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Abstract. We revisit the definitions of zero-knowledge in the Common
Reference String (CRS) model and the Random Oracle (RO) model. We
argue that even though these definitions syntactically mimic the standard
zero-knowledge definition, they loose some of its spirit. In particular, we
show that there exist a specific natural security property that is not
captured by these definitions. This is the property of deniability. We
formally define the notion of deniable zero-knowledge in these models
and investigate the possibility of achieving it. Our results are different
for the two models:
– Concerning the CRS model, we rule out the possibility of achieving
deniable zero-knowledge protocols in “natural” settings where such
protocols cannot already be achieved in plain model.

– In the RO model, on the other hand, we construct an efficient 2-
round deniable zero-knowledge argument of knowledge, that pre-
serves both the zero-knowledge property and the proof of knowledge
property under concurrent executions (concurrent zero-knowledge
and concurrent proof-of knowledge).

1 Introduction

Zero-knowledge proofs, i.e., interactive proofs that yield no other knowledge than
the validity of the assertion proved, were introduced by Goldwasser, Micali and
Rackoff [26] in 1982. Intuitively, the verifier of a zero-knowledge proof should not
be able to do anything it could not have done before the interaction. Knowledge,
thus, in this context means the ability to perform a task. The intuition is cap-
tured through a simulation definition: We say that a protocol is zero-knowledge
if there exists a simulator (that does not have access to a prover) that can sim-
ulate a malicious verifier’s output after interaction with a prover. The existence
of such a simulator implies that if an adversary succeeds in a task after having
communicated with a prover, the adversary could just as well have reached the
same results without a prover by first running the simulator. This feature has
made zero-knowledge a very powerful and useful tool for proving the security of
cryptographic protocols.

For some applications, such as signature schemes [18] [39], voting systems,
non-interactive zero-knowledge [5] [25], concurrent zero-knowledge [14], [9] etc.,



it however seems hard, or is even impossible, to achieve efficient and secure
schemes in the standard model. Stronger models, such as the Common Reference
String (CRS) model [5], where a random string is accessible to the players,
or the Random Oracle (RO) model [2], where a random function is accessible
through oracle calls to the players, were therefore introduced to handle even those
applications. Recently the CRS model has been extensively used in interactive
settings to prove universal composability (e.g. [6] [7] [10]).

We note that an important part of the intuition behind zero-knowledge is
lost in these two models in a multi-party scenario, if the CRS string or the
random oracle may be reused. An easy way of seeing this is simply by noting
that non-interactive zero-knowledge proofs are possible in both these model. A
player having received a non-interactive proof of an assertion, it could not have
proved before the interaction, can definitely do something new: it can simply
send the same proof to someone else. This fact may seem a bit counter-intuitive
since the intuition tells us that the simulation paradigm should take care of this.
We note, however, that the simulator is much “stronger” in these models than
in the plain model. As it is, the simulator is allowed to choose the CRS string,
or random oracle, and this fact jeopardizes the zero-knowledge intuition. In fact
the zero-knowledge property in these model only guarantees that the verifier will
not be able to do anything without referring to the CRS string or the random
oracle, it could not have done before. In the non-interactive setting, this problem
has lead to the definition of non-malleable non-interactive zero-knowledge [37],
and very recently robust non-interactive zero-knowledge [13]. In this paper we
examine the problem in the more general interactive setting.

Deniable Zero-knowledge. In many interactive protocols (e.g. undeniable
signatures [11], or deniable authentification [14]) it is essential that the transcript
of the interaction does not yield any evidence of the interaction. We say that such
protocols are deniable. We use the standard simulation paradigm to formalize
this notion:

Definition 1. [Informal meta-definition] A protocol is deniable if it is zero-
knowledge and the zero-knowledge simulator can be run by the verifier.1

The standard definition of zero-knowledge in the plain model certainly sat-
isfies deniability, however this is no longer the case with the definitions of zero-
knowledge in the CRS/RO models. This stems from the fact that in the real
world the public information in the model, i.e., the CRS string or the random
oracle, is fixed once and for all at start-up. When proving security, however, the
simulator in these models is allowed to choose this public information in anyway
it pleases as long as it “looks” ok. Thus, even though there exists a simulator
for a protocol, there is no guarantee that a player can actually simulate a tran-
script using a certain predefined public information. Non-interactive proofs of a

1 Strictly speaking, the simulator is an algorithm and can therefore always be run by
the verifier. What we mean here is that the output of the verifier when running this
simulator algorithm should be “correctly” distributed.



statement x are trivially proofs of an interaction with a party that can prove the
assertion of the statement x, or else the soundness condition of the proof would
be broken.

Indeed, the idea behind the simulation paradigm, and the reason for its
widespread applicability, is that a verifier should be able to run the simula-
tor by himself instead of interacting with a prover. The standard definitions of
zero-knowledge in the CRS and RO models have not retained this spirit (since
the simulator in these model is allowed to choose the public information, which
evidently the verifier is not allowed to do), but only syntactically mimic the
original zero-knowledge definition.

In the following we give formal definitions of deniable zero-knowledge in the
CRS (see section 3) and RO (see section 4) models and investigate the possibility
of achieving protocols satisfying the definitions.

When Does Deniability Matter. For some settings zero-knowledge and de-
niability is the goal (e.g. deniable authentification [14]). In such settings the
standard definitions of zero-knowledge in the CRS/RO models clearly are not
sufficient, since they do not guarantee deniability.

The issue of deniability also arises when a zero-knowledge protocol is used as
a sub-protocol in a larger context where the CRS string or random oracle may
be reused. In such a scenario it is no longer clear what security properties are
guaranteed by the standard definitions of zero-knowledge in the CRS/RO mod-
els. More technically, general protocol composition becomes problematic since
the simulator cannot be run when a specific CRS string or random oracle already
has been selected.

Nevertheless, we mention that when “plugging-in” zero-knowledge protocols
in the CRS/RO models into certain specific protocols, the standard definitions
(that do not guarantee deniability) can in some cases be sufficient. For exam-
ple in the construction of encryption schemes secure against chosen-ciphertext
attacks [34], zero-knowledge protocols that do not satisfy deniability have been
successfully used as sub-protocols.2 (Looking ahead, the notion “unreplayability”
introduced in section 1.1 is another example where zero-knowledge definitions
that do not satisfy deniability can be sufficient).

Implications on the Framework for Universal Composability. A frame-
work for universal composability (UC) was introduced by Canetti in [6]. The
idea behind the framework is to put forward security definitions such that the
security of a stand-alone component implies the security of a larger system where
the component is plugged in, if the outer system is proven secure when having
access to an “ideal” component. The UC framework allows for a modular design

2 We mention that in the more complicated case of encryption schemes secure against
adaptive chosen-cipher text attacks, the standard definition of zero-knowledge in the
CRS model is not sufficient, but needs to be strengthened to guarantee simulation-

soundness. [37]



of cryptographic protocols, which facilitates the design of secure solutions, e.g.
[7] [10].

The ideal zero-knowledge functionality was first defined in [6] and has later
been used in several subsequent works. Due to the impossibility of implementing
the ideal zero-knowledge functionailty in the plain model [6], the functionality
was implemented in the CRS model [7] [13]. We note that the implementation of
[13] is non-interactive, i.e., only a single message is send. Their protocol is, thus,
not deniable and therefore constitutes an evidence that the ideal zero-knowledge
functionality does not capture the concerns for deniability in the framework.

The example given shows the non-triviality of the task of defining ideal func-
tionalities in the UC framework. At a first glance it seemed like the definition
given of the ideal zero-knowledge functionality would satisfy deniability. Closer
inspection of the framework shows, however, that the concern for transferabil-
ity/deniability is not taken into account in the framework when introducing
public objects, such as the CRS string. This can be seen as follows: The UC
framework only guarantees security if a CRS string is not reused. A transferabil-
ity/deniability attack, however, relies on the fact that an honest-party reuses a
CRS that has been used in a different execution. In other words, such attacks are
not ruled-out by the composition theorem of [6], since they involve honest-parties
deviating from their prescribed protocols by reusing a CRS string.

A serious concern is born out of this discussion: Since the zero-knowledge
proof functionality is both relatively simple and quite well understood, it should
be easy to define an ideal functionality that satisfies the real spirit behind the
concept. In particular, the ideal zero-knowledge functionality should be deniable.
Given our understanding of the concept of zero-knowledge, the definition of the
ideal zero-knowledge functionality given in [6] also seems to be the right one.
However, as shown, this definition does not satisfy our expectations in the UC
framework. We conclude that, in order to capture the spirit behind natural
definitions of ideal functionalities, the introduction of public objects in the UC
framework needs to be adapted. See section 3.3 for additional discussions.

1.1 Results Concerning the CRS Model

There could have been hope that the CRS model might be used to implement
deniable zero-knowledge protocols in settings where the plain model is not suffi-
cient. We show that in natural settings, where the usage of the CRS model seems
meaningful, the demand for deniability makes the CRS model collapse down to
the plain model:

– We show that known black-box impossibility result concerning zero-
knowledge in the plain model also hold in the CRS model, with respect
to deniable zero-knowledge. That is, we show the impossibility of non-trivial
deniable black-box zero-knowledge arguments in the CRS model with either
of the following extra requirements:
• straight-line simulatatable (i.e., non-rewinding)
• non-interactive



• constant-round strict polynomial-time simulatable
• constant-round public-coin
• constant-round concurrent zero-knowledge
• 3-round

– We show an efficient transformation from deniable zero-knowledge protocols
in CRS model to zero-knowledge protocols in the plain model using small
overhead. This result thus rules out the possibility of constructing deniable
zero-knowledge protocols in the CRS model that are much more efficient
than protocols in the plain model.

Achieving a Weaker Form of Deniability. Although our results rule out the
possibility of “interesting” deniable zero-knowledge protocols in many natural
settings, we show that a limited form of deniability can be achieved in the CRS
model by restricting the communication to a certain class of pre-specified pro-
tocols where the CRS string may be reused. Very loosely speaking, we say that
a class of protocols is closed under unreplayability if an adversary cannot prove
anything using a protocol in the class, after having interacted with a prover us-
ing a protocol in the class, that it could not have done before interacting with
the prover. We show that a natural class of protocols is closed under unreplaya-
bility in the CRS model : If C is a class of interactive proofs (or arguments) of
knowledge, with negligible soundness error, that are zero-knowledge in the CRS
model, then C is closed under unreplayabilty. This result shows that restricting
the communication to only arguments of knowledge that are zero-knowledge,
eliminates the concern for deniability in the CRS model. We postpone these
results to the full version of the paper.

1.2 Results Concerning the RO Model

While the results in the CRS model were mostly negative in nature, the situation
in the RO model is rather different. Indeed we are able to construct “interesting”
deniable zero-knowledge protocols.

More precisely, we show that 2 rounds are necessary and sufficient to con-
struct deniable black-box zero-knowledge arguments for NP in the RO model. In
fact, we construct an efficient 2-round deniable zero-knowledge argument for NP
in the RO model that is both straight-line simulatable and witness extractable.
This implies that both simulation of polynomially many concurrent executions
(concurrent zero-knowledge) and simultaneous extraction of polynomially many
witnesses under concurrent executions (concurrent proof of knowledge) can be
performed. It was previously unknown how to simultaneously extract witnesses
from polynomially many proofs in the RO model (let alone the question of de-
niability).

1.3 Other Models

We mention briefly that there are other models that are stronger than the plain
model, such as the timing model of [14], or the on-line/off-line model of [35],



that do not suffer from problems with deniability. We also note that in a public-
key model, methods similar to those of designated verifiers [30] can be used to
successfully implement non-trivial zero-knowledge protocols that are deniable.
Indeed, the method of designated verifier shows how to convert zero-knowledge
protocols that are not deniable into zero-knowledge protocols in a stronger model
(namely the public-key model) that satisfy deniability.

1.4 A Computational Separation Between the RO and CRS Model

An interesting, and (as far as we know) until now, open question has been to
investigate if a plausibility result in the RO model implies a plausibility result
in the CRS model. An information theoretical separation between the models
follows from the difference in entropy of the random oracle and CRS string.
However, the computational case, which is the relevant one when considering
cryptographic applications, seems more complicated.

The existence of the powerful tool of pseudo-random functions [21] has shown
that in some applications an object with low-entropy (the seed to the pseudo-
random function) can be used to “simulate” the behavior of a high-entropy object
(namely a random function). It, thus, might seem conceivable that methods of
“stretching” randomness could be used to transform protocols in the RO model
to protocols in the CRS model that achieve the same task.

A natural candidate to perform such a transformation would be to substi-
tute the random oracle with a (hash) function chosen from a class of function
according to the CRS string [2]. However, it was shown by Canetti, Goldreich
and Halevi [8] that there exist schemes for which every transformations of this
type results in an insecure schemes.

The question of the existence of other (more complicated) transformation has,
nevertheless, remained open. A side-effect of our results settles this question by
showing a computational separation between the RO model and the CRS model.3

In fact, by combining our negative results for the CRS model and the posi-
tive results in the RO model, we obtain applications (like for example 2-round
deniable black-box zero-knowledge arguments) that can be achieved in the RO
model but cannot be achieved in the CRS model.

1.5 Techniques

Although this paper is mostly conceptual in nature, we believe that some of the
techniques used in the proofs might be of independent interest.

Tools for Constructing Protocols in the RO Model. In order to con-
struct our 2-round deniable zero-knowledge argument in the RO model we define
and construct efficient straight-line extractable (i.e., the extraction can be per-
formed without rewinding) commitments and straight-line witness extractable

3 We note that this is done without resorting to “heavy” machinery like for example
the PCP theorem that is needed in [8].



arguments. We mention that the straight-line extraction feature implies two
strong properties that were (as far as we know) previously unattained in the RO
model:

– Simultaneous extraction of polynomially many witnesses. Previous
methods to extract witnesses [39] relied on rewinding and could therefore
not be used to extract witnesses under concurrent executions.

– Tight security reductions for non-interactive proofs of knowledge.
Standard extraction techniques for non-interactive proofs of knowledge in the
ROmodel [39] result in “loose” security reductions (see [27] for a discussion).4

Using straight-line extraction, on the other hand, we obtain a linear and op-
timal security reduction.

We mention that this technique can be used also for standard zero-knowledge
proofs in RO model that do not satisfy the stronger requirement of deniability.

Proofs of Protocol Security without the Simulation Paradigm. In the
proof of Lemma 3 (in section 3.1) we show that a parallelized version of Blum’s
coin-tossing protocol [4] can be used to generate a pseudo-random string. The
interesting part of the proof is that we show this without resorting to the stan-
dard simulation based definition of secure computation [24]. Previously, the only
known constant-round coin-tossing protocol for generating a “random” string
(and not a bit) is the protocol of Lindell [31] which relies on zero-knowledge
proofs and is therefore not practical. (The protocol of Lindell is, however, sim-
ulatable). More details can be found in the full version.

1.6 Preliminaries

Due to lack of space in this abstract, we assume familiarity with the following
notions: Zero-knowledge in the RO model (see [2]), Zero-knowledge in the CRS
model, Witness relations, Commitment schemes, Hard instance ensembles, Wit-
ness Indistinguishability (WI), Witness Hiding (WH), Proofs of knowledge (see
[19] for definitions), Special soundness (see [12]), Concurrent zero-knowledge (see
[20] for a survey). Formal definitions are given in the full paper.

2 ZK in the CRS/RO Model Implies WH and WI

In this section, we show two lemmas concerning the witness hiding (WH) and wit-
ness indistinguishable (WI) properties of standard (not deniable) zero-knowledge
proofs, or arguments, in the CRS and RO models. Due to lack of space the proofs
are omitted and can be found in the full version of the paper.

4 Roughly, in order to break the underlying assumption the “cheating prover” has to
be run O(q) times, where q is the running time of the cheating prover, thus resulting
in a total running time of O(q2).



Lemma 1. Suppose that Π is a zero-knowledge proof (argument), in the CRS/
RO model, for the language L. Then, for all witness relations RL for L, Π is
witness hiding in the CRS/RO model.

Remark 1. The lemma was proven for the plain model in [16].

Lemma 2. Let the language L ∈ NP, RL be a witness relation for L, and Π
be a zero-knowledge proof (argument) in the CRS/RO model for L with efficient
prover for RL. Then Π is witness indistinguishable for RL in the CRS/RO
model.

Remark 2. The lemma was proven for the plain model in [16], and for non-
interactive proofs in the CRS model in [15].

We note that in the case of WH, the proof of the lemma is a straight-forward
adaptation of the proof in the plain model [16], but concerning WI such a simple
adaptation can no longer be done, as was pointed out already for the non-
interactive setting using a CRS model in [15]. The problem stems from the fact
that WI in the CRS/RO model considers what happens when the prover uses
different witnesses, but the same CRS string/random oracle.

Thus, although the lemmas show positive results concerning the security of
protocols satisfying the standard definition of zero-knowledge in these models,
the non-triviality of the adaptation needed in the case of WI, by itself, shows
that special care has to be taken in models where the simulator is allowed to
choose the public information.

Nevertheless, the essence of Lemma 1 and 2 is that in settings where only
WH or WI is required as a security requirement, the standard definitions of
zero-knowledge in the CRS or RO model are sufficient. Looking ahead, we will
use the WH and WI properties of zero-knowledge proofs in the RO model in the
construction of a deniable zero-knowledge protocol in the RO model.

3 On Deniable Zero-Knowledge Proofs in the CRS Model

To be able to obtain deniable zero-knowledge in the CRS model, we restrict the
power of the simulator in the definition of zero-knowledge in the CRS model.
The key to the problem seems to be the fact that the simulator in the CRS
model chooses the CRS string. In fact, if the simulator was able to perform a
simulation without choosing the CRS string, we would be sure that the verifier
had not learnt anything, except the assertion of the statement being proved,
even with respect to the CRS string. This leads us to a new zero-knowledge
definition.

Definition 2. We say that an interactive proof (P, V ) for the language L ∈ NP,
with the witness relation RL, is deniable zero-knowledge in the CRS model if
for every PPT machine V ∗ there exists an expected polynomial time probabilistic
simulator S such that the following two ensembles are computationally indistin-
guishable (when the distinguishing gap is a function in |x|)



– {(r, 〈P (yx), V
∗(z)〉(x, r))}z∈{0,1}∗,x∈L for arbitrary yx ∈ RL(x)

– {(r, S(x, z, r)}z∈{0,1}∗,x∈L

where r is a random variable uniformly distributed in {0, 1}poly(|x|).
That is, for every probabilistic algorithm D running in time polynomial in the
length of its first input, every polynomial p, all sufficiently long x ∈ L, all yx ∈
RL(x) and all auxiliary inputs z ∈ {0, 1}∗ it holds that

|Pr[D(x, z, r, 〈P (yx), V
∗(z)〉(x, r))) = 1]

−Pr[D(x, z, r, S(x, z, r)) = 1]| <
1

p(|x|)

where r is a random variable uniformly distributed in {0, 1}poly(|x|).

3.1 On the Impossibility of More Efficient Deniable ZK Protocols

We show that if there exist an interactive deniable zero-knowledge proof (or ar-
gument) with negligible soundness error for a language L in the CRS model then
there exists an interactive zero-knowledge proof (or argument) with negligible
soundness error for L in the plain model using essentially the same communi-
cation complexity. In fact, we show a general transformation that only uses an
overhead of twice the length of the CRS string plus the length of a statistically
binding commitment to a string of the same length as the CRS string.

The construction. Suppose that protocol Π is an interactive deniable zero-
knowledge proof (or argument) with negligible soundness error, for the language
L, in the CRS model. Suppose further that a CRS string of length p(n), where
p(n) is a polynomial, is used for proving membership of instances in L of size
n, using Π. Now consider the protocol Π ′ in the plain model (without a CRS
string), for proving membership of instances in L of length n, constructed by
simply adding a coin-tossing phase to the protocol Π:

Protocol Π ′

Phase one:
P→ V: Commits, using a statistically binding commitment scheme, that is non-
uniformly computationally hiding, to a random string of length p(n).
V → P: Sends a random string of length p(n).
P → V: Opens up the commitment.
Phase two:
P ↔ V: Both parties thereafter use the XOR of the strings as a CRS string and
execute the protocol Π.

In the full version of the paper we show the following lemma:



Lemma 3. If Π is an interactive deniable zero-knowledge proof (or argument)
with negligible soundness error, for the language L, in the CRS model, then
the protocol Π ′, resulting from the above transformation, is an interactive zero-
knowledge proof (or argument) with negligible soundness error for the language
L.

Remark 3. The existence of statistically binding commitment schemes that are
non-uniformly computationally hiding is implied by the existence of non-uniform
one-way functions by combining the results of [29] and [33].

Remark 4. We note that we do not show that the coin-tossing protocol in phase
one is simulatable. Indeed, for our construction to work we simply have to show
that the output of the coin-tossing is pseudo-random.

This result, thus, rules out the possibility of finding deniable zero-knowledge
protocols that can be implemented much more efficiently in the CRS model than
in the plain model.

3.2 On the Impossibility of “Non-trivial” Deniable ZK Protocols

In this section we show that known black-box impossibility result concerning
zero-knowledge in the plain model also hold in the CRS model with respect
to deniable zero-knowledge. That is we show that for known settings where it
seems interesting to resort to the CRS model the demand for deniability makes
the CRS model collapse down to the plain model. (The proofs that are left out
are given in the full version).

Theorem 1. If Π is a straight-line black-box simulatable deniable zero-
knowledge proof (or argument), in the CRS model, for the language L with neg-
ligible soundness error, then L ∈ BPP.

We continue with two impossibility results that follow from Lemma 3:

Theorem 2. Assume the existence of statistically binding commitment schemes
that are non-uniformly computationally hiding. If Π is a constant-round strict
polynomial-time black-box simulatable deniable zero-knowledge proof (or argu-
ment) with negligible soundness in the CRS model for the language L, then
L ∈ BPP.

Theorem 3. Assume the existence of statistically binding commitment schemes
that are non-uniformly computationally hiding. If Π is a constant-round black-
box simulatable public-coin deniable zero-knowledge proof (or argument) with
negligible soundness in the CRS model for the language L, then L ∈ BPP.

Proof. It is clear from the construction that the transformation in section 3.1
preserves the public-coin property of the protocol. Now, since Goldreich and
Krawczyk [22] have shown the impossibility of non-trivial constant-round black-
box public-coin zero-knowledge arguments, L ∈ BPP. 2



As a sanity check to the definition we also note the impossibility of non-trivial
non-interactive zero-knowledge arguments,

Theorem 4. If Π is a non-interactive deniable zero-knowledge argument, in the
CRS model, for the language L with negligible soundness error, then L ∈ BPP.

Proof. Follows directly from Theorem 1 since non-interactive arguments need to
be black-box straight-line simulatable. 2

Indeed, non-interactive proofs are the most obvious violation of deniability, in
the CRS model, since they can be passed on.

Goldreich-Krawczyk Reductions. In 1990, Goldreich and Krawczyk [22]
showed that if a language L has an interactive zero-knowledge argument with
negligible soundness, using less than 4 rounds, with a blackbox simulator, then
L ∈ BPP. The method of Goldreich-Krawczyk has later been used to show black-
box impossibility results in the case of constant-round concurrent zero-knowledge
[9], and very recently in the case of strict polynomial time simulatable zero-
knowledge [1]. On a high-level, the Goldreich-Krawczyk method is a constructive
reduction from a machine deciding the language L to a simulator of the zero-
knowledge argument. That is, the existence of a simulator implies the existence
of a machine deciding the language, which in turn implies that the language is
in BPP.

Indeed, since the reduction is black-box and constructive, the same reduction
can be used for protocols that are deniable zero-knowledge in the CRS model.
The machine deciding the language, would simply first choose a random string
and thereafter run the original deciding machine using the random string as a
CRS string. Careful examination of the proofs of [22] and [9] thus gives:

Theorem 5. If Π is a 3-round black-box simulatable deniable zero-knowledge
proof (or argument) in the CRS model, for the language L, with negligible sound-
ness error, then L ∈ BPP.

Theorem 6. If Π is a constant-round black-box simulatable deniable concurrent
zero-knowledge argument in the CRS model, for the language L, with negligible
soundness error, then L ∈ BPP.

3.3 Conclusions and Directions for Future Research

We have shown that for currently known settings, the CRS model cannot be
used to implement deniable black-box zero-knowledge protocols for languages in
NP, that cannot already be implemented in the plain model. In the full version
of the paper we, nevertheless, show that a limited form of deniability (called
unreplayability) can be achieved by restricting the communication of honest-
parties to a certain class of protocols (see section 1.1).

Concerning the UC framework [6], we have shown that the ideal zero-
knowledge functionality is not deniable. Thus, in order to be able to model



universally composable deniable zero-knowledge, either a new definition has to
be given or the incorporation of public objects in the framework modified.

A possible approach would be to only allow composition with ideal function-
alities that physically cannot be reused, thus ruling out the use of the ideal CRS
functionality and other functionalities that model public information. However,
since the plain model is too weak to construct even universally composable com-
mitment [7], some extra set-up assumptions need to be incorporated into the
security definitions, in such a way that the simulator can be run by the par-
ties themselves. For example, if incorporating a CRS string in the framework,
the simulator should be able to carry out the simulation for all but a negligible
fraction of CRS strings, in analogy with Definition 2. We note, however, that
Theorem 1, which states the impossibility of straight-line simulatable deniable
zero-knowledge in the CRS model, yields the impossibility of universally com-
posable zero-knowledge in this setting, since a protocol implementing the ideal
zero-knowledge functionality must have a straight-line simulator.5 On the other
hand, if incorporating a public-key infrastructure in the framework, methods
similar to those of designated verifier [30] could possibly be used to achieve
universally composable deniable zero-knowledge.

An altogether different approach was taken in [32] [36] where it is shown
how to realize the ideal zero-knowledge functionality without resorting to set-up
assumptions (such as a CRS string), by trading universal composability for the
weaker notion of concurrent composability.

Open Problems. An interesting open problem is to find a type of deniable
zero-knowledge protocol that can be achieved in the CRS but not in the plain
model. Since most of our results only apply in the black-box setting, a direction
would be to investigate the non-black-box setting.

4 On Deniable Zero-knowledge Proofs in the RO Model

As in the CRS model, in order to obtain interactive proofs and arguments, with
random oracles, that capture the spirit of zero-knowledge, we need to resort to
a weaker simulation model, where the simulator no longer is allowed to choose
the random oracle, but should be able to perform the simulation for all but a
negligible fraction of random oracles. Such a simulator can therefore be run by
a verifier, assuring that the intuitive interpretation of zero-knowledge holds, i.e.,
that the verifier cannot do anything except to assert the validity of the statement
proved, that it could not have done before the interaction with a prover.

Definition 3. We say that an interactive proof (P, V ) for the language L ∈ NP,
with witness relation RL, is deniable zero-knowledge in the RO model if for every

5 For those familiar with the UC framework, this is due to the fact that the environ-
ment cannot be rewound. Now, supposing a real-life adversary that simply forwards
messages between the environment and the simulator, shows that the simulator needs
to be straight-line. More details in [6].



PPT verifier V ∗ there exists an expected polynomial time probabilistic simulator
S such that the following two ensembles are computationally indistinguishable
(when the distinguishing gap is a function in |x|):

– {(RO, 〈PRO(yx), V
∗RO(z)〉(x))}z∈{0,1}∗,x∈L for arbitrary yx ∈ RL(x)

– {RO,SRO(z, x))}z∈{0,1}∗,x∈L

where RO : {0, 1}poly(|x|) → {0, 1}poly(|x|) is a uniformly distributed random
variable.
That is, for every probabilistic algorithm D running in time polynomial in the
length of its first input, every polynomial p, all sufficiently long x ∈ L, all yx ∈
RL(x) and all auxiliary inputs z ∈ {0, 1}

∗ it holds that

|Pr[DRO(x, z, 〈PRO(yx), V
∗RO(z)〉(x))) = 1]

−Pr[DRO(x, z, SRO(x, z)) = 1]| <
1

p(|x|)

where RO : {0, 1}poly(|x|) → {0, 1}poly(|x|) is a uniformly distributed random
variable.

We note that when proving security according to the standard zero-knowledge
definition in the RO model, the simulator has two advantages over a plain model
simulator, namely,

– The simulator can see what values parties query the oracle on.
– The simulator can answer these queries in whatever way it chooses as long
as the answers “look” ok.

The definition of deniable zero-knowledge in the RO model restricts the power
of the simulator and only allows it to see on what value the parties query the
oracle (thus out of the two advantages only the first remains). This is due to
the fact that in the definition of deniable zero-knowledge in the RO model,
the distinguisher is given access to the random oracle and can thus verify if
the simulator has answered the oracle queries in accordance to the pre-specified
oracle. We, however, use this first property in a novel fashion, and show that it
alone is an extremely powerful tool. Looking ahead, we use the random oracle
to construct commitment schemes where the simulator, gaining access to all
oracle calls, will be able to extract the committed values, without rewinding the
committer.

As a sanity check to the definition we start by noting: (proof is given in the
full version)

Theorem 7. If Π is a one-round deniable zero-knowledge argument, in the RO
model, for the language L ∈ NP with negligible soundness error, then L ∈ BPP.

On the positive side we show that 2 rounds are necessary to construct effi-
cient and “robust” deniable zero-knowledge protocols for NP . In fact we con-
struct a protocol that is both concurrent zero-knowledge and concurrent proof



of knowledge through a transformation from any special-sound honest-verifier
zero-knowledge (HVZK) public-coin argument. We here briefly outline the con-
struction.

Outline of the Construction of 2-round Deniable ZK Arguments. On
a very high level the protocol follows the paradigm of Feige-Shamir [17]. The
verifier start by sending a “challenge” and a witness hiding proof of knowledge
of the answer to the challenge, to the prover. The prover thereafter shows using
a WI argument that either it has a witness for the statement it wishes to prove
or that it has the answer to the challenge.

The difficulty in constructing such a protocol relies in the fact that each of
these steps must be implemented in a single message.6

The main technical ingredient that allows us to achieve this goal is the intro-
duction of straight-line extractable commitments in the RO model (see section
4.1). On a high level, these are commitments where the value committed to
can be extracted by a simulator without the use of rewinding techniques. We
construct such commitment schemes by letting the committer use the random
oracle to commit. It follows from the random properties of the oracle that the
committer, in order to succeed in opening a commitment must have applied the
oracle on it, which means that by simply observing all the queries the adversary
makes, the committed values can be extracted without rewinding.

Having established this powerful tool, in section 4.2 we construct a one-
round straight-line witness extractable zero-knowledge arguments for Graph-3-
Coloring in the RO model, by implementing the commitment scheme in the
GMW protocol [23] with straight-line extractable commitments and thereafter
applying the Fiat-Shamir transformation [18] [2] to “collapse” it down to a one-
round zero-knowledge argument in the RO model (see Lemma 6). Straight-line
witness extraction here means that a witness to the statement proved can be
extracted without rewinding the prover. Lemma 1 and 2 can now be applied to
show that the one-round protocol, which is zero-knowledge in the RO model, is
both WH and WI in the RO model.

In order to achieve an efficient protocol, in Lemma 7, we show how to con-
struct a WH and WI one-round straight-line witness extractable argument from
any special-sound HVZK public-coin argument. Essentially this is done by trans-
forming the special-sound HVZK argument into a cut-and-choose argument and
thereafter applying the same transformation as was done for Graph-3-Coloring.

In section 4.3 we finally put everything together to achieve the 2-round de-
niable zero-knowledge argument (see Theorem 8). We here rely on the efficient
OR transformation of [12] to implement the second message of the protocol.

We mention that some technical problems related to the malleability of the
commitments arise in the security proof. Nevertheless, since we have access to

6 Technically, it is actually sufficient that the first step is implemented with a single
message. The second step could conceivable be implemented using 2 rounds (see [35]).
Nevertheless, our construction implements both steps using one-round solutions.



a random oracle these problems can be resolved in a rather straightforward
manner.

4.1 Straight-line Extractable Commitments

We construct efficient commitment schemes with strong properties, without al-
lowing the simulator to choose the random oracle. We start by defining the
notion of straight-line extractable commitments schemes in the RO model. For
simplicity we only state the definition for non-interactive commitment schemes.

Definition 4. Let a PPT committer C commit to a string using a non-
interactive commitment scheme, sending c to the receiver, where |c| = poly(n).
We say that the non-interactive commitment scheme is straight-line extractable
in the RO model if there exists a PPT extractor machine E such that for all c, if
C succeeds in decommitting to x with non-negligible probability, then E(c, l) = x
with overwhelming probability, where l is a list of all the random oracle queries
and answers performed by C during and before the commit phase.

Remark 5. We note that the extractor E is not given access to the random
oracle, but instead receives both the queries and the answers to those queries.

When having access to a random oracle it is easy to construct efficient com-
mitment schemes that are straight-line extractable. Let l be a super-logarithmic
polynomially bounded function, i.e., ω(log(n)) ≤ l(n) ≤ poly(n), and RO :
{0, 1}2n → {0, 1}l(n) be a random oracle. Consider the following commitment
scheme:

SLCom

Commit phase (A sends a commitment, to x ∈ {0, 1}n, to B)
A randomly picks r ∈ {0, 1}n

A → B : c = RO(x, r)

Reveal phase
A → B : x, r
B checks that c = RO(x, r)

Lemma 4. SLCom is a straight-line extractable non-interactive commitment
scheme in the RO model.

Proof. The hiding and binding properties are proven in the full version.
Straight-line extraction follows: The extractor simply goes through the list

{(xi, ri), ci}i=1..poly(n) and checks if there is an i such that ci = c. If so it re-
turns xi, and otherwise nothing. Since the committer, in order to succeed in
opening the commitment with probability that is non-negligible, must have used
the random oracle on the value it committed to, the extractor always succeeds
if the committer succeeds with probability that is non-negligible. (A cheating



committer that has not used the random oracle on the value committed to has a
probability of T (n)

2l(n) , where T (n) is the number of oracle calls during the decommit
phase, of decommitting.) 2

In fact, SLCom can be used either as a statistically binding or statistically
hiding commitment scheme depending on the parameter l: (proof is given in the
full version)

Lemma 5. If l(n) = 4n then SLCom is a statistically binding non-interactive
commitment scheme in the RO model. If l(n) = n/8 then SLCom is a statistically
hiding non-interactive commitment scheme in the RO model.

Extractable Commitments with Oracle Restrained to a Prefix. To be
able to construct multiple commitments that are non-malleable with respect to
each other we generalize the notion of straight-line extractability. We say that
a commitment scheme in the RO model is straight-line extractable with oracle
restrained to the prefix s if the commitment scheme is straight-line extractable
and there exists an extractor that succeeds in extracting witnesses using only
oracle queries that begin with the prefix s. We will in the following let different
parties use different prefixes allowing for individual extraction of the committed
values.

We note that SLCom can be changed in a straight-forward manner to become
straight-line extractable with oracle restrained to the prefix s, by simply concate-
nating the string s to the oracle queries, i.e., RO(s, x, r) becomes a commitment
to the string x, where RO : {0, 1}2n+|s| → {0, 1}l(n).

4.2 Straight-line Witness Extractable Proofs

All previously known proofs of knowledge in the RO model (e.g. [39]) relied on
rewinding and could therefore not be applied to simultaneously extract polyno-
mially many witnesses. We introduce a stronger notion of proofs of knowledge,
namely proofs where witnesses can be extracted without rewinding the prover.
More formally,

Definition 5. We say that an interactive proof with negligible soundness (P, V )
for the language L ∈ NP, with the witness relation RL, is straight-line witness
extractable in the RO model if for every PPT machine P ∗ there exists a PPT
witness extractor machine E such that for all x ∈ L, all y, r ∈ {0, 1}∗, if P ∗

x,y,r

convinces the honest verifier with non-negligible probability, on common input x,
then E(viewV[(P

∗
x,y,r, V (x))], l) ∈ RL(x) with overwhelming probability, where

P ∗
x,y,r denotes the machine P

∗ with common input fixed to x, auxiliary input
fixed to y and random tape fixed to r, viewV[(P

∗
x,y,r, V (x))] is V ’s view including

its random tape, when interacting with P ∗
x,y,r, and l is a list of all oracle queries

and answers posed by P ∗
x,y,r and V .

We show two constructions to achieve efficient straight-line witness extrac-
table arguments in the RO model. First, we show how the GMW [23] protocol



for proving the existence of a 3 coloring to a graph directly can be turned into
a straight-line witness extractable, WH and WI, one-round argument in the RO
model, by applying the Fiat-Shamir transformation [18] to “collapse” it down to
one round, and using straight-line extractable commitments. Secondly we show
how to transform any three round special-sound HVZK public-coin argument
into a straight-line witness extractable, WH and WI, one-round argument. The
second construction is of interest as it allows us to construct efficient protocols
without going through Cook’s transformation.

An Argument System for Graph-3-Coloring. We start off with the three
round protocol of GMW (Goldreich, Micali, Widgerson) [23]:

Protocol Π (GMW’s Graph 3-coloring proof):
Common input: a directed graph G = (VG, EG), with n = |VG|
Auxiliary input to the prover: a 3-coloring of G, c0, c1, .., cn ∈ {1, 2, 3}.

P uniformly chooses a permutation π over 1,2,3.
P → V: Commits to π(c0), π(c1), .., π(cn) using any statistically binding com-
mitment scheme.
V → P: Uniformly selects an edge (i, j) ∈ E.
P → V: Reveals ci, cj .
V checks that ci and cj are different colors.

As is shown in [2] the protocol can be collapsed down to a one-round zero-
knowledge argument, Π ′, in the RO model by running t = 2n∗ |EG| parallel ver-
sions of the protocol and applying the random oracle to all the t first messages,
to “simulate” the honest verifier. This transformation is called the Fiat-Shamir
transformation [18].

Protocol Π ′:
P → V: a′ = a′1, a

′
2, .., a

′
t, c

′ = c′1, c
′
2, .., c

′
t.

V checks that for all 1 ≤ i ≤ t, (a′i, RO(a
′)i, c

′
i) is an accepting execution of the

protocol Π, where RO(a′)i signifies the i’th part of the random oracle’s reply,
such that each part has the appropriate size of the verifier’s challenge in protocol
Π.

Since Π ′ is zero-knowledge in the RO model it is, by Lemma 1 and 2, also
WH and WI. Now, if the commitment scheme chosen has the property of be-
ing straight-line extractable, the resulting protocol is straight-line witness ex-
tractable. (proof is given in the full version)

Lemma 6. If the protocol Π ′ is instantiated with a straight-line extractable com-
mitment scheme the resulting protocol is straight-line witness extractable, witness
hiding and witness indistinguishable in the RO model.



A Transformation from HVZK Protocols. Suppose Π = (a, b, c) is a three
round special-sound HVZK public-coin argument for the language L ∈ NP. In
order to achieve a one-round witness extractable, WH and WI argument for L
we transform the protocol Π into a cut-and-choose protocol Π ′ and thereafter
use the same transformation as was done in the case of the proof of Graph-3-
Coloring. Consider the following protocol:

Protocol Π ′:
P → V: a, two different random numbers b0, b1 ∈ B, commitments to c0, and c1
where ci is the answer to the query bi with a as first message in the protocol Π
V → P: chooses q randomly from {0, 1}
P → V: Decommits to cq

V checks that (a, bq, cq) is a consistent execution of the protocol Π

Now, let Π ′′ be the protocol obtained after applying the Fiat-Shamir trans-
formation on Π ′, i.e., running 2n versions of the protocol in parallel, and simu-
lating the verifier’s challenge by applying the random oracle to the first message:

Protocol Π ′′:
P → V: a′ = a′1, a

′
2, .., a

′
t, c

′ = c′1, c
′
2, .., c

′
t.

V checks that for all 1 ≤ i ≤ 2n, (a′i, RO(a
′)i, c

′
i) is an accepting execution of

the protocol Π ′, where RO(a′)i signifies the i’th bit of the random oracle’s reply.

In the full version of the paper we show,

Lemma 7. If the protocol Π ′′ is instantiated with a straight-line extractable
commitment scheme the resulting protocol is a straight-line witness extractable,
witness hiding and witness indistinguishable argument for L in the RO model.

Witness Extraction by an Oracle Restrained to a Prefix. As with the
commitments schemes, the above mentioned protocols can easily be turned into
arguments that are witness extractable by an oracle restrained to a certain prefix,
by using commitment schemes that are straight-line witness extractable by oracle
restrained to the prefix.

4.3 Deniable Concurrent Zero-knowledge Proofs of Knowledge

In this section we use the witness extractable, WH and WI, one-round arguments
in a way similar to the Feige-Shamir construction [17] to construct a 2-round
straight-line simulatable deniable zero-knowledge argument of knowledge forNP
in the RO model. Since the protocol is straight-line simulatable it is also deniable
concurrent zero-knowledge:

Theorem 8. Assuming the existence of polynomially computable one-way func-
tions, there exists a two round deniable black-box concurrent zero-knowledge ar-
gument for languages in NP in the RO model. Furthermore the argument is both
straight-line witness extractable, and straight-line simulatable.



Proof. Let f : {0, 1}n → {0, 1}poly(n) be a one-way function, and let Π ′ be
a special-sound HVZK public-coin argument for proving the knowledge of a
pre-image to f . Such argument systems exists for every one-way function, by
reducing the one-way function to an instance of the graph hamiltonicity problem,
using Cook’s theorem, and thereafter using Blum’s protocol [3]. We emphasize,
however, that if a specific one-way function is used, the HVZK argument can be
tailored for the function to get an efficient implementation. Examples of such
protocols are the Guillou-Quisquater scheme [28] for the RSA function, and the
Schnorr scheme [38] for the discrete logarithm.

Let the witness relation RL′ , where (x, y) ∈ RL′ if f(x) = y, characterize the
language L′.

Let RO : {0, 1}poly(n) → {0, 1}poly(n) be a random oracle, and the language
L ∈ NP. Consider the following protocol for proving that x ∈ L:

Protocol SLZK

V chooses a random number r ∈ {0, 1}n.
V → P: c = f(r), a one-round WH, straight-line witness extractable, by oracle
restrained to prefix “0”, argument of the statement “∃r′ s.t c = f(r′)” for the
witness relation RL′ .
P → V: a one-round WI, straight-line witness extractable, by oracle restrained
to prefix “1”, argument of the statement “∃r′ s.t c = f(r′) ∨ x ∈ L” for the
witness relation RL∨L′(c, x) = {(r′, w)|r′ ∈ RL′(c) ∨ w ∈ RL(x)}.

To implement the first message, we use the transformation described in sec-
tion 4.2 to turn Π ′, i.e., the special-sound HVZK zero-knowledge argument for
L′, into the needed one-round argument for L′.
The second message is implemented as follows: Assuming that we have a special-
sound HVZK public-coin argument for L, we can use the efficient OR transfor-
mation in [12] to yield a special-sound HVZK public-coin argument for L ∨ L′

and the witness relation RL∨L′ .7 We can thereafter apply the transformation in
section 4.2.

Completeness of the protocol is clear. In order to prove soundness, we start
by noting that the prover sends an argument that is straight-line witness ex-
tractable by oracle restrained to prefix “1”. But since the honest verifier has
not used the oracle with prefix “1”, a witness can be extracted using only the
prover’s oracle queries. If a malicious prover succeeds in convincing the honest
verifier, he must thus have either an r′ s.t c = f(r′) or a witness for x ∈ L.
We will show that the prover needs to have a witness for x: Let the probability
ensemble U be uniform on {0, 1}n, and let X = f(U) be a probability ensemble
for the language L′. Then since f is a one-way function, X is a hard instance
ensemble. Now, if the prover, after having received the verifier’s first message
was able to a find a witness to a randomly chosen instance in the hard-instance

7 The resulting argument uses less communication than the argument for L plus the
argument for L′.



ensemble X, this would violate the witness hiding property of the verifier’s mes-
sage. The claim that the prover must have a witness for x follows. The protocol is
thus straight-line witness extractable for the statement x ∈ L. Soundness follows
automatically.

Straight-line zero-knowledge: The simulator simply extracts r from the veri-
fier’s first message and then uses it as a “fake” witness to send its proof. Since the
prover’s message is a WI argument, the simulator’s output is indistinguishable
from the honest prover’s. 2

Remark 6. We note that since the protocol is straight-line witness extractable
it is also witness extractable under concurrent executions, i.e., witnesses to all
concurrent executions can be simultaneously extracted. Indeed, this feature is of
great importance in, for example, authentification schemes. We note that it was
previously unknown how to simultaneously extract witnesses from polynomially
many proofs in the RO model.

Remark 7. Even though we have access to a random oracle we need to rely on
the existence of one-way functions since our protocol uses the one-way function
in a non-blackbox way. In fact, we either apply Cook’s transformation on the
function, or use specially tailored protocols for specific one-way functions.

A Note on the Efficiency of SLZK. Although the protocol SLZK is con-
structed through an efficient transformation from any special-sound HVZK ar-
gument, the transformation turns the HVZK protocol into a cut-and-choose pro-
tocol inducing a blow up in communication complexity of n. In the full version
of the paper we also show the existence of a more efficient protocol consider-
ing communication complexity, which in particular is not cut-and-choose. The
protocol that is also a proof and not an argument, as SLZK, however uses four
rounds instead of the optimal two.

4.4 Conclusions and directions for future research

We have shown the facility of constructing efficient and powerful protocols that
are deniable zero-knowledge in the RO model.

Open problems. The most urgent open problem is to find a more efficient
construction of one-round witness extractable arguments that do not rely on
cut-and-choose techniques. Secondly, our 2-round protocol relies on the existence
of one-way functions, while our 4-round protocol (given in the full version) does
not. We wonder if it is possible to construct 2-round straight-line simulatable
deniable zero-knowledge protocols without any further assumptions than the
random oracle.
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