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Abstract. Coron et al. proposed the ES-based scheme PSS-ES which
realizes an encryption scheme and a signature scheme with a unique
padding technique and key pair. The security of PSS-ES as an encryp-
tion scheme is based on the partial-domain one-wayness of the encryp-
tion permutation. In this paper, we propose new ES schemes OAEP-ES,
OAEP++-ES, and REACT-ES, and prove their security under the as-
sumption of only the one-wayness of encryption permutation. OAEP-ES,
OAEP++-ES, and REACT-ES suit practical implementation because
they use the same padding technique for encryption and for signature,
and their security proof guarantees that we can prepare one key pair
to realize encryption and signature in the same way as PSS-ES. Since
one-wayness is a weaker assumption than partial-domain one-wayness,
the proposed schemes offer tighter security than PSS-ES. Hence, we con-
clude that OAEP-ES, OAEP++-ES, and REACT-ES are more effective
than PSS-ES. REACT-ES is the most practical approach in terms of the
tightness of security and communication efficiency.

1 Introduction

Since the invention of the RSA encryption scheme [11], there have been a lot of
interest in standardization and investigations into public key cryptosystems, in
particular those for encryption and signature schemes. The encryption scheme
OAEP (Optimal Asymmetric Encryption Padding, [2]) and the signature scheme
PSS (Probabilistic Signature Scheme, [3]) are considered to be practical because
they offer the strongest security level: IND-CCA2 (indistinguishability against
adaptive chosen ciphertext attack) and EUF-ACMA (existentially unforgeable
against adaptive chosen message attack).
OAEP first pads and then encrypts the plaintext while PSS pads and then

signs the message; for encryption (signature), the trapdoor one-way permutation
is applied in the direct (inverse) direction. Coron et al. [4] proposed the ES
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scheme (Encryption-Signature scheme3) PSS-ES, which is based on the message
recovery signature scheme PSS-R [3], and proved its security. For encryption and
signature, PSS-ES uses a shared padding scheme and key pair; the public key and
the private key are chosen adequately for encryption and signing, respectively.
Hence this scheme is useful in terms of implementation. The security proofs
in [4], however, have some technical mistakes. Moreover, even if these mistakes
are corrected, the fact that the security of PSS-ES as an encryption scheme is
based on partial-domain one-wayness of the encryption permutation, decreases
the reduction efficiency; it must use long keys to achieve adequate security.
This paper gives the exact security of PSS-ES by correcting the problems in

[4]. Moreover, this paper introduces new ES schemes, OAEP-ES and REACT-
ES, that are based on OAEP+ [12] and REACT [10], respectively4. The pro-
posed schemes satisfy IND-CCA2&ACMA (Indistinguishability against adaptive
chosen ciphertext attack and adaptive chosen message attack) as an encryption
scheme and EUF-CCA2&ACMA (Existentially unforgeable against adaptive cho-
sen ciphertext attack and adaptive chosen message attack) as a signature scheme
under the assumption of only the one-wayness of the permutation, while PSS-ES
relies upon the partial-domain one-wayness of the encryption permutation for
its security as an encryption scheme.
The rest of this paper is organized as follows. Section 2 recalls the definitions

of the ES scheme and its security notations. Section 3 proposes new ES schemes,
OAEP-ES and REACT-ES, and gives their security. In section 4, we point out
the problems of original security proof of PSS-ES, given by Coron et al. [4], and
give its exact security. In sections 5 and 6, we compare reduction efficiency of
proposed schemes with the one of PSS-ES following the estimation of Nakashima
and Okamoto [9] and discuss the reason why our schemes are more practical
than PSS-ES. Furthermore, Appendices A and B present the security proofs of
REACT-ES.
As a result, OAEP-ES, OAEP++-ES, and REACT-ES can realize secure

encryption-signature scheme (ES scheme) with a unique padding technique and
key pair; their reduction efficiency are much better than those of PSS-ES. Due to
the high reduction efficiency of its security proof and its improved communication
efficiency, REACT-ES is the most practical approach.

2 Definitions

2.1 ES scheme with Universal Padding Technique

We describe a model of the ES scheme3 (Encryption-Signature scheme) and its
security. Since the ES scheme realizes an encryption scheme and a signature

3 The ES scheme differs from signcryption [14]; the ES scheme realizes both encryption
and signature schemes with a common padding technique and key pair (encrypt or
sign), while signcryption realizes encrypt then sign or sign then encrypt scheme.

4 We can construct another ES scheme, OAEP++-ES, based on OAEP++ [7]. In this
paper, we will omit the detail of OAEP++-ES.



Efficient Universal Padding Techniques 367

scheme with a common padding technique and key pair, we introduce attack
model CCA2&ACMA following [4], where adversary A (forger F) can freely use
both decryption oracle D and signing oracle Σ. We extend notions of security
IND-CCA2 [1] and EUF-ACMA [6] to create IND-CCA2&ACMA (Indistinguisha-
bility against adaptive chosen ciphertext attack and adaptive chosen message at-
tack) and EUF-CCA2&ACMA (Existentially unforgeable against adaptive chosen
ciphertext attack and adaptive chosen message attack), respectively.

Definition 1 (ES scheme with a unique padding technique). If µ is
a padding technique, then the ES scheme (K, E ,D,S,V) with µ is defined as
follows:

— Key generation algorithm K is probabilistic algorithm which, given security
parameter k, outputs the pair of public and private keys, K(1k) = (pk, sk).
We regard pk as f and sk as f−1, hereafter.

— Encryption algorithm E takes plaintext x and public key pk, calculates z =
µ(x, r) with some random integer r, and returns ciphertext5 y = f(z) =
Epk(x). This algorithm is probabilistic6.

— Decryption algorithm D takes ciphertext y and private key sk, calculates z =
f−1(y) and µ−1(z) = x||r (un-padding), and returns plaintext x = Dsk(y)
if y is a valid ciphertext. Otherwise D returns Reject. This algorithm is
deterministic.

— Signing algorithm S takes message x and private key sk, calculates z =
µ(x, r) with some random integer r, and returns signature5 σ = f−1(z) =
Ssk(x). This algorithm is probabilistic.

— Verification algorithm V takes signature σ and public key pk, calculates
z = f(σ) and µ−1(z) = x||r (un-padding), and returns message x = Vpk(σ)
if σ is a valid signature. Otherwise V returns Reject. This algorithm is de-
terministic.

We denote the ES scheme for encryption and for signature by ES(E) and
ES(S), respectively (e.g., OAEP-ES(E) and OAEP-ES(S) mean the OAEP-ES
using in an encryption and a signature, respectively).

Definition 2 (IND-CCA2&ACMA). Let A be an adversary of the encryption
scheme. The attack scenario is described as follows:

1. A receives public key pk with K(1k) = (pk, sk).
2. A submits decryption queries for ciphertext y of his choice to decryption

oracle D and gets corresponding plaintext x. Moreover, A submits signing
queries for message x′ of his choice to signing oracle Σ and gets correspond-
ing signature σ.

5 The input of f may be a part of z, i.e., we allow to regard y = f(z1)||z2 (σ =
f−1(z1)||z2) as the ciphertext (signature) for z = z1||z2.

6 Since padding technique µ is probabilistic, encryption permutation f may be deter-
ministic(e.g., RSA).
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3. A generates two plaintexts x0, x1 of identical length, and sends them to en-
cryption oracle E as a challenge.

4. E chooses b
R
← {0, 1} and returns y∗ = Epk(xb) to A as a target ciphertext.

5. A continues to submit decryption queries for ciphertext y of his choice to D
and gets corresponding plaintext x. Moreover, A continues to submit signing
queries for message x′ of his choice to Σ and gets corresponding signature
σ. In this phase, the only restriction is that A cannot issue a query for y∗

to D.
6. A guesses b in this attack and outputs b̂.

The adversary’s advantage is defined as Adv(A) = |2Pr[b = b̂]− 1|. We say that
the encryption scheme is (t, qD, qΣ , qH , ε)-secure in the sense of IND-CCA2&ACMA

if an arbitrary adversary7, whose running time is bounded by t, cannot achieve
an advantage more than ε after making at most qD decryption queries, qΣ signing
queries, and qH hash queries.

Definition 3 (EUF-CCA2&ACMA). Let F be a forger of the signature scheme.
The attack scenario is described as follows:

1. F receives public key pk with K(1k) = (pk, sk).
2. F submits signing queries for message x of his choice to signing oracle Σ

and gets corresponding signature σ. Moreover, F submits decryption queries
for ciphertext y′ of his choice to decryption oracle D and gets corresponding
plaintext x′.

3. F outputs forgery σ∗ with Vpk(σ
∗) = x∗ for some x∗ (x∗ 6= x for any signing

query x).

The forger’s success probability is defined as ε = Pr[Vpk(σ
∗) = x∗]. We say that

the signature scheme is (t, qD, qΣ , qH , ε)-secure in the sense of EUF-CCA2&ACMA

if an arbitrary forger7,whose running time is bounded by t, cannot achieve a
success probability more than ε after making at most qD decryption queries, qΣ
signing queries, and qH hash queries.

Note that the security proof of the ES scheme with a unique padding tech-
nique comes in two parts, first as an encryption scheme and then as a signature
scheme.

2.2 Assumption of One-way Permutation

We classify trapdoor one-way permutations according to the difficulty of invert-
ing them as follows [5]:

7 We restrict the adversary (forger) by upper bounding the running time and the
number of decryption, signing, and hash queries. We denote that A (F) breaks
an encryption scheme (signature scheme) in (t, qD, qΣ , qH , ε) if A can distinguish
b (F can outputs a forgery) within the time bound t and the advantage (success
probability) more than ε using, at most, qD decryption, qΣ signing, and qH hash
queries.
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Definition 4. Let f : {0, 1}k0 × {0, 1}k1 → {0, 1}k0 × {0, 1}k1 be a permuta-
tion. We say that

— f is (τ, ε)-one-way, if an arbitrary adversary whose running time is bounded by
τ has success probability Succow(A) that does not exceed ε. Here, Succow(A) =
Prs,t[A(f(s, t)) = (s, t)].

— f is (τ, ε)-partial-domain one-way, if an arbitrary adversary whose running
time is bounded by τ has success probability Succpd−ow(A) that does not exceed
ε. Here, Succpd−ow(A) = Prs,t[A(f(s, t)) = s].

Moreover, we define Succow(τ) = maxA Succow(A) and Succpd−ow(τ) = maxA
Succpd−ow(A), for all A, whose running time is bounded by τ .

By the above definition, we have Succpd−ow(τ) >= Succow(τ) for any τ . This
inequality means that partial-domain one-wayness is a stronger assumption than
one-wayness.

Through this paper, we assume that permutation f is multiplicative8. The
multiplicative property of the permutation is described below.

Definition 5. If f is a function, we call it a multicative function if

f(ab) = f(a)f(b)

for arbitrary a and b.

3 Proposal Schemes

Coron et al. [4] used PSS-R to construct PSS-ES which realizes both an encryp-
tion and a signature with a common padding technique and key pair. PSS-ES is
suitable for implementation, however, its security as an encryption scheme relies
on the partial-domain one-wayness of f . Since the partial-domain one-wayness
is stronger assumption than the one-wayness, the reduction efficiency is not tight
and it must use long keys to achieve adequate security.

We propose new ES schemes, OAEP-ES, OAEP++-ES, and REACT-ES,
which overcome this problem, and describe their security results. Since the se-
curity proofs of OAEP-ES, OAEP++-ES are similar to that of REACT-ES, we
give the proofs of REACT-ES in Appendix A and B.

8 Though the security of ES(S) can be ensured without the multiplicative property of
f (which is not used in the security proof of ES(E) at all) as in [4], the reduction is
not tight. Our interest is the comparison among ES schemes discussed in Section 5
in the practical situation, where RSA scheme is adopted as (f, f−1), which satisfies
the multiplicative property.
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3.1 Methodology

We will give new ES schemes based on several encryption schemes which have a
padding technique; OAEP+, OAEP++, and REACT. The simplest method9 of
constructing an ES scheme from encryption schemes seems by replacing encryp-
tion permutation f with its inverse f−1.
Unfortunately, if we construct a new signature scheme from an encryption

scheme by simple replacement of permutation of f with f−1, its security is not
ensured. For example, it is easy for a known-message attacker to generate an
existential forgery under the one-way permutation with a special property in
the similar way of Shoup’s attack.
This is a formal explanation of this situation. In the security proof of a

signature, in order to invert f on an input of integer η (i.e., to calculate f−1(η)),
we embed η into some random oracle query about message x and random integer
r (e.g., consider the query r||x to H ′ in OAEP+) and simulate another random
oracle about r (e.g., G(r) in OAEP+). In this strategy, if the random oracle
value about r (e.g., G(r)) is already defined, we abort the simulation (fail to
simulate). However, when the adversary can freely choose the query r, it implies
that we fail to simulate this case with a high probability.
Therefore, there might be a possibility that we could generally construct a

provably secure ES scheme from an encryption scheme as follows10: (i) we replace
the r, which is an input for random oracle G, by a hash value of x and a new
r′(e.g., r = w = H ′(x||r′)), and (ii) we replace x with x||r′.
In this paper, we create ES schemes from OAEP+ and REACT, following

this methodology.

3.2 OAEP-ES

A simple ES scheme can be created using OAEP+ [12], OAEP-ES. OAEP-ES
relies for its security upon only the one-wayness of the permutation, so it is
more practical than PSS-ES. OAEP-ES has, however, worse reduction efficiency
than OAEP++-ES and REACT-ES as we will show. A description of OAEP-ES
and its security results are as follows.
OAEP-ES with hash functionsG : {0, 1}k1 → {0, 1}n+k0 andH,H ′ : {0, 1}n+k0

→ {0, 1}k1 , and the common padding scheme µ1 (Figure 1) and key pair (f, f
−1)11,

is executed as follows:
—Encryption and Signing : In order to encrypt or to sign x, we choose r

R
←

9 Coron et al. simply constructed an encryption scheme by replacing signing permu-
tation f−1 of PSS-R with f and proposed PSS-ES which has the same padding
technique as PSS-R.

10 Reference [8] gives a detailed explanation of this methodology.
11 In the general model, we assume that f : {0, 1}k → {0, 1}k is a multiplicative
permutation. If the implementation uses RSA permutation: Zn → Zn, we put “0” in
front of the padding data to make the domain k bit integer. In this case, the model
and theorems will need to be adjusted. We adopt the same discussion for PSS-ES,
OAEP++-ES, and REACT-ES.
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{0, 1}k0 , set w = H ′(x||r) ∈ {0, 1}k1 , and calculate s = (x||r) ⊕ G(w), t =
H(s)⊕ w, and µ1(x, r) = s||t. We then return y = f(µ1(x, r)) as the ciphertext
or σ = f−1(µ1(x, r)) as the signature, respectively.
—Decryption and Verification: For ciphertext y or signature σ, we recover s||t =
f−1(y) or s||t = f(σ) (|s| = n + k0, |t| = k1), respectively. Next, we calculate
w = t ⊕ H(s), divide x||r = s ⊕ G(w) (|x| = n, |r| = k0), and check whether
w = H ′(x||r). If the check passes, we return x; otherwise Reject.

x r w

G

H

s t

H ′

Fig. 1. Padding Techniques µ1 for ES Schemes

The security results of OAEP-ES are as follows:

Theorem 1 (Security result of OAEP-ES(E)). Let A be an adversary
that breaks OAEP-ES in (τ, qD, qΣ , qG, qH′ , qH , ε) in the sense of IND-CCA2&ACMA.
Then:

{

Succow(τ ′) >= ε− q
H′+qΣ
2k0

− (q
H′+qΣ+1)(qG+q

H′+qΣ)+qD
2k1

τ ′ <= τ + {(qG + qH′ + qΣ)(qH + qH′ + qΣ) + qH′ + qΣ}Tf

where Tf denotes the time complexity of f .

Theorem 2 (Security result of OAEP-ES(S)). Let F be a forger that
breaks OAEP-ES in (τ, qD, qΣ , qG, qH′ , qH , ε) in the sense of EUF-CCA2&ACMA.
Then:

{

Succow(τ ′) >= ε− q
H′qΣ
2k0

− (q
H′+qΣ)(qG+q

H′+qΣ)+qD+1

2k1

τ ′ <= τ + (2qH′ + 2qΣ + 1)Tf

where Tf denotes the time complexity of f .

3.3 REACT-ES

REACT was proposed by Okamoto and Pointcheval [10]. To use REACT for
encryption, we first generate random integer r and encrypt plaintext x by a
symmetric encryption scheme with the hash value of r as the key. Second, we
encrypt r by an asymmetric encryption scheme and send it with ciphertext of x
and a check code.



372 Y.Komano, K.Ohta

Therefore, in REACT, once we encrypt r with the asymmetric encryption
scheme, we can send a long plaintext using the symmetric encryption scheme
with high speed (which, so-called, is KEM (Key Encapsulation Mechanism, [13]));
REACT is more practical in terms of communication efficiency than OAEP,
OAEP+, and OAEP++. Moreover, Nakashima and Okamoto [9] showed that
REACT has tighter security than OAEP or OAEP+.

REACT-ES with hash functions G : {0, 1}k1 → {0, 1}k3 , H ′ : {0, 1}n+k0 →
{0, 1}k1 , and H : {0, 1}2(n+k0+k1) → {0, 1}k2 (k = k1), symmetric encryption
scheme Esym

key , where key length is k3, public key f , and private key f−1, is
executed as follows (Figure 2):

—Encryption and Signing : In order to encrypt or to sign x, we choose r
R
←

{0, 1}k0 , set w = H ′(x||r) ∈ {0, 1}k1 , and calculate c2 = Esym

G(w)(x||r). Next, we

set c1 = f(w) for encryption or c1 = f−1(w) for signing, and return (c1, c2, c3 =
H(x||r, w, c1, c2)) as the ciphertext or signature, respectively.
—Decryption and Verification: For ciphertext (c1, c2, c3) or signature (c

′
1, c2, c3),

we recover w = f−1(c1) or w = f(c′1), respectively. Next, we calculate x||r from
Esym

G(w)(c2), and check whether both ”w = H ′(x||r) and c3 = H(x||r, w, c1, c2)” or

both ”w = H ′(x||r) and c3 = H(x||r, w, c′1, c2)”, respectively. If the check passes,
we return x as the plaintext or the message, respectively; otherwise Reject.

x rw

G
H

c2c1

key
Esym

f/f−1

c3

Fig. 2. REACT-ES

We use the following theorems to examine the security of REACT-ES. The
proof are described in Appendix A and B, respectively.

Theorem 3 (Security result of REACT-ES(E)). Let the symmetric en-
cryption scheme be (τ ′, ν)-secure12, and let A be an adversary that breaks REACT-
ES in (τ, qD, qΣ , qG, qH′ , qH , ε) in the sense of IND-CCA2&ACMA. Then:

{

Succow(τ ′) >= ε− ν − q
H′+qΣ
2k0

− qD
2k1

τ ′ <= τ + (qG + qH + 2qH′ + 2qΣ)Tf

where Tf denotes the time complexity of f .

12 See the definition of security model of symmetric encryption scheme, §2.2 of [10].
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Theorem 4 (Security result of REACT-ES(S)). Let F be a forger that
breaks REACT-ES in (τ, qD, qΣ , qG, qH′ , qH , ε) in the sense of EUF-CCA2&ACMA.
Then:

{

Succow(τ ′) >= ε− q
H′qΣ
2k0

− qD+1
2k1

τ ′ <= τ + (2qH′ + 2qΣ + 1)Tf

where Tf denotes the time complexity of f .

4 PSS-ES

4.1 Security of PSS-ES(E)

The security proof of PSS-ES(E) in [4] (Theorem 2 and Lemma 4) has two
minor technical mistakes as follows: (i) the number of queries (about w) to G is
not qH′ + qΣ (the last line in page 14 of [4]) but qG + qH′ + qΣ because G(w)
may be defined by query w to G directly, (ii) this proof overlooks calculation
time (qH′ + qΣ)Tf as part of the cost of querying the decryption oracle (line 10
in page 14 of [4], reading in Lemma 1’s results into proof of Lemma 4). This
consideration of these problems yields the following security result.

Theorem 5 (Security result of PSS-ES(E)). Let A be an adversary that
breaks PSS-ES(E) in (τ, qD, qΣ , qG, qH′ , ε) in the sense of IND-CCA2&ACMA.
Then:







Succpd−ow(τ ′) >=
1

qG+q
H′+qΣ

(

ε− q
H′+qΣ
2k0

− (q
H′+qΣ)(qG+q

H′+qΣ)+qD
2k1

)

τ ′ <= τ + 2(qH′ + qΣ)Tf

where Tf denotes the time complexity of f .

4.2 Security of PSS-ES(S)

The proof of Theorem 3 in [4] has three minor technical mistakes as follows: (i)
it misses the probability qΣ

2k0
that appears because I cannot answer the signing

query for the pair of message and random integers implanting η previously13,
(ii) the number of queries w to G is not qH′ + qΣ (line 18 in page 16 of [4])
but qG + qH′ + qΣ because G(w) may be defined by the query w to G directly,
(iii) this proof overlooks the calculation time (qH′ + qΣ)Tf as part of the cost
of querying the decryption oracle (line 9 in page 16 of [4], reading in Lemma 1’s
results into proof of Theorem 3). This consideration of these problems yields the
following security result.

Theorem 6 (Security result of PSS-ES(S)). If F is a forger that breaks
PSS-ES(S) in (τ, qD, qΣ , qG, qH′ , ε) in the sense of EUF-CCA2&ACMA, then:

{

Succow(τ ′) >= ε− q
H′qΣ
2k0

− (q
H′+qΣ)(qG+q

H′+qΣ)+qD+1

2k1

τ ′ <= τ + (2qH′ + 2qΣ + 1)Tf

where Tf denotes the time complexity of f .

13 In our results, since η is embedded qH′ times, the corresponding probability is
q
H′qΣ

2k0
.
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5 Reduction Efficiency

We evaluate the security of RSA-OAEP-ES and RSA-REACT-ES following the
approach taken by Nakashima and Okamoto [9] and compare them to RSA-PSS-
ES. For each scheme, we consider the usages of encryption and signature.

Reference [9] uses the recommended key size in order to confirm that no
adversary has the ability to break the 1024, 2048 bits factoring problem. In
estimating the key size, we use Lemma 4 of [5] to modify the security statement
of RSA-PSS-ES; that is, f ’s partial-domain one-wayness is replaced by one-
wayness of RSA permutation paying the cost of running time and decreasing
the success probability.

Throughout this evaluation, we assume that breaking the RSA problem is
equivalent to solving the factoring problem, and that k0 and k1 are enough
large so that factors that suppress the reduction efficiency can be ignored. The
complexity of the factoring problem is measured by applying a number field sieve.
Table 1 shows the recommended key size that achieves the same complexity as
the 1024, 2048 bits factoring problem.

Table 1. Recommended key size

Scheme 1024bit 2048bit
zw
PSS-

ES

Encryption 6221 12452
Signature 1363 2596

zw
OAEP-
ES

Encryption 5252 10838
Signature 1363 2596

zw
REACT-
ES

Encryption 1363 2596
Signature 1363 2596

As in Table 1, OAEP-ES has better reduction efficiency than PSS-ES because
the security of PSS-ES(E) is based on partial-domain one-wayness. Therefore,
compared to PSS-ES, OAEP-ES can decrease the key size by more than 950 bits
for the 1024 bits factoring problem and by more than 1600 bits for 2048 bits
factoring problem.

Moreover, as in Table 1, REACT-ES offers much better reduction efficiency
than PSS-ES and OAEP-ES, and the key size does not increase comparing with
the number of bits in the factoring problem14. This is because the running time
of the permutation inverter of REACT-ES is of the order of qH′ while that of
OAEP-ES is of order of qGqH . This means that the key length of REACT-ES is
shorter than that of OAEP-ES.

14 OAEP++-ES has the same reduction efficiency as REACT-ES, i.e., the recom-
mended key size for OAEP++-ES is the same as the one for REACT-ES.
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6 Discussion

REACT-ES is superior to OAEP-ES in terms of the running time of the per-
mutation inverter, as shown by Theorem 3 (moreover, since PSS-ES owes its
security to partial-domain one-wayness, its reduction efficiency is not good).
More precisely, when inverting the permutation for PSS-ES and OAEP-ES,

the inverter should locate the preimage using the product of two hash functions’
input/output lists15 (G-List and H-List). The inverter of REACT-ES, however,
locates the preimage using the sum of two lists (H-List and G-List).Accordingly,
the running time of the above theorem on REACT-ES is less than those on
PSS-ES and OAEP-ES.
Therefore, as described in Section 5, the recommended key sizes that provide

the same complexity as the 1024, 2048 bits factoring problem are, for OAEP++-
ES and REACT-ES, much shorter than those of PSS-ES and OAEP-ES, and are
about the same as the bit size of the factoring problem.
With regard to communication efficiency, the length of plaintext or message,

in PSS-ES, OAEP-ES, and OAEP++-ES, is restricted to the key size. REACT-
ES, however, allows us to encrypt (sign) arbitrary length of plaintext (message)
by using symmetric encryption; it follows that REACT-ES is the most practi-
cal technique giving the high reduction efficiency of its security proof and its
improved communication efficiency.

7 Conclusion

This paper first gave the general methodology to construct an ES scheme from
an encryption scheme with a padding technique and proposed new ES schemes,
OAEP-ES, OAEP++-ES, and REACT-ES, which use a unique padding tech-
nique and key pair to realize encryption and signature. It also proved that these
two usages of proposed schemes satisfy IND-CCA2&ACMA and EUF-CCA2&ACMA,
respectively. These schemes are suitable for implementation because they need
only one padding technique and key pair.
Moreover, OAEP++-ES and REACT-ES offer much better reduction effi-

ciency than PSS-ES and OAEP-ES. Using the evaluation of [9], the difficulty
of breaking OAEP++-ES and REACT-ES is almost equal to that of the key
size factoring problem. Hence, we conclude that OAEP++-ES and REACT-ES
are more efficient than PSS-ES or OAEP-ES. Furthermore, from the view of the
communication efficiency, REACT-ES allows us to encrypt (sign) a plaintext
(message) arbitrary length through the use of symmetric encryption; we can
conclude that REACT-ES is the most practical candidate due to the tightness
of its security and its improved communication efficiency.
This paper also corrected the original mistakes made in proving the security

of PSS-ES.

15 For PSS-ES, when replacing the partial-domain one-wayness to the one-wayness as
in Lemma 4 of [5], we ought to run the adversary twice and get two input/output
lists (two G-Lists).
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A Proof of Theorem 3

We follow the definition of symmetric encryption scheme and its security model
from [10]. In the security proof of Theorem 3, assume that the symmetric en-
cryption scheme is (τ ′, ν)-secure.

A.1 Construction of Inverter I

We give the construction of inverter I that breaks the one-wayness of f about
c+, by using adversary A that breaks REACT-ES(E) in (τ, qD, qΣ , qG, qH′ , qH , ε)
in the sense of IND-CCA2&ACMA, as follows: we input public key f to A, answer
the queries that A asks to the random oracles, to the decryption oracle, and to
the signing oracle in the following way, and receive challenge (x0, x1). We then

choose b
R
← {0, 1}, r+ R

← {0, 1}k0 , and k
R
← {0, 1}k3 and put c+2 = Esym

k (xb||r
+).

Moreover, we answer the queries that A asks in the following way, and finally,
receive b̂ (or stop A after its running time τ is over).
In simulating random oracles G, H ′, and H, we construct input/output lists,

G-List, H′-List, and H-List, respectively. In G-List, we preserve pair (w,G(w)) of
query w and answer G(w). In H′-List, we keep seven-tuple (x||r,H ′(x||r), z, c1,
c2, c3, c

′
3) of query x||r, answer H ′(x||r), guarantee z, c2, c

′
3 for signing queries,

and pledge c1, c2, c3 for decryption queries. In H-List, we preserve sextuplet
(w, x||r, c1, c2, H(w, x||r, c1, c2)) of query w, x||r, c1, c2 and answerH(w, x||r, c1, c2).

Answering the random oracle queries to G, H ′, and H: For new query
w to G, we choose a random integer from {0, 1}k3 , put it to G(w), answer to
A, and add (w,G(w)) to G-List. If w has already been queried to G, we locate
(w,G(w)) ∈ G-List and answer G(w).
For new query (w, x||r, c1, c2) toH, we choose random integer c3 from {0, 1}

k2 ,
put it to H(w, x||r, c1, c2), answer to A, and add (w, x||r, c1, c2, c3) to H-List.
Moreover, we simulate G(w) in the above way16. If (w, x||r, c1, c2) has already
been queried to H, we locate (w, x||r, c1, c2, c3) ∈ H-List and answer c3.

For new query x||r to H ′, we get z
R
← {0, 1}k1 , set f(z) = w, and calculate

c1 = f(w). Next, we simulate G(w) in the same way described above, calculate
c2 = Esym

G(w)(x||r). Finally, we put c3 = H(w, x||r, c1, c2) and c′3 = H(w, x||r, z, c2)

by simulating H in the same way described above, answer w as H ′(x||r) to A,
and add (x||r, w, z, c1, c2, c3, c

′
3) to H′-List. If x||r has already been queried to

H ′, we locate (x||r, w, ∗, ∗, ∗, ∗, ∗) ∈ H′-List and answer w.
Answering the decryption queries to D: In order for decryption query

y = (c1, c2, c3) to be valid ciphertext, (x||r, ∗, ∗, c1, c2, c3, ∗) must be contained
in H′-List. In this case, we can answer with the corresponding plaintext x. Oth-
erwise, we answer Reject since the probability of H ′(x||r) = w is negligible.

Answering the signing queries to Σ: For signing query x to Σ, we get

r
R
← {0, 1}k0 and check whether (x||r, ∗, z, ∗, c2, ∗, c

′
3) is in H′-List. If so, we answer

16 We simulate G because we want to collect the information of input/output on w
in G-List; this makes the estimation of the success probability of the permutation
inversion easy.
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σ = (z, c2, c
′
3) to A as a signature. Otherwise, we choose z

R
← {0, 1}k1 , set f(z) =

w, and calculate c1 = f(w). Next, we simulate G(w) in the same way described
above, calculate c2 = Esym

G(w)(x||r). Finally, we put c3 = H(w, x||r, c1, c2) and

c′3 = H(w, x||r, z, c2) by simulating H in the same way described above, add
(x||r, w, z, c1, c2, c3, c

′
3) to H′-List, and answer σ = (z, c2, c

′
3) as a signature to A.

A.2 Analysis

Let y+ = (c+, c+2 , c+3 ) be a target ciphertext that we answer to A deviating the
protocol, and w+, r+, and x+ be corresponding elements. In order to analyze the
success probability of I, we use following notations: AskG and AskH′ are events
for which (w+, ∗) ∈ G-List, and (∗||r+, ∗, ∗, ∗, ∗, ∗, ∗) ∈ H′-List, respectively, and
moreover, let EBad be an event17 that AskH′∧ [H ′(xi||r

+) 6= w+ for i = 0, 1], let
DBad be an event that we fail to simulate in D, and let Bad = EBad ∨ DBad18.
Our aim in setting these notations is to estimate the probability of AskG. At
first, we divide this event as follows:

Pr[AskG] = Pr[AskG ∧ Bad] + Pr[AskG ∧ ¬Bad]. (1)

With regard to Pr[AskG ∧ Bad] in equation (1), from the definition of Bad, we
have

Pr[AskG ∧ Bad] = Pr[Bad]− Pr[¬AskG ∧ Bad]

≥ Pr[Bad]− Pr[EBad|¬AskG]− Pr[DBad|¬AskG]. (2)

We can estimate Pr[EBad|¬AskG] in inequality (2) because, by the definition of
EBad, we have Pr[EBad|¬AskG] <= Pr[AskH′|¬AskG]. Here, Pr[AskH′|¬AskG] <=
q
H′+qΣ
2k0

, because if ¬AskG occurs, G(w+) and r+ are random integers for A and
it is only by accident that ∗||r+ is queried to H ′.
Moreover, Pr[DBad|¬AskG] in inequality (2) is less than qD

2k1
. Note that in

answering to decryption query (c1, c2, c3), we search H′-List for corresponding
plaintext x, therefore we fail to simulate the decryption oracle if A does not
query H ′ about x||r and ciphertext (decryption query) y output by A is valid.
However, if A does not query H ′ about x||r, H ′(x||r) is uniformly distributed in
{0, 1}k1 , and then, it is only by accident (with probability 1

2k1
) that w = f−1(c1)

equals H ′(x||r).
Hence, we can evaluate Pr[AskG ∧ Bad] in equation (1) by

Pr[AskG ∧ Bad] >= Pr[Bad]−
qH′ + qΣ
2k0

−
qD
2k1

. (3)

With regard to the second term of equation (1), it is meaningful to consider
the advantage of A because of the condition ¬Bad. We can do this by evaluating

17 In this event, A may notice that we answer y+ as a target ciphertext deviating the
protocol.

18 Note that we never fail to simulate the answer to the signing query, described in
section A.1, and do not need to consider event ΣBad.
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Pr[AskG ∧ ¬Bad] as follows:

Pr[AskG ∧ ¬Bad] ≥ Pr[A = b ∧ AskG ∧ ¬Bad]

= Pr[A = b ∧ ¬Bad]− Pr[A = b ∧ ¬AskG ∧ ¬Bad]. (4)

In inequality (4), both

Pr[A = b ∧ ¬Bad] >= Pr[A = b]− Pr[Bad] = (
ε

2
+
1

2
)− Pr[Bad]

and19

Pr[A = b ∧ ¬AskG ∧ ¬Bad] = Pr[A = b|¬AskG ∧ ¬Bad] Pr[¬AskG ∧ ¬Bad]

= (
ν

2
+
1

2
)(1− Pr[Bad]− Pr[AskG ∧ ¬Bad])

<
=
1

2
(1− Pr[Bad]− Pr[AskG ∧ ¬Bad]) +

ν

2
· 1.

hold20. Therefore, by substituting above two inequalities into (4),

Pr[AskG ∧ ¬Bad] >=
ε− ν − Pr[Bad] + Pr[AskG ∧ ¬Bad]

2

holds and this inequality leads to

Pr[AskG ∧ ¬Bad] >= ε− ν − Pr[Bad]. (5)

Hence, the considerations of equation (1) and inequalities (3) and (5) con-
clude the proof of Theorem 3.
The running time τ ′ of I is the sum of the following terms: (i) the running

time τ of A because we run A once, (ii) in order to find corresponding pair from
G-List to c+, we compute f at most qG + qH′ + qH + qΣ times, i.e., (qG + qH′ +
qH + qΣ)Tf , (iii) in order to be able to simulate D and Σ, we calculate both
f(z) and f(w) in simulation of H ′ and Σ21 qH′ + qΣ times, i.e., (qH′ + qΣ)Tf .
Hence, τ ′ <= τ + (qG + qH + 2qH′ + 2qΣ)Tf holds.

19 Note that in our simulation, if A notices the deviation (i.e., if event Bad occurs), it
does not run for some pairs of random coins of A and I. Therefore, Pr[A = b] in this
inequality is taken over the random coins of A and I in which A does not notice the
deviation. Though the probabilistic space is restricted and smaller than the entire
probabilistic space, the probability of the event that A = b is equal to the one taken
over the entire probabilistic space, from the definition of the random oracle model;
Pr[A = b] = ε

2
+ 1

2
.

20 Note that the probability that A = b holds under the condition of ¬AskG and ¬Bad

is equal to the probability that A can distinguish b from x0, x1 and c+2 , without
secret key k; Pr[A = b|¬AskG∧¬Bad] = ν

2
+ 1

2
. This is because from ¬Bad, A cannot

notice the deviation and performs the same way as in the real run. Moreover, from
¬AskG, A cannot know k = G(w+).

21 This seems to require the calculation of f 2(qH′+qΣ) times, but qH′+qΣ calculations
are sufficient. Indeed, when we add an element including w to G-List or H-List, we
check whether f(w) = c+ holds. This action plays the role of preparing for the
simulation of D and is already counted in (ii). Therefore, we consider only the
preparation for the signing oracle queries in (iii).
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B Proof of Theorem 4

B.1 Construction of Inverter I

We give the construction of inverter I that breaks the one-wayness of f about
η, by using forger F that breaks REACT-ES(S) in (τ, qD, qΣ , qG, qH′ , qH , ε) in
the sense of EUF-CCA2&ACMA as follows: we input public key f to F , answer
the queries that F asks to the random oracles, to the decryption oracle, and to
the signing oracle in the same way in section A.1, except those to H ′ and Σ
(described below). Finally, we receive forgery σ∗ = (c∗1, c

∗
2, c

∗
3) (or stop F after

its running time τ is over.)
In simulating random oracles G, H ′, and H, we construct input/output lists,

G-List, H′-List, and H-List, respectively. G-List holds (w,G(w)), the pairing of
query w and answer G(w). H′-List holds (b, x||r,H ′(x||r), z, c1, c2, c3.c

′
3), the bit

b = 0/1, query x||r, answer H ′(x||r), guarantee z, c2, c
′
3 for signing queries,

and pledge c1, c2, c3 for decryption queries. H-List holds (w, x||r, c1, c2, H(w, x||r,
c1, c2)), the pairing of query w, x||r, c1, c2 and answer H(w, x||r, c1, c2).

Answering the random oracle queries to H ′

For new query x||r to H ′, we get z
R
← {0, 1}k1 , set f(z)η = w, and calculate

c1 = f(w). Next, we simulate G(w) in the same way as in section A.1, calculate
c2 = Esym

G(w)(x||r). Finally, we put c3 = H(w, x||r, c1, c2) and c′3 = H(w, x||r, z, c2)

by simulating in the same way as in section A.1, answer w as H ′(x||r) to F , and
add (1, x||r, w, z, c1, c2, c3, c

′
3) to H′-List. If x||r has already been queried to H ′,

we locate (∗, x||r, w, ∗, ∗, ∗, ∗, ∗) ∈ H′-List and answer w.
Answering the signing queries to Σ: For signing query x to Σ, we get

r
R
← {0, 1}k0 and check whether (0, x||r, ∗, z, ∗, c2, ∗, c

′
3) is in H′-List. If so, we

answer σ = (z, c2, c
′
3) to F as a signature. Moreover, if (1, x||r, ∗, ∗, ∗, ∗, ∗, ∗) is in

H′-List, we abort. Otherwise, we choose z
R
← {0, 1}k1 , put f(z) = w, and calculate

c1 = f(w). Next, we simulate G(w) in the same way as in section A.1, calculate
c2 = Esym

G(w)(x||r). Finally, we put c3 = H(w, x||r, c1, c2) and c′3 = H(w, x||r, z, c2)

by simulating in the same way as in section A.1, add (0, x||r, w, z, c1, c2, c3, c
′
3)

to H′-List, and answer σ = (z, c2, c
′
3) as a signature to F .

B.2 Analysis

Let σ∗ = (c∗1, c
∗
2, c

∗
3) be a forgery output by F ; w

∗, r∗, and x∗ are the corre-
sponding elements. In order to analyze the success probability of I, let DBad

be the same event as in A.2, ΣBad an event that I fails to simulate in Σ, and
Bad = DBad ∨ ΣBad. Moreover, let S be an event that Vpk(σ

∗) = x∗, and let
AskH′ be one that F queries directly H ′ about x∗||r∗.
At first, we consider

1 = Pr[Bad] + Pr[¬Bad]. (6)

With regard to Pr[Bad] <= Pr[DBad] + Pr[ΣBad] in equation (6), we have

Pr[Bad] <=
qH′qΣ
2k0

+
qD
2k1

. (7)
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In fact, Pr[DBad] is evaluated in the same way as in section A.2. On the other
hand, Pr[ΣBad] is bounded by qΣ(

q
H′

2k0
). Note that in simulating the answer

signing query x, we first choose random integer r and z for the candidate of the
signature, and simulate H ′ about x||r. In this phase, ΣBad occurs if x||r has
already queried to H ′ by F directly, because we can not calculate f−1(η). For
a signing query, the probability that x||r is queried to H ′ is bounded by q

H′

2k0
22

because of randomness of r, and then, we can estimate Pr[ΣBad] by qΣ(
q
H′

2k0
).

With regard to Pr[¬Bad] in equation (6), we divide event ¬Bad by S and
have

Pr[¬Bad] = Pr[S ∧ ¬Bad] + Pr[¬S ∧ ¬Bad]. (8)

In this equation (8),

Pr[¬S ∧ ¬Bad] <= Pr[¬S|¬Bad] = 1− Pr[S|¬Bad] = 1− ε (9)

holds23.
Next, we estimate Pr[S ∧ ¬Bad] in equation (8) by dividing event S ∧ ¬Bad

by AskH′:

Pr[S ∧ ¬Bad] = Pr[S ∧ ¬Bad ∧ AskH′] + Pr[S ∧ ¬Bad ∧ ¬AskH′].

In this equality, Pr[S ∧ ¬Bad ∧ ¬AskH′] is bounded by 1
2k1

because it is an
incident that H ′(x∗||r∗) = w∗ if (1, x∗||r∗, ∗, ∗, ∗, ∗, ∗, ∗) /∈ H′-List holds. On the
other hand, we have Pr[S∧¬Bad∧AskH′] <= Pr[S∧AskH′] <= Succow(τ ′) because
if both (1, x∗||r∗, ∗, z∗, ∗, ∗, ∗, ∗) ∈ H′-List and S hold, then we can compute
c∗
1

z∗
= f−1(f(z∗)η)

z∗
= f−1(η) from the multiplicative property of f . Therefore, we

have

Pr[S ∧ ¬Bad] <= Succow(τ ′) +
1

2k1

. (10)

By substituting inequalities (9) and (10) into equation (8), we have

Pr[¬Bad] <= Succow(τ ′) +
1

2k1

+ 1− ε. (11)

Finally, if we substitute inequalities (7) and (11) into equation (6), we can
conclude the proof of Theorem 4.
The running time τ ′ of I is the sum of the following terms: (i) the running

time τ of F because we run F once, (ii) in the simulation of Σ, we have to
prepare the answer for queries to D and Σ, i.e., 2qΣTf , (iii) in the simulation
of H ′, we have to prepare the answer for queries to D and to implant η, i.e.,
2qH′Tf , (iv) we have to find z∗ corresponding to c∗1 by computing f(c∗1) once,
i.e., Tf . Hence, τ

′ <
= τ + (2qH′ + 2qΣ + 1)Tf holds.

22 Note that for signing query x, if we choose random integer r such that x||r is queried
toH ′ through the past signing query, we can reply this query by locating correspond-
ing signature from H

′
-List. Therefore, we only consider the case that x||r has already

queried to H ′ by F directly, in the estimation of ΣBad.
23 Note that the success probability of F under the condition that F does not notice
the simulation is equal to the one in real run and this leads Pr[S|¬Bad] = ε.


