(B,X) equals the set of solutions of the system

∑

b∈B

a(h)bb(x) = 0, for all x ∈ X, (2)
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of GF (2)-linear equations.

As usual, we call a boolean function f ∈ Bk to be an implicant of another
boolean function g ∈ Bk if f(x) = 1 implies g(x) = 1 for all inputs x ∈ {0, 1}

k.

2.2 LFSRs and (k, l)-combiners

Let k > 0 and l ≥ 0 be integers. A (k, l)-combiner C = (Z,C) consists of k
linear feedback shift registers (LFSRs) L1, · · · , Lk and a finite Mealy automaton
which is defined by an output function Z : {0, 1}k × {0, 1}l −→ {0, 1} and a
feedback function C : {0, 1}k×{0, 1}l −→ {0, 1}l. In this paper, we assume that
the following reasonable condition holds: For each c ∈ {0, 1}l exist x, x′ ∈ {0, 1}k

with Z(x, c) = 0 and Z(x′, c) = 1. Notice that all known (k, l)-combiners used
in cryptosystems are of this kind.

For each i, 1 ≤ i ≤ k, LFSR Li is defined by its length n(i) and a generator
polynomial Li = (Li,1, · · · , Li,n(i)) ∈ GF (2)

n(i). Let n = n(1) + · · · + n(k). It is
common to suppose that the generator polynomials of the LFSRs are public.

Given an initial assignment x∗i = (x
∗
i,1, · · · , x

∗
i,n(i)) ∈ {0, 1}

n(i) to each LFSR

Li, 1 ≤ i ≤ k, the LFSRs compute at each clock t a block xt = (xt1, · · · , x
t
k) of

internal bits, where for each i, 1 ≤ i ≤ k, it holds xti = x∗t,i if t ≤ n(i), and

xti = Li,1x
t−1
i ⊕ Li,2x

t−2
i ⊕ · · · ⊕ Li,n(i)x

t−n(i)
i (3)

if t > n(i). The bitstream L(x∗) = (x1, x2, · · ·) is called the internal linear
bitstream generated on the initial assignment x∗ = (x∗1, · · · , x

∗
k). Note that for

all t ≥ 0, the GF (2)-linear mapping Lt : GF (2)n −→ GF (2)n which assigns
to x∗ the t-th block xt of the corresponding linear bitstream can be efficiently
computed from the generator polynomials.

Given such an internal bitstream x = (x1, x2, · · ·) and an initial assign-
ment c1 ∈ {0, 1}l to the memory bits, the corresponding output bitstream
(Z,C)(x, c1) = (z1, z2, · · ·) is defined according to

zt = Z(xt, ct) and ct+1 = C(xt, ct), (4)

for all t ≥ 1. For all r ≥ 1 let us denote by (Z,C)r(x1, · · · , xr, c1) the first r
output bits of the keystream generated according to x and c1.

Given the combiner C = (Z,C), the cryptanalysis problem consists in dis-
covering the secret initial assignment x∗ ∈ {0, 1}n to the LFSRs and the secret
initial assignment c1 ∈ {0, 1}l to the memory bits from a sufficiently long prefix
of the output keystream (Z,C)(L(x∗), c1). Our results are motivated by an ap-
proach due to Courtois and Pieprzyk (2002) to this problem, which consists in
performing a so-called algebraic attack, and which is based on finding nontrivial
low-degree relations which hold for any sequence of r consecutive output bits
and the corresponding kr bits of the internal bitstream, for some r ≥ 1. Let us
now give an outline of this kind of attack.
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2.3 Nontrivial Relations and Algebraic Attacks

We use the same denotations as in the previous subsection.

Definition 1. Let r ≥ 1 and z ∈ {0, 1}r. A non-zero GF (2)-polynomial p in
kr variables is called a z-relation for C if p(x) = 0 holds for all sequences x =
(x1, x2, · · · , xr) ∈

(

{0, 1}k
)r

of r consecutive blocks of the internal bitstream
which have the property that (Z,C)r(x, c) = z for some initial assignments c ∈
{0, 1}l to the memory bits.

Let us suppose that C has a z-relation p of degree d for some r ≥ 1. Fix
arbitrary assignments x∗ ∈ {0, 1}n to the LFSRs and c1 ∈ {0, 1}l to the memory
bits. Suppose that we have a sufficiently long prefix of the corresponding output
bitstream z∗ = (Z,C)(L(x∗), c1) and denote by T (z) the set of all clocks t, for
which (z∗t , · · · , z

∗
t+(r−1)) = z. By the definitions, it holds for all t ∈ T (z) that

Pt(x
∗) := p(Lt(x∗), · · · , Lt+(r−1)(x∗)) = 0. (5)

Pt is a GF (2)-polynomial of degree d in n variables which can be efficiently
computed. Consequently, the system

Pt(x1, · · · , xn) = 0, t ∈ T (z) (6)

of nonlinear equations can be considered as a system of linear equations in
the unknowns {mα(x), α ∈ {0, 1}n, |α| ≤ d}. If |T (z)| is large enough then
this system of linear equations has the unique solution {mα(x

∗), |α| ≤ d}, from
which the secret x∗ can be easily derived. Obvously, |T (z)| has to be at least
M(n, p). Here, M(n, p) denotes the set of all monomials in x1, · · · , xn which can
occur in a GF (2)-polynomial contained as equation in the system (6). Observe

that Φ(n, p) :=
∑d

i=0

(

n
i

)

is a trivial upper bound for |M(n, p)|. Note that the
minimum number of keystream bits which has to be available can be reduced
if we know several degree-d z-relations for different strings z. In any case, it
follows that the existence of low-degree z-relations implies a serious weakness
of (k, l)-combiners. These attacks are called algebraic attacks. In Courtois and
Meier (2003), the authors discuss algebraic attacks against combiners without
memory. In this paper, we extend these attacks to combiners with memory.

3 On Constructing Nontrivial Relations

In this section, we show that for any (k, l)-combiner C, r ≥ k(l + 1), and
d ≥ dk(l + 1)/2e, the existence of z-relations of degree d for some z ∈ {0, 1}r

cannot be avoided. Moreover, we present an algorithm which allows to construct
all z-relations of degree at most d for any given r, d. Note that this solves an
open problem stated, e.g., by Courtois (2003). This algorithm can be used for
estimating the vulnerability of given (k, l)-combiners with respect to algebraic
attacks (known from Courtois and Meier (2003)).
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We first illustrate the problem of constructing nontrivial relations by means
of some special cases. Let as before C = (Z,C) denote a (k, l)-combiner with
output function Z and feedback function C. If l = 0, the construction of canceling
relations for one clock is straightforward, as

Z(xt1, · · · , x
t
k)⊕ zt , t ≥ 0 (7)

is always fulfilled. By arguments which will be given below this implies the
existence of relations of degree at most dk/2e.
Another tractable case is if l = 1 and the output function Z is linear in the

feedback bit, i.e., Z(x, c) = Z ′(x)⊕ c. Then the relation

z2 = Z(x2, C(x1, z1 ⊕ x1)) (8)

is always true, which gives z-relations for all z ∈ {0, 1}2. If l ≥ 1 and the
output function is nonlinear, the situation becomes more complicated as, via the
feedback function C, zt depends nonlinearly on x

1, x2, · · · , xt for all t ≥ 0. One
attempt for constructing nontrivial relations could be to consider the relation

∧

c∈{0,1}l

(

Z(xt, c)⊕ zt
)

, (9)

which obviously gives 0 for all pairs of input and output streams generated via
C. The problem here is that this relation can become trivial. This is especially
true if Z is linear in at least one memory bit, as is the case for the E0 generator.
We use a more systematic approach and show the following result.

Theorem 1. Let k ≥ 1, l ≥ 1 and a (k, l)-combiner C = (Z,C) be arbitrarily
fixed. Then for each r > l there is a z-relation of degree d(k(l + 1)/2e for C for
some z ∈ {0, 1}r.

For the proof of this theorem we need some more technical definitions.

Definition 2.

(i) For all r ≥ 1, z ∈ {0, 1}r, and x = (x1, · · · , xr) ∈
(

{0, 1}k
)r
, x is called

z-critical for C if (Z,C)r(x, c) 6= z for all c ∈ {0, 1}l. We denote by CritC(z)
the set of all x ∈

(

{0, 1}k
)r

which are z-critical for C, and by NCritC(z) the
set of all x which are not.

(ii) The pair (x, z) ∈
(

{0, 1}k
)r
×{0, 1}r is called r-critical for C if x is z-critical

for C. We denote by CritC(r) the set of all r-critical (x, z) ∈
(

{0, 1}k
)r
×

{0, 1}r and by NCritC(r) the set of all (x, r) which are not. Especially, we
have CritC(r)

.
∪ NCritC(r) = {0, 1}

kr × {0, 1}r.
(iii) For all r ≥ 1 we denote by χ(C)r :

(

{0, 1}k
)r
×{0, 1}r −→ {0, 1} the critical

function of C, which is defined as χ(C)r(x, z) = 1 iff (x, z) is r-critical for
C. For all z ∈ {0, 1}r we denote by χ(C)zr the subfunction χ(C)r(·, z) which
outputs 1 on x ∈

(

{0, 1}k
)r

iff x is z-critical.
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Observe that for all r ≥ 1 and z ∈ {0, 1}r, a nontrivial GF (2)-polynomial
p in kr variables is a z-relation of C iff it outputs 0 for all x ∈ NCritC(z) and
outputs 1 for at least one x ∈ CritC(z). This implies

Lemma 1. For all r ≥ 1 and z ∈ {0, 1}r there is a z-relation for C iff CritC(z) 6=
∅. If CritC(z) 6= ∅ then p :

(

{0, 1}k
)r
−→ {0, 1} is a z-relation for C if and only

if it is a nontrivial implicant of χ(C)zr.

For each non-critical pair (x, z) ∈
(

{0, 1}k
)r
× {0, 1}r there exists at least

one c ∈ {0, 1}l such that z = (Z,C)r(x, c). Evidently, the number of non-critical
pairs cannot exceed 2kr · 2l. We obtain

Lemma 2. For all r ≥ 1 it holds that |NCritC(r)| ≤ 2
kr+l.

For r = l + 1, we have

|NCritC(l+1)| ≤ 2
k·(l+1)+l < 2k·(l+1)+l+1 = |CritC(l+1)|+|NCritC(l+1)| (10)

Therefore, |CritC(r)| 6= 0 and there is some z ∈ {0, 1}r such that
|CritC(z)| 6= ∅.
For all d ≥ 0 let us denote byM(kr, d) the set of all monomials over the kr

variables x1, · · · , xr of length at most d. We derived

Lemma 3. For all r ≥ 1 and z ∈ {0, 1}r the set of all z-relations for C equals
the set of non-zero solutions of FindNullspace(M(kr, d), NCritC(z)).

Lemma 4. For each r ≥ 0 and z ∈ {0, 1}r the set NCritC(z) is not empty.

Proof. We show this proposition by complete induction. As said in the beginning,
we consider only combiners for which the following condition is true:

∀c ∈ {0, 1}l ∃x, x′ ∈ {0, 1}k : Z(x, c) = 0 and Z(x′, c) = 1 (11)

This assures the proposition for r = 1. Let the proposition be true for some r.
Choose z = (z1, . . . , zr+1) ∈ {0, 1}

r+1 arbitrarily. Then NCritC((z1, . . . , zr)) 6= ∅
by assumption. Let x = (x1, . . . , xr) ∈ NCritC((z1, . . . , zr)). Then there ex-
ists a c1 ∈ {0, 1}l with (Z,C)r(x1, . . . , xr, c1) = (z1, . . . , zr). By (11) we know
that there is a least one xr+1 ∈ {0, 1}k with Z(xr+1, cr+1) = zr+1. Therefore,
(Z,C)r(x1, . . . , xr+1, c1) = (z1, . . . , zr+1) and (x

1, . . . , xr+1) ∈ NCritC(z).

For showing the degree bound observe that if |M(kr, d)| = Φ(kr, d) is greater
than |NCritC(z)| then FindNullspace(M(kr, d), NCritC(z)) has a nontrivial
solution. It suffices to prove the degree bound for r = l+1. Lemma 2 implies that
|NCritC(l + 1)| ≤ 2

k(l+1)+l = 1
22
k(l+1)+l+1, i.e., at most one half of all possible

pairs (x, z) are not (l + 1)-critical. Consequently, there exists at least one z ∈
{0, 1}l+1 for which at most half of all possible x are z-critical, i.e., |NCritC(z)| ≤
1
22
k(l+1).On the other hand, by lemma 4 we know that |NCritC(z)| > 0. Using

the fact that Φ(N, dN/2e) > 1
22
N for all N ≥ 2, we obtain the theorem.

We derived the following algorithm for the problem
FindRelation(Z,C, z, d) of computing all z-relations p of degree at most d for a
given (k, l)-combiner C = (Z,C).
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1 Compute CritC(z) and NCritC(z).
2 If CritC(z) 6= ∅ then solve FindNullspace(M(kr, d), NCritC(z)).

Note that the computation of CritC(z) and NCritC(z) can be done in an
elegant way by using an ordered binary decision diagram (OBDD) of size at
most (kr + r)2k+l+1 for χ(C)r (see, e.g., Krause (2002) for the details). Step 2
requires to solve a system of GF (2)-linear equations with M(kr, d) unknowns
and at most 2kr+l linear equations.

4 Analyzing the E0 Keystream Generator

In this section, we apply our results to the E0 keystream generator. The E0

keystream generator is part of the Bluetooth encryption system, used for wire-
less communication (see, e.g., Bluetooth SIG (2001)). It is a (4, 4)-combiner.
Applying our results yields the existence of a nontrivial 5-relation of degree 10.
The number of monomials is T ≤ Φ(n, 10). Therefore, the secret key can be
recovered by solving a system of linear equations in T unknowns. The fastest
practial algorithm we are aware of to solve a system of linear equations is the
algorithm by Strassen (1969). It requires about 7 ·T log27 operations. Our attack
is more efficient than exhaustive search, if the following inequality holds:

2n > 7 · (Φ(n, 10))log27 . (12)

This is the case for n ≥ 142. Notice, that in the Bluetooth encryption system
the length of the secret key is n = 128.
If the E0 keystream generator were optimally resistant against algebraic at-

tacks, no canceling relations for r < 5 or d < 10 should exist. Surprisingly, for
d = 4 and r = 4 such a relation can be found. In this case, it is even possible to
show the existence directly.
Let us first recall the definitions of the keystream generator. The keystream

generator consists of k = 4 regularly clocked LFSRs and l = 4 memory bits.
With each clock, an output bit zt is produced depending on the outputs x

t =
(xt1, x

t
2, x

t
3, x

t
4) of the four LFSRs and the four memory bits c

t = (qt, pt, qt−1, pt−1).
Then, the next memory bits ct+1 = (qt+1, pt+1, qt, pt) are calculated and so on.
We see that the memory bits qt and pt are used in both clocks t and t + 1.
Let πs(t) be the symmetric GF (2)-polynomial over x

t
1, x

t
2, x

t
3, x

t
4 which consists

of the sum of all monomials of length s ≤ 4. Then the output bit zt and the
memory bits are computed by the following equations

zt = π1(t)⊕ pt (13)

ct+1 = (qt+1, pt+1, qt, pt) (14)

= (St+1
1 ⊕ qt ⊕ pt−1,St+1

0 ⊕ pt ⊕ qt−1 ⊕ pt−1, qt, pt), (15)

where

St+1 = (S
1
t+1,S

0
t+1) =

⌊

xt1 + xt2 + xt3 + xt4 + 2 · q
t + pt

2

⌋

. (16)
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The values for c1 and the contents of the LFSRs must be set before the start,
the other values will then be calculated. Obviously, the value of qt+1 depends
only on xt, qt, pt and pt−1 and the value of pt+1 on xt, qt, qt−1, pt and pt−1. The
calculations of qt+1 and pt+1 are done via the following equations (see appendix
A for details)

qt+1 = π4(t)⊕ π3(t)p
t ⊕ π2(t)q

t ⊕ π1(t)p
tqt ⊕ qt ⊕ pt−1 (17)

pt+1 = π2(t)⊕ π1(t)p
t ⊕ qt ⊕ qt−1 ⊕ pt−1 ⊕ pt (18)

If we define the following additional variables

a(t) = π4(t)⊕ π3(t)p
t ⊕ pt−1

b(t) = π2(t)⊕ π1(t)p
t ⊕ 1,

equations (17) and (18) can be rewritten to

qt+1 = a(t)⊕ b(t)qt (19)

pt+1 = b(t)⊕ 1⊕ pt−1 ⊕ pt ⊕ qt ⊕ qt−1. (20)

By multiplying (19) with b(t) we get another equation

0 = b(t)(a(t)⊕ qt ⊕ qt+1). (21)

Equation (20) is equivalent to

qt ⊕ qt−1 = b(t)⊕ 1⊕ pt−1 ⊕ pt ⊕ pt+1. (22)

Now we insert (22) into (21) with index t+ 1 instead of t and get

0 = b(t)
(

a(t)⊕ b(t+ 1)⊕ 1⊕ pt ⊕ pt+1 ⊕ pt+2
)

.

Using (13), we eliminate all memory bits in the equation and get the following
equation which holds for every clock t:

0 = 1⊕ zt−1 ⊕ zt ⊕ zt+1 ⊕ zt+2

⊕π1(t) · (ztzt+2 ⊕ ztzt+1 ⊕ ztzt−1 ⊕ zt−1 ⊕ zt+1 ⊕ zt+2 ⊕ 1)

⊕π2(t) · (1⊕ zt−1 ⊕ zt ⊕ zt+1 ⊕ zt+2)⊕ π3(t)zt ⊕ π4(t)

⊕π1(t− 1)⊕ π1(t− 1)π1(t)(1⊕ zt)⊕ π1(t− 1)π2(t)

⊕π1(t+ 1)zt+1 ⊕ π1(t+ 1)π1(t)zt+1(1⊕ zt)⊕ π1(t+ 1)π2(t)zt+1

⊕π2(t+ 1)⊕ π2(t+ 1)π1(t)(1⊕ zt)⊕ π2(t+ 1)π2(t)

⊕π1(t+ 2)⊕ π1(t+ 2)π1(t)(1⊕ zt)⊕ π1(t+ 2)π2(t)

This gives a nontrivial degree-4 z-relation p for 4 clocks for any z ∈ {0, 1}4.
The number M(128, p) of monomials occuring in the corresponding system of
nonlinear equations (see subsection 2.2) can not exceed Φ(128, 4) ≈ 223.39. In
fact, if we look closely at p, we can see that not all monomials of M(kr, d)
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Table 1. Algebraic attacks on smaller E0 crypto systems

n(1), n(2), n(3), n(4) Initial Values Feedback Taps T Clocks

1, 2, 3, 5 1 11 011 11110 1 11 101 10100 477 483

1, 2, 3, 5 1 10 101 01101 1 11 101 10100 477 481

1, 2, 3, 5, 1 01 010 01001 1 11 101 11011 477 480

1, 2, 3, 5 1 11 111 01111 1 11 101 11110 477 483

1, 2, 3, 5, 1 01 010 10100 1 11 110 11011 477 484

2, 3, 5, 7 10 010 11110 1100110 11 110 11101 1000100 2643 2647

2, 3, 5, 7 11 101 01101 0010011 11 101 10100 1101010 2643 2649

2, 3, 5, 7 10 100 10001 0010001 11 110 11110 1111000 2643 2647

occur. Thus, we have M(128, p) ≤ T := 8, 824, 350 ≈ 223.07 (see appendix B for
details).

With each clock t, we get a new equation in the bits of the secret key. If
we have at least M(128, p) linearly independent equations, x∗ can be recovered
by solving the system of linear equations. Using Strassen’s algorithm, the secret
key can be recovered with work ≤ 7 · T log27 ≈ 267.58. The memory complexity is
more or less the size of the matrix which is about 246.14.

Obviously, to get enough linearly independent equations, we have to clock
at least M(128, p) times. The question is whether we have to clock more often.
Until now, there is no satisfying answer to this question. Our assumption is that
approximately T clocks should be enough, meaning that about 223.07 key stream
bits would be sufficient to mount the attack. We did some simulations for the
same cryptosystem but with shorter LFSRs. The results can be seen in Table 1.
Each time, the initial values of the LFSRs were successfully reconstructed. In
all cases the number of clocks needed to reconstruct the secret key was close (or
even equal) to T + 3.1

Of course, a lower degree d would decrease the value of T and therefore allow
a better attack. Applying our algorithm showed the non-existence of nontrivial
relations of degree d = 3 for r = 4 and r = 5. Nevertheless, lower degree relations
for r > 5 may exist.

It is important to mention that in the Bluetooth encryption system the secret
key is changed after 2745 clocks. Therefore, we will never get enough equations
in pratice. Note that the best published attack against the E0 was proposed by
Krause (2002) with time and memory effort of ≈ 277, given only 128 known key
stream bits. The attack by Fluhrer and Lucks (2001) needs about 273 operations
if 243 bits are available. The memory needed is very small: about 10638 bits.

Recently, Courtois developed an improved version of algebraic attacks: fast
algebraic attacks (Courtois (2003)). They allow an even better attack on the E0

keystream generator. The estimation is that about 249 operations are enough.

1 As we need 4 succesive clocks to produce one equation the number of clocks needed
is at least T + 3
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We want to point out one remarkable fact. The output function was chosen to
be linear in one memory bit to achieve maximum correlation immunity. The same
attribute made it possible to eliminate the same memory bit in our relation. This
may be a hint that some tradeoff between correlation immunity of the output
function and resistance against algebraic attacks exists.

5 Discussion

We have seen that for all (k, l)-combiners, nontrivial relations of degree at most
dk(l+1)/2e exist. This fact extends the attacks described by Courtois and Meier
(2003) to combiners with memory. In consequence, each combiner is vulnerable
against algebraic attacks if the length of the secret key n is large enough. E.g., for
the E0 keystream generator this is the case for n ≥ 142. A (k, l)-combiner should
be designed in such a way that an algebraic attack never becomes faster than
exhaustive key-search. For this purpose, it should be checked if the automaton
induces nontrivial degree-d relations for critical values of d. This can be done
by applying the algorithm FindRelation presented in this paper, at least for a
reasonable set of clocks.
The analysis of the E0 generator shows that it may be dangerous to use

a linear output function, since this may help replacing the memory bits and
deriving nontrivial low-degree relations. It turns out that a nontrivial relation
of degree 4 exists. This makes it possible to recover the secret key by solving a
system of linear equations in at most 223.07 unknowns.
Algebraic attacks work successfully only for LFSR-based stream ciphers which

are oblivious in the sense that the attacker always knows which bit of the
keystream depends on which bits of the internal bitstream. It would be interest-
ing to know if similar attacks can also be applied to non-oblivious ciphers like
the A5 generator or the shrinking generator.
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A The Equations for qt+1 and pt+1

In this section we prove the correctness of equations (17) resp. (18) for qt+1 resp.
pt+1. Let us recall the equation for ct+1

ct+1 = (qt+1, pt+1, qt, pt) (23)

= (St+1
1 ⊕ qt ⊕ pt−1,St+1

0 ⊕ pt ⊕ qt−1 ⊕ pt−1, qt, pt) (24)

where

St+1 = (S
1
t+1,S

0
t+1) =

⌊

xt1 + xt2 + xt3 + xt4 + 2 · q
t + pt

2

⌋

(25)

Let f0 resp. f1 be the two boolean functions for which the equations

Sit+1 = fi(x
t
1, x

t
2, x

t
3, x

t
4, q

t, pt) (26)

hold for i ∈ {0, 1}. f0 and f1 can be found with the help of computers. If we
write down f0 and f1 in algebraic normal form, we get

f1 = π4(t)⊕ π3(t)p
t ⊕ π2(t)q

t ⊕ π1(t)p
tqt (27)

f0 = π2(t)⊕ π1(t)p
t ⊕ qt (28)

See section 4 for the definition of πk(t). In table 2, f0 and f1 are evaluated for
all possible inputs and compared with St+1. It is easy to see that f0 and f1 fulfill
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the requirements. Together with (24), we get the following expressions for qt+1

and pt+1

qt+1 = S1
t+1 ⊕ qt ⊕ pt−1 (29)

= π4(t)⊕ π3(t)p
t ⊕ π2(t)q

t ⊕ π1(t)p
tqt ⊕ qt ⊕ pt−1 (30)

pt+1 = S0
t+1 ⊕ pt ⊕ qt−1 ⊕ pt−1 (31)

= π2(t)⊕ π1(t)p
t ⊕ qt ⊕ qt−1 ⊕ pt ⊕ pt−1 (32)

B The Number of Terms

In this section, we estimate the maximum number T of different monomials in the
algebraic attack against the E0 crypto system. With each clock t the following
equation is produced

0 = 1⊕ zt−1 ⊕ zt ⊕ zt+1 ⊕ zt+2

⊕π1(t) · (ztzt+2 ⊕ ztzt+1 ⊕ ztzt−1 ⊕ zt−1 ⊕ zt+1 ⊕ zt+2 ⊕ 1)

⊕π2(t) · (1⊕ zt−1 ⊕ zt ⊕ zt+1 ⊕ zt+2)⊕ π3(t)zt ⊕ π4(t)

⊕π1(t− 1)⊕ π1(t− 1)π1(t)(1⊕ zt)⊕ π1(t− 1)π2(t)

⊕π1(t+ 1)zt+1 ⊕ π1(t+ 1)π1(t)zt+1(1⊕ zt)⊕ π1(t+ 1)π2(t)zt+1

⊕π2(t+ 1)⊕ π2(t+ 1)π1(t)(1⊕ zt)⊕ π2(t+ 1)π2(t)

⊕π1(t+ 2)⊕ π1(t+ 2)π1(t)(1⊕ zt)⊕ π1(t+ 2)π2(t).

As we can see, every occurring term has to be one of the following types

a, b, c, d, ab, ac, ad, bc, bd, cd, abc, acd, abd, bcd, abcd, aa′bc, aa′cd, aa′bd,

bb′ac, bb′cd, bb′ad, cc′ab, cc′ad, cc′bd, dd′ab, dd′ac, dd′bc, aa′bb′, aa′cc′,

aa′dd′, bb′cc′, bb′dd′, cc′dd′, aa′b, aa′c, aa′d, bb′a, bb′c, bb′d, cc′a, cc′b,

cc′d, dd′a, dd′b, dd′c, aa′, bb′, cc′, dd′

Here, a, a′ ∈ {x∗1,1, . . . , x
∗
1,n1

} with a 6= a′, etc. In table 3 the number of possible
terms for each type is presented depending on the length n1, n2, n3, and n4 of
the four LFSRs. In addition, we give for each type one product in which it can
occur. Note that some terms may occur in other products too2. Of course, these
types have to be counted only once. The sum is the number of possible terms T .
In E0, the lengths are n1 = 25, n2 = 31, n3 = 33 and n4 = 39, so T = 8, 824, 350,
which is approximately 223.07.

2 For example, a term of type abc can occur in π1(t)π2(t
′) and in π2(t)π2(t

′)
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Table 2. f0 and f1 evaluated for all possible inputs and compared with St+1

at bt ct dt Qt Pt St+1 f1 f0 at bt ct dt Qt Pt St+1 f1 f0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 1

0 0 0 0 1 0 1 0 1 1 0 0 0 1 0 1 0 1

0 0 0 0 1 1 1 0 1 1 0 0 0 1 1 2 1 0

0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 1

0 0 0 1 0 1 1 0 1 1 0 0 1 0 1 1 0 1

0 0 0 1 1 0 1 0 1 1 0 0 1 1 0 2 1 0

0 0 0 1 1 1 2 1 0 1 0 0 1 1 1 2 1 0

0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1

0 0 1 0 0 1 1 0 1 1 0 1 0 0 1 1 0 1

0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 2 1 0

0 0 1 0 1 1 2 1 0 1 0 1 0 1 1 2 1 0

0 0 1 1 0 0 1 0 1 1 0 1 1 0 0 1 0 1

0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 2 1 0

0 0 1 1 1 0 2 1 0 1 0 1 1 1 0 2 1 0

0 0 1 1 1 1 2 1 0 1 0 1 1 1 1 3 1 1

0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1

0 1 0 0 0 1 1 0 1 1 1 0 0 0 1 1 0 1

0 1 0 0 1 0 1 0 1 1 1 0 0 1 0 2 1 0

0 1 0 0 1 1 2 1 0 1 1 0 0 1 1 2 1 0

0 1 0 1 0 0 1 0 1 1 1 0 1 0 0 1 0 1

0 1 0 1 0 1 1 0 1 1 1 0 1 0 1 2 1 0

0 1 0 1 1 0 2 1 0 1 1 0 1 1 0 2 1 0

0 1 0 1 1 1 2 1 0 1 1 0 1 1 1 3 1 1

0 1 1 0 0 0 1 0 1 1 1 1 0 0 0 1 0 1

0 1 1 0 0 1 1 0 1 1 1 1 0 0 1 2 1 0

0 1 1 0 1 0 2 1 0 1 1 1 0 1 0 2 1 0

0 1 1 0 1 1 2 1 0 1 1 1 0 1 1 3 1 1

0 1 1 1 0 0 1 0 1 1 1 1 1 0 0 2 1 0

0 1 1 1 0 1 2 1 0 1 1 1 1 0 1 2 1 0

0 1 1 1 1 0 2 1 0 1 1 1 1 1 0 3 1 1

0 1 1 1 1 1 3 1 1 1 1 1 1 1 1 3 1 1
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Table 3. All possible terms and their number depending on ni

type occur in number

a,b, c, d π1(t) n1 + n2 + n3 + n4

ab, ac, ad, bc, bd, cd π2(t) n1(n2 + n3 + n4) + n2(n3 + n4) + n3n4

abc, acd, abd, bcd π3(t) n1(n2n3 + n2n4 + n3n4) + n2n3n4

abcd π4(t) n1n2n3n4

aa′, bb′, cc′, dd′ π1(t) · π1(t
′)

∑4

i=1

1

2
ni(ni − 1)

aa′b, aa′c, aa′d π1(t) · π2(t
′) 1

2
n1(n1 − 1)(n2 + n3 + n4)

bb′a, bb′c, bb′d π1(t) · π2(t
′) 1

2
n2(n2 − 1)(n1 + n3 + n4)

cc′a, cc′b, cc′d π1(t) · π2(t
′) 1

2
n3(n3 − 1)(n1 + n2 + n4)

dd′a, dd′b, dd′c π1(t) · π2(t
′) 1

2
n4(n4 − 1)(n1 + n2 + n3)

aa′bc, aa′cd, aa′bd π2(t) · π2(t
′) 1

2
n1(n1 − 1)(n2n3 + n2n4 + n3n4)

bb′ac, bb′cd, bb′ad π2(t) · π2(t
′) 1

2
n2(n2 − 1)(n1n3 + n1n4 + n3n4)

cc′ab, cc′ad, cc′bd π2(t) · π2(t
′) 1

2
n3(n3 − 1)(n1n2 + n1n4 + n2n4)

dd′ab, dd′ac, dd′bc π2(t) · π2(t
′) 1

2
n4(n4 − 1)(n1n2 + n1n3 + n2n3)

aa′bb′, aa′cc′, aa′dd′ π2(t) · π2(t
′) 1

2
n1(n1 − 1)

(
∑4

i=2

1

2
ni(ni − 1)

)

bb′cc′, bb′dd′ π2(t) · π2(t
′) 1

4
n2(n2 − 1) [n3(n3 − 1) + n4(n4 − 1)]

cc′dd′ π2(t) · π2(t
′) 1

4
n3(n3 − 1)n4(n4 − 1)


