
Weak Key Authenticity and the Computational

Completeness of Formal Encryption

Omer Horvitz1 and Virgil Gligor2

1 Department of Computer Science,
University of Maryland, College Park MD 20742

horvitz@cs.umd.edu
2 Department of Electrical and Computer Engineering,
University of Maryland, College Park MD 20742

gligor@eng.umd.edu

Abstract. A significant effort has recently been made to rigorously re-
late the formal treatment of cryptography with the computational one.
A first substantial step in this direction was taken by Abadi and Rog-
away [AR02]. Considering a formal language that treats symmetric en-
cryption, [AR02] show that an associated formal semantics is sound with
respect to an associated computational semantics, under a particular,
sufficient, condition on the computational encryption scheme. In this pa-
per, we give a necessary and sufficient condition for completeness, tightly
characterizing this aspect of the exposition. Our condition involves the
ability to distinguish a ciphertext and the key it was encrypted with, from
a ciphertext and a random key. It is shown to be strictly weaker than
a previously suggested condition for completeness (confusion-freedom
of Micciancio and Warinschi [MW02]), and should be of independent
interest.

Keywords. Cryptography, Encryption, Authentication, Formal Reason-
ing, Completeness, Weak Key Authenticity.

1 Introduction

Modern cryptography has been investigated from both a formal and a computa-
tional perspective. Of the former, a typical treatment features a formal language,
in which statements, representing cryptographic entities and operations, can be
made. Their security properties are usually stated outside the language, cap-
tured in operations that manipulate the formal statements, or expressed with
additional formal constructs. Of the latter, a typical treatment uses algorithms
on strings of bits to model cryptographic operations. Security properties are de-
fined in terms of probability and computational complexity of successful attacks.
Recently, an effort has been made to relate the two approaches, traditionally

considered separately and mostly by different communities. A successful attempt
holds the promise of bringing the strengths of one treatment to the other. From
one direction, it is expected to quantify and highlight implicit assumptions of

Weak Key Authenticity of Formal Encryption 529

formal semantics. In addition, it should confirm and increase the relevance of
formal proofs to concrete computational instantiations. From the other direction,
the establishment of such connections may allow the application of high level
formal reasoning mechanisms to the computational domain.

A first step in this direction was taken by Abadi and Rogaway [AR02]. Fo-
cusing on symmetric encryption, their work is based on a formal language that
includes constructs to represent bits, keys and an encryption operation. Two se-
mantics are defined for the language. In the first, an expression in the language
is associated with a syntactic counterpart, the pattern, which mirrors the expres-
sion up to parts that should look unintelligible to a viewer (informally, parts that
are encrypted with keys that are not recoverable from the expression). Expres-
sions are said to be equivalent in this setting if their patterns are equal (up to
key renaming). This constitutes a formal semantics. In the second definition, an
expression is associated with an ensemble of distributions on strings, obtained by
instantiating its encryption construct with a concrete computational encryption
scheme with different security parameters. Two expressions are said to be in-
distinguishable in this setting if their associated ensembles are computationally
indistinguishable. This constitutes a computational semantics. Under this frame-
work, [AR02] give a soundness result: they show that under specific, sufficient,
conditions on the computational encryption scheme, equivalence of expressions
in the formal semantics implies their indistinguishability in the computational
semantics.

Our Results. In this paper, we tightly characterize the completeness aspect
of this exposition. We identify a necessary and sufficient condition on the com-
putational encryption scheme under which indistinguishability in the computa-
tional setting implies equivalence in the formal one. For any two expressions,
our condition involves the admittance of an efficient test that distinguishes a
ciphertext and the key it was encrypted with, from a ciphertext and some ran-
dom key, with a noticeable (i.e., non-negligible) probability, when the plaintexts
are drawn from the ensembles associated with those expressions. An encryption
scheme that satisfies this requirement is said to admit weak key-authenticity tests
for expressions. The result is obtained using a new proof technique, featuring a
fixpoint characterization of formal equivalence.

In the literature [MW02,AJ01], the notion of confusion-freedom was previ-
ously proposed as sufficient for completeness. Informally, a confusion-free en-
cryption scheme is one in which the decryption of a ciphertext with a wrong
key fails with almost certainty. The above-mentioned work suggests the use of
a full-fledged authenticated encryption scheme [BN00,KY00] to achieve this no-
tion. We compare confusion-freedom with a strengthened version of the notion of
the admittance of weak key-authenticity tests for expressions, that involves the
admittance of a single, all-purpose, weak key-authenticity test, defined purely
in computational terms. Such test is referred to as a weak key-authenticity test.
We show that the requirement that an encryption scheme admits a weak key-
authenticity test is strictly weaker than the requirement that it be confusion-free
(and certainly weaker than the requirement that it be an authenticated encryp-

530 O. Horvitz, V. Gligor

tion scheme). To that effect, we present a simple encryption scheme that admits
a weak key-authenticity test but is not confusion-free. The scheme thus matches
our completeness criterion, but not that of [MW02]. Furthermore, it meets the
soundness criterion of [AR02].

The notion of the weak key authenticity should be of independent interest.
As a primitive, it relates to the absence of a weak version of key-anonymity
[BB01] and which-key revealing [AR02] properties. It would be interesting to
investigate ways of meeting it, other than the ones presented here, and explore
its practical uses.

The paper proceeds as follows. In section 2, we revisit the formal treatment
of symmetric encryption of [AR02], and give a fixpoint characterization of the
“reachable parts” of expressions. In section 3, we discuss the computational
treatment of symmetric encryption, and revisit the computational semantics for
expressions of [AR02]. In section 4, we give our main completeness result for
schemes that admit weak key-authenticity tests for expressions. In section 5, we
present the strengthened version of the test and compare it with other cryp-
tographic notions; in particular, we show that the admittance of a weak key-
authenticity test is a weaker property of an encryption scheme than it being
confusion-free. The proof demonstrates a method of achieving the admittance of
a weak key-authenticity test.

2 Formal Treatment of Symmetric Encryption, Formal

Semantics for Expressions

In this section, we revisit the formal treatment of symmetric encryption of [AR02].
That treatment consists of a formal language and a formal semantics. Our goal
is to recast the definitions of [AR02] in terms that pertain closely to the tree
structure of expressions in the language. In addition, we provide an alternative,
fixpoint characterization of the “reachable parts” of expressions, that plays an
important role in the proof of our completeness result.

2.1 A Formal Language for Symmetric Encryption

Let Bits be the set {0, 1}. Let Keys be a fixed, non-empty set of symbols,
disjoint from Bits. The elements of Bits and Keys are referred to as bits and
keys, respectively. Following the work of [AR02], we let our formal language,
denoted by Exp, be a set of expressions, defined inductively as follows:

1. bits and keys are expressions. They are referred to as atomic expressions, or
simply atoms.

2. (a) If M and N are expressions, then so is (M,N). We say that (M,N) is
directly derived from M and N ; it is non-atomic.

(b) If M is an expression and K is a key, then {M}K is an expression. We
say that {M}K is is directly derived from M ; it is non-atomic too.

Weak Key Authenticity of Formal Encryption 531

Parts 2a and 2b of the above definition are called derivation rules. Informally,
(M,N) represents the pairing of expressions M and N ; {M}K represents the
encryption of expression M with key K.
Expressions are strings of symbols. The length of an expression E is the

number of symbols it is comprised of (count ‘}K ’ as a single symbol), and is
denoted by |E|. We use E1 = E2 to denote that the expressions E1, E2 are
identical as strings of symbols.
It is important to note that every non-atomic expression can be associated

with a unique rule and a unique set of expressions from which it is directly
derived. Expressions in Exp are consequently said to be uniquely readable. The
converse holds too. Formally, two non-atomic expressions E1, E2 ∈ Exp are
identical as strings of symbols iff either

– E1 = (M1, N1), E2 = (M2, N2) and M1 =M2, N1 = N2; or
– E1 = {M1}K1

, E2 = {M2}K2
and M1 =M2, K1 = K2.

For a proof, see the full version of this paper [HG03].
The structure of an expression can be represented naturally in the form of a

tree. A derivation tree TE for an expression E is defined inductively as follows:

1. If E is atomic, then TE consists of a single node, the root, labelled by E.
2. If E is non-atomic, then TE consists of a single node, the root, labelled by

E, and an ordered list of trees for the expressions from which E is directly
derived; the sets of nodes of these trees are disjoint, and none contains the
root of TE . If E = (M,N), we say that TM and TN are the left and right
subtrees of TE , respectively. The roots of TM and TN are said to be the left
and right children of the root of TE , respectively. Similarly, if E = {M}K
then TM is said to be the subtree of TE ; the root of TM is said to be the
child of the root of TE .

Informally, the notion of a derivation tree resembles that of the standard parse
tree; the two relate in that a node in a derivation tree is labelled with the yield
of the corresponding node in the parse tree. We let |TE | denote the cardinality
of the set of nodes of TE .
We mention two properties of expressions and their derivation trees that

are relevant to our treatment. First, two expressions are identical as strings of
symbols iff their respective derivation trees are identical; to see this, apply the
unique readability property of expressions and its converse inductively to the
structure of the derivation trees. Second, if |E| = n, then TE consists of at most
n nodes; this can be shown by induction on the length of an expression.

2.2 Formal Semantics for Expressions

In defining a formal semantics for Exp, we seek to capture a notion of privacy,
intuitively associated with the encryption operation. In particular, we would
like to express our understanding that parts of expressions, representing en-
cryptions with keys that are not recoverable from the text, are unintelligible

532 O. Horvitz, V. Gligor

(or unreachable) to a viewer. We would also like to capture our understanding
that expressions, differing only in their unintelligible parts, “look the same” to
a viewer. Just as in [AR02], we do so by mapping each expression to a syntactic
counterpart, the pattern, which mirrors only its reachable parts. We then define
equivalence of expressions in terms of their respective patterns. We state our
definitions in terms of functions on derivation trees of expressions and patterns,
rather than in the form of procedures on expressions and patterns, as is done
in [AR02].
Let TE be the derivation tree of an expression E, let V be its node set and

r ∈ V its root. A set U ⊆ V is said to contain the reachable nodes of TE if:

1. r ∈ U .
2. For all u ∈ U ,
(a) if u is labelled with an expression of the form (M,N), then both the

children of u in TE (labelled M and N) are in U .
(b) if u is labelled with an expression of the form {M}K , and there exists a

u′ ∈ U labelled K, then the child of u in TE (labelled M) is in U .

For E ∈ Exp of length n, TE consists of at most n nodes, of which there
are at most 2n subsets. It follows that the number of sets containing the set of
reachable nodes of TE is finite. Let R be the intersection of all those sets. It is
easy to show that R itself contains the set of reachable nodes of TE ; it is minimal
in the sense that it is contained in all such sets. We call R the set of reachable
nodes of TE . Informally, reachable nodes correspond to parts of an expression
that should be intelligible to a viewer.
Let TE be a derivation tree with a root r and a set of reachable nodes R.

The graph induced by TE on R must be a tree rooted at r, and not a forest
(otherwise, let R′ be the set of nodes in the connected component that contains
r; R′ is a set that contains the set of reachable nodes in TE , contradicting the
minimality of R). We call this tree the tree of reachable nodes, and use TR

E to
denote it.
The definition of a pattern extends that of an expression with the addition

of an atomic symbol, 2. Informally, 2 will appear in parts of a pattern that
correspond to unintelligible parts of the associated expression.
Let Pat be the set of patterns, defined inductively as follows:

1. bits, keys and the symbol 2 are (atomic) patterns.
2. (a) If M and N are patterns, then (M,N) is a (non-atomic) pattern.
(b) If M is a pattern and K is a key, then {M}K is a (non-atomic) pattern.

As with expressions, we associate a pattern P with a derivation tree TP . Two
patterns are identical as strings of symbols iff their respective derivation trees
are identical.
To map expressions to patterns via their respective derivation trees, we will

need an appropriate notion of tree isomorphism. Let T1, T2 be finite, rooted,
ordered trees with node sets V1, V2 and roots r1 ∈ V1, r2 ∈ V2, respectively. T1,
T2 are said to be isomorphic as rooted, ordered trees if there exists a bijection
ϕ : V1 → V2 such that:

Weak Key Authenticity of Formal Encryption 533

1. ϕ(r1) = r2.
2. For all v ∈ V1, (u1, . . . , uk) are the children of v in T1 iff (ϕ(u1), . . . , ϕ(uk))
are the children of ϕ(v) in T2.

ϕ is said to be an isomorphism of T1, T2 as rooted, ordered trees.
Let TE be the derivation tree of an expression E, VE its node set, R ⊆ VE

its set of reachable nodes. Let TP be the derivation tree of a pattern P , VP its
node set. We say that expression E has a pattern P if there exists a ϕ : R→ VP

such that:

1. ϕ is an isomorphism of TR
E , TP as rooted, ordered trees.

2. For all v ∈ R,
(a) if v is labelled with a bit, then ϕ(v) is labelled with an identical bit.
(b) if v is labelled with a key, then ϕ(v) is labelled with an identical key.
(c) if v is labelled (M,N), then ϕ(v) is labelled (M ′, N ′).
(d) if v is labelled {M}K and there exists a u ∈ R labelled K, then ϕ(v) is

labelled {M ′}K .
(e) if v is labelled {M}K and there does not exist a u ∈ R labelled K, then

ϕ(v) is labelled 2.

The corresponding definition of [AR02] amounts to a walk of TR
E and TP that

enforces the above constraints.
We note that the pattern P associated with each expression E is unique.

To see this, notice that the uniqueness of TE implies a unique set of reachable
nodes R, which implies a unique TR

E , which is mapped to a unique TP , which, in
turn, guarantees a unique P . The converse is not true, however; every pattern
has infinitely many expressions that are mapped to it.
We proceed with the notion of expression equivalence. Informally, we require

that the derivation trees of patterns corresponding to equivalent expressions be
isomorphic up to key renaming. For i ∈ {1, 2}, let Pi be the pattern of expression
Ei, with a derivation tree TPi over VPi . We say that E1 is equivalent to E2, and
write E1

∼= E2, iff there exists a ϕ : VP1
→ VP2

and a permutation σ on Keys
such that:

1. ϕ is an isomorphism of TP1
, TP2

as rooted, ordered trees.
2. For all v ∈ VP1

,
(a) if v is labelled with a bit, then ϕ(v) is labelled with an identical bit.
(b) if v is labelled K, then ϕ(v) is labelled with σ(K).
(c) if v is labelled (M,N), then ϕ(v) is labelled (M ′, N ′).
(d) if v is labelled {M}K , then ϕ(v) is labelled {M ′}σ(K).
(e) if v is labelled 2, then ϕ(v) is labelled 2.

Composing the above definitions, we obtain the following property of the
equivalence relation.

Theorem 2.1. For i ∈ {1, 2}, let Ei be an expression with a derivation tree
TEi
, a set of reachable nodes REi

and an induced tree of reachable nodes TR
Ei
.

Then E1
∼= E2 iff there exist a ϕ : RE1

→ RE2
and a permutation σ on Keys

such that:

534 O. Horvitz, V. Gligor

1. ϕ is an isomorphism of TR
E1
, TR

E2
as rooted, ordered trees.

2. For all v ∈ RE1
,

(a) if v is labelled with a bit, then ϕ(v) is labelled with an identical bit.
(b) if v is labelled K, then ϕ(v) is labelled with σ(K).
(c) if v is labelled (M,N), then ϕ(v) is labelled (M ′, N ′).
(d) if v is labelled {M}K and there exists a u ∈ RE1

labelled K, then ϕ(v)
is labelled {M ′}σ(K) and ϕ(u) is labelled σ(K).

(e) if v is labelled {M}K and there does not exist a u ∈ RE1
labelled K, then

ϕ(v) is labelled {M ′}K′ and there does not exist a u′ ∈ RE2
labelled K ′.

The proof, mostly technical, appears in the full version of this paper [HG03].
We conclude with a brief discussion of some ramifications of the formal se-

mantics we have seen in this section. We observe that under the above definitions,
the encryption operator:

– “Preserves privacy”, as seen in the equivalence {0}K ∼= {1}K . Informally, a
ciphertext conceals the underlying plaintext.

– “Conceals plaintext repetitions”, as seen in the equivalence ({0}K , {0}K) ∼=
({0}K , {1}K). Informally, an adversary, given two ciphertexts, cannot tell
whether their underlying plaintexts are identical or not.

– “Conceals key repetitions”, as seen in the equivalence ({0}K1
, {1}K1

) ∼=
({0}K7

, {1}K8
). Informally, an adversary, given two ciphertexts, cannot tell

whether they were generated with the same encryption key or not.
– “Conceals plaintext length”, as seen in the equivalence {0}K ∼= {(0, (1, 0))}K .
Informally, the ciphertext conceals the length of the underlying plaintext.

The definitions of semantics can be modified to accommodate relaxations
of the above properties. For example, the semantics can be made sensitive to
different plaintext lengths, by introducing an atomic pattern symbol 2n for
each size n and modifying the definition of equivalence appropriately. We stress
that the results of [AR02] and ours can be modified to tolerate such changes.

2.3 A Fixpoint Characterization of the Set of Reachable Nodes

The set of reachable nodes was defined in the previous section in set-intersection
terms. Here, we give an alternative characterization that plays an important role
in the proof of our completeness result. We show that for an expression E, the set
of reachable nodes of TE is the least fixpoint of an associated operator, OE . In
addition, we show that this fixpoint can be achieved by an iterative application
of the operator, no more than a polynomial (in the size of E) number of times.
The reader is referred to the full version of this paper [HG03] for a full account.
Let S be a finite set, and let 2S be the set of all subsets of S. A set A ⊆ 2S

is said to be a fixpoint of O : 2S → 2S if O(A) = A; A is said to be the least
fixpoint of O, and is denoted lfp(O), if A is a fixpoint of O and for all fixpoints
B of O, A ⊆ B. The powers of O are defined as follows:

O0 = ∅

Oi = O(Oi−1) for all i ∈ N+

Weak Key Authenticity of Formal Encryption 535

Consider an expression E with a derivation tree TE over a set of nodes VE

with a root rE ∈ VE . Let OE : 2
VE → 2VE be defined as follows:

OE(A) =

u ∈ VE

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

either:
(a) u = rE ; or
(b) ∃v ∈ A labelled (M, N) with a left child u in TE (labelled M); or
(c) ∃v ∈ A labelled (M, N) with a right child u in TE (labelled N); or
(d) ∃v ∈ A labelled {M}K with a child u in TE (labelled M)
and ∃w ∈ A labelled K.

We prove the following:

Theorem 2.2 (A Fixpoint Characterization of the Set of Reachable
Nodes [HG03]). Let E be an expression of length n, TE its derivation tree
over VE, RE ⊆ VE the set of reachable nodes. Then there exists an i ∈ N,
0 ≤ i ≤ n, such that for all j ≥ i, Oj

E = lfp(OE) = RE.

3 Computational Treatment of Symmetric Encryption,

Computational Semantics for Expressions

In this section, we describe a computational treatment of symmetric encryption:
we define an encryption scheme, discuss a relevant notion of security, and review
methods of achieving such a notion under standard assumptions. The discussion
is similar to the one in [AR02], and may be skipped without significant damage.
We then use a computational encryption scheme to define a semantics for the
language of expressions of subsection 2.1, recasting the corresponding definition
of [AR02] in terms of the derivation trees of expressions.

3.1 Computational Treatment of Symmetric Encryption

Let {0, 1}∗denote the set of all finite binary strings and let |x| denote the length
of x ∈ {0, 1}∗.
An encryption scheme Π = (K, E ,D) with a security parameter η ∈ N con-

sists of three polynomial-time algorithms, as follows:

– K, the key generation algorithm, is a probabilistic algorithm that takes a
security parameter η ∈ N (provided in unary—denoted by 1η) and returns a
key k ∈ {0, 1}∗. We write k

R
← K(1η), thinking of k as being drawn from the

probability distribution induced by K(1η) on {0, 1}∗. When used as a set,
we let K(1η) denote the support of that distribution.

– E , the encryption algorithm, is a probabilistic algorithm that takes a key
k ∈ K(1η) for some η ∈ N and a plaintext x ∈ {0, 1}∗ and returns a ciphertext
c ∈ {0, 1}∗∪{⊥}. As before, we write c

R
← Ek(x), thinking of c as being drawn

from the probability distribution induced by Ek(x) on {0, 1}
∗
. When used as

a set, we let Ek(x) denote the support of that distribution.

536 O. Horvitz, V. Gligor

It is common for encryption schemes to restrict the set of strings they are
willing to encrypt; having the encryption algorithm return ⊥ is intended to
capture such restrictions. We make two requirements. First, we insist that
for a given η ∈ N, a plaintext x ∈ {0, 1}∗ is either restricted or not, that
is, for all k ∈ K(1η), Ek(x) = {⊥} or for all k ∈ K(1

η), Ek(x) 63 ⊥. We
use PlainΠ[η] to denote the set of unrestricted plaintexts, for any η ∈ N.
Second, we require that for any η ∈ N, if x ∈ {0, 1}∗ is not restricted, then
all x′ ∈ {0, 1}∗ of the same length are unrestricted.
In addition, we insist that the length of a ciphertext c ∈ Ek(x) depend only
on η and |x| when k ∈ K(1η), for any x and η.

– D, the decryption algorithm, is a deterministic algorithm that takes a key
k ∈ K(1η) for some η ∈ N and a ciphertext c ∈ {0, 1}∗ and returns some
x ∈ {0, 1}∗ ∪ {⊥}. We write x← Dk(c).
Having the decryption algorithm output ⊥ is intended to reflect a rejection
of the given ciphertext.

We require that Π be correct ; that is, for all η ∈ N, for all k ∈ K(1η) and for
all x ∈ PlainΠ[η], Dk(Ek(x)) = x.

A Notion of Security. We consider a variation of the standard notion of
indistinguishability under chosen-plaintext attacks (IND-CPA security, for short)
of [GM84,BD97]. Informally, the strengthened version “conceals key repetitions”
and “conceals message lengths”, as discussed in subsection 2.2. This is necessary
for a soundness result (see [AR02] for additional motivation).
Recall that a function ε : N→ R is negligible if for every constant c ∈ N there

exists an ηc such that for all η > ηc, ε(η) ≤ η−c.
Let Π = (K, E ,D) be an encryption scheme, η ∈ N a security parameter and

A an adversary with access to two oracles (denoted A(·),(·)). Define:

Adv0Π[η](A) =Pr[k, k
′ R
← K(1η) : AEk(·),Ek′ (·)(1η) = 1]

− Pr[k
R
← K(1η) : AEk(0),Ek(0)(1η) = 1],

where Ek(·) is an oracle that returns c
R
← Ek(m) on input m, and Ek(0) is an oracle

that returns c
R
← Ek(0) on input m. We say that Π is Type-0/IND-CPA, Key-

repetition Concealing, Length Concealing secure [AR02] if for every probabilistic,
polynomial-time adversary A, Adv0

Π[η](A) is negligible (as a function of η).

Pseudorandom Function Families and Achieving Type-0 Security. Given

a set S, let x
R
← S denote the sampling of x from S endowed with a uniform

distribution.
Let η ∈ N, l, L be polynomials, Funcl(η)→L(η) the set of all functions from

{0, 1}l(n)
to {0, 1}L(n)

, F ⊆ Funcl(η)→L(η) a family of functions indexed by
{0, 1}η, and A an adversary with access to an oracle (denoted A(·)). Define:

Advprf
F [η](A) =Pr[k

R
← {0, 1}η : AFk(·)(1η) = 1]

− Pr[f
R
← Funcl(η)→L(η) : Af(·)(1η) = 1],

Weak Key Authenticity of Formal Encryption 537

where Fk(·) is an oracle that returns Fk(x) on input x, and f(·) is an oracle
that returns f(x) on input x. We say that F is pseudorandom [GG86] if for

every probabilistic, polynomial time adversary A, Advprf
F [η](A) is negligible (as a

function of η).
Pseudorandom function families are commonly used in computational cryp-

tography as building blocks for encryption schemes, as in the CBC and CTR
modes. In [BD97], it is shown that these modes are IND-CPA secure when us-
ing an underlying pseudorandom family of functions. In [AR02], the authors
describe how these results extend to achieve Type-0 security. See the mentioned
references for more details.

3.2 Computational Semantics for Expressions

In this section, we define a computational semantics for the language of ex-
pressions of section 2.1. We first associate an expression with an ensemble of
distributions over {0, 1}∗, resulting each from the “instantiation” of the expres-
sion with a concrete computational encryption scheme with a particular security
parameter. We then define expression indistinguishability in terms of the indis-
tinguishability of associated ensembles.
Let E be an expression, TE its derivation tree over VE , KeysE the set of key

symbols appearing in E (that is, atomic keys and keys from derivations of the
form {·}K). Let Π = (K, E ,D) be an encryption scheme with a security parame-
ter η ∈ N. For x1, . . . , xk ∈ {0, 1}

∗
and a tag t from some finite, fixed set of tags,

let 〈x1, . . . , xk, t〉 denote an (arbitrary, fixed, unambiguous, polynomial-time)
encoding of x1, . . . , xk, t as a string over {0, 1}

∗
. Define the following procedure:

SampleΠ[η](E)

1. For each K ∈ KeysE , let τ(K)
R
← K(1η).

2. Assign a sampling label to each v ∈ VE , inductively, as follows:
(a) If v is labelled with a bit b, let its sampling label be 〈b, “bit”〉.
(b) If v is labelled with a key K, let its sampling label be 〈τ(K), “key”〉.
(c) If v ia labelled (M,N), its left child in TE has a sampling label m and

its right child in TE has a sampling label n, then let the sampling label
of v be 〈m,n, “pair”〉 if m,n 6= ⊥, ⊥ otherwise.

(d) If v is labelled {M}K and its child in TE has a sampling label m, then
let the sampling label of v be 〈Eτ(K)(m), “ciphertext”〉 if m 6= ⊥, ⊥
otherwise.

3. Output the sampling label of the root of TE .

Let [[E]]Π(η) denote the probability distribution induced by SampleΠ[η](E) on

{0, 1}∗ ∪ ⊥; let [[E]]Π denote the ensemble
{

[[E]]Π(η)

}

η∈N
.

We write x
R
← D to indicate that x is sampled from a distribution D. To

make our forthcoming definitions robust, we require that Π is such that for every

expression E, there exists an ηE ∈ N such that for all η ≥ ηE and e
R
← [[E]]Π(η),

e ∈ PlainΠ[η].

538 O. Horvitz, V. Gligor

For i ∈ {1, 2}, let Di = {Di(η)}η∈N be probability distribution ensembles, A
an algorithm. Define:

Advind
D1(η),D2(η)(A) =Pr[x

R
← D1(η) : A(1

η, x) = 1]

− Pr[x
R
← D2(η) : A(1

η, x) = 1].

We say that D1, D2 are indistinguishable, and write D1 ≈ D2, if for every proba-
bilistic, polynomial time algorithm A, Advind

D1(η),D2(η)(A) is negligible (as a func-
tion of η).

Let E1, E2 be expressions. We say that E1, E2 are indistinguishable, and write

E1
Π

≈ E2, iff [[E1]]Π ≈ [[E2]]Π .

4 Weak Key-Authenticity Tests for Expressions,

Semantic Completeness

The soundness result of Abadi and Rogaway states that for acyclic expressions3

E1, E2 and a Type-0 encryption scheme Π, E1
∼= E2 implies E1

Π

≈ E2. Here, we
give a necessary and sufficient condition for completeness, tightly characteriz-
ing this aspect of the exposition. For any two acyclic expressions, the condition
involves the admittance of an efficient test that distinguishes a ciphertext and
the key it was encrypted with, from a ciphertext and some random key, with a
noticeable probability, when the plaintexts are drawn from the ensembles asso-
ciated with those expressions. Formally:

Definition 4.1 (Weak Key-Authenticity Test for Expressions). Let Π =
(K, E ,D) be an encryption scheme with a security parameter η ∈ N, let E1, E2

be acyclic expressions, A an algorithm. Define:

Advwka-exp
Π[η],E1,E2

(A)

= Pr[e
R
← [[E1]]Π(η); k

R
← K(1η); c

R
← Ek(e) : A(1

η, c, k) = 1]

− Pr[e
R
← [[E2]]Π(η); k, k

′ R
← K(1η); c

R
← Ek(e) : A(1

η, c, k′) = 1].

We say that Π admits a weak key-authenticity test for E1, E2 (WKA-EXP-
(E1, E2) test, for short), if there exists a probabilistic, polynomial-time algorithm

A such that Advwka-exp
Π[η],E1,E2

(A) is non-negligible (as a function of η).

We say that Π admits weak key-authenticity tests for expressions (WKA-
EXP tests, for short), if for all acyclic expressions E1 and E2, Π admits a weak
key-authenticity test for E1, E2.

Our main result is the following:

3 Expressions that do not contain “encryption cycles”; see [AR02] for a formal defini-
tion.

Weak Key Authenticity of Formal Encryption 539

Theorem 4.2 (The admittance of WKA-EXP tests is necessary and
sufficient for completeness). Let Π = (K, E ,D) be an encryption scheme.

Then for all acyclic expressions E1 and E2, E1
Π

≈ E2 implies E1
∼= E2 iff Π

admits weak key-authenticity tests for expressions.

We begin by proving the necessity part. Let E1, E2 be two acyclic expressions.
Consider the expressions M1 = ({E1}K ,K), M2 = ({E2}K ,K ′) (without loss
of generality, assume K does not occur in E1, E2). M1 6∼= M2, so by the com-

pleteness assumption M1 6
Π

≈ M2. Let B be such that Advind
[[M1]]Π(η),[[M2]]Π(η)

(B)

is non-negligible. We use B to construct a WKA-EXP-(E1, E2) test A for Π.

Define: A(1η, c, k)
def
= B(1η, 〈〈c, “ciphertext”〉, 〈k, “key”〉, “pair”〉). Now:

Advwka-exp
Π[η],E1,E2

(A)

= Pr[e
R
← [[E1]]Π(η); k

R
← K(1η); c

R
← Ek(e) : A(1

η
, c, k) = 1]

− Pr[e
R
← [[E2]]Π(η); k, k

′ R
← K(1η); c

R
← Ek(e) : A(1

η
, c, k

′) = 1]

= Pr

e
R
← [[E1]]Π(η);

k
R
← K(1η);

c
R
← Ek(e)

: B

(

1η,
〈〈c, “ciphertext”〉,
〈k, “key”〉, “pair”〉

)

= 1

− Pr

e
R
← [[E2]]Π(η);

k, k′
R
← K(1η);

c
R
← Ek(e)

: B

(

1η,
〈〈c, “ciphertext”〉,
〈k′, “key”〉, “pair”〉

)

= 1

= Pr[e
R
← [[({E1}K , K)]]Π(η) : B(1

η
, e) = 1]

− Pr[e
R
← [[({E2}K , K

′)]]Π(η) : B(1
η
, e) = 1]

= Pr[e
R
← [[M1]]Π(η) : B(1

η
, e) = 1]− Pr[e

R
← [[M2]]Π(η) : B(1

η
, e) = 1]

= Advind
[[M1]]Π(η),[[M2]]Π(η)

(B),

where the second equality is due to the definition of A, and the third due to
the definition of SampleΠ[η]. It follows that A is a weak key-authenticity test for
E1, E2, as required. This completes the necessity part of the proof.
Next, we sketch the sufficiency part; a complete proof appears in [HG03].

Assume E1 6∼= E2. To show that [[E1]]Π(η) 6≈ [[E2]]Π(η), we consider an algorithm
that simultaneously parses its input e, a sample from either [[E1]]Π(η) or [[E2]]Π(η),
and expressions E1, E2, attempting to construct ϕ, σ that bear witness to the
equivalence of the expressions. By the assumption, this attempt is bound to
fail. We show that upon failure, the algorithm has enough parsed information to
predict the origin of the sample with a non-negligible probability of success. In
some cases, the prediction depends on an application of a weak key-authenticity
test for (particular, fixed) expressions to the amassed information.
Specifically, the algorithm computes the powers of the operator OE1,E2,e,

defined in Fig. 1 (where S = VE1
× VE2

× {0, 1}∗), as long as they satisfy the
predicate TEST, also of Fig. 1. Let i ∈ N. Let V i

E1
=
{

v1

∣

∣(v1, ·, ·) ∈ Oi
E1,E2,e

}

,

V i
E2
=
{

v2

∣

∣(·, v2, ·) ∈ Oi
E1,E2,e

}

. Let j ∈ {1, 2}. Let T
V i
Ej

Ej
denote the subtree

540 O. Horvitz, V. Gligor

OE1,E2,e(A) =

(u1, u2, y)
∈ S

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

either:
(a) u1 = rE1 , u2 = rE2 , y = e; or
(b) ∃(v1, v2, x) ∈ A such that:

v1 is labelled (M, N) and has a left child u1 in TE1 ,
v2 is labelled (M

′, N ′) and has a left child u2 in TE2

and x is of the form 〈y, z, “pair”〉; or
(c) ∃(v1, v2, x) ∈ A such that:

v1 is labelled (M, N) and has a right child u1 in TE1 ,
v2 is labelled (M

′, N ′) and has a right child u2 in TE2

and x is of the form 〈y, z, “pair”〉; or
(d) ∃(v1, v2, x) ∈ A and ∃(w1, w2, z) ∈ A such that:

v1 is labelled {M}K and has a child u1 in TE1 ,
v2 is labelled {M

′}K′ and has a child u2 in TE2 ,
x is of the form 〈c, “ciphertext”〉,
w1 is labelled K,
w2 is labelled K ′,
z is of the form 〈k, “key”〉
and y = Dk(c).

TEST(A) =

true if for all (v1, v2, x) ∈ A, either:
(a) v1 is labelled with b ∈ Bits and v2 is labelled b; or
(b) v1 is labelled K, v2 is labelled K ′ and for all (u1, u2, y) ∈ A,

u1 is labelled K iff u2 is labelled K ′; or
(c) v1 is labelled (M, N) and v2 is labelled (M

′, N ′); or
(d) v1 is labelled {M}K , v2 is labelled {M

′}K′ and for all
(u1, u2, y) ∈ A, u1 is labelled K iff u2 is labelled K ′.

false otherwise.

Fig. 1. Definitions of OE1,E2,e : 2
S → 2S , TEST : 2S → {true, false} .

induced by V i
Ej
on TEj

. Let OEj
be the operator from the fixpoint characteriza-

tions of the set of reachable nodes of TEj
(see Theorem 2.2). We show that as

long as TEST(Oi
E1,E2,e

) holds,

– V i+1
E1

= Oi+1
E1

and V i+1
E2

= Oi+1
E2
;

– there exist ϕ, σ consistent with the requirements of Theorem 2.1 when re-

stricted to T
V i
E1

E1
, T

V i
E2

E2
, V i

E1
, and V i

E2
(instead of TR

E1
, TR

E2
, RE1

, and RE2
).

If TEST does not fail by the max(|E1| , |E2|)’s power of OE1,E2,e, VE1
, VE2

achieve the sets of reachable nodes of TE1
, TE2

, respectively, by the first point
above, and so E1

∼= E2 by the second point, contradicting our assumption. We
conclude that TEST must fail on some lower power of OE1,E2,e; let i∗ ∈ N be
the lowest such power.

Weak Key Authenticity of Formal Encryption 541

We use Oi∗

E1,E2,e
to make a prediction, based on the reason TEST fails.

Here, we illustrate a case that calls for the use of a weak key-authenticity test
for expressions. Assume TEST fails because there exist (v1, v2, x), (u1, u2, y) ∈
Oi∗

E1,E2,e
such that v1 is labelled {M}K , u1 is labelled K, v2 is labelled {M

′}K′ ,
and u2 is labelled K ′′. An inductive argument on the powers of our operator
shows that x, y are the sampling labels of either v1, u1, respectively, or v2, u2, re-
spectively, depending on the origin of e. Let x = 〈c, “ciphertext”〉, y = 〈k, “key”〉.
In the first case, c is an encryption of a sample from [[M]]Π(η) with the key k;
in the second case, c is an encryption of a sample from [[M ′]]Π(η) with some key,
and k is a random key. The WKA-EXP-(M,M’) test on c and k distinguishes
these cases with a noticeable probability of success.
Finally, we show that the procedure is efficient. This completes the sketch of

the sufficiency part of the proof.

5 How the Notion of Weak Key-Authenticity Relates to

Other Cryptographic Notions

In this section, we strengthen the notion of the admittance of weak key authen-
ticity tests for expressions. We consider the admittance of a single, all-purpose
test, hereby referred to as the weak key-authenticity test, that distinguishes any
ciphertext and the key it was encrypted with from any ciphertext and a ran-
dom key, with a non-negligible probability; the test is defined in terms that are
independent of the formal language of the preceding sections. We compare the
strengthened version with the notions of confusion-freedom and authenticated
encryption, previously discussed in the literature in the context of the complete-
ness result [MW02,AJ01]. Specifically, we show that the requirement that an
encryption scheme admits a weak key-authenticity test is strictly weaker than
the requirement that it be confusion-free, as defined in the above references
(which, in turn, is enough to show it is strictly weaker than authenticated en-
cryption as well). To that effect, we present an encryption scheme that admits
a weak key-authenticity test but is not confusion-free. The scheme we present
is also Type-0. It therefore satisfies the soundness criteria of [AR02], our com-
pleteness criteria, but not the previous completeness criteria of [MW02]. The
notions we present and the methods used to achieve the admittance of a weak
key-authenticity test should be of independent interest.
Informally, confusion-freedom captures the ability of a decryption algorithm

to distinguish a ciphertext and the key it was encrypted with from a cipher-
text and a random key with almost full certainty. In contrast, the weak key-
authenticity test is required to distinguish the two with merely a noticeable
probability. We will separate the notions in a strong sense, pertaining directly to
the gap in their required distinguishing certainties (as opposed to pertaining to
the placement of the distinguisher—inside or outside the decryption algorithm).
First, we give formal definitions for the notions at hand.
Confusion-freedom is defined as it appears in the completeness result of

[MW02]; our proofs can be modified to accommodate the version of [AJ01] too.

542 O. Horvitz, V. Gligor

Definition 5.1 (Confusion-Freedom). Let Π = (K, E ,D) be an encryption
scheme, η ∈ N a security parameter, and D[η] = {D1[η], . . . , Dl[η]} a series of
finite sets of distributions. For 1 ≤ i ≤ l, define:

AdvcfΠ[η],D[η],i = Pr[k, k
′ R
← K(1η);x

R
← Di[η] : Dk′(Ek(x)) 6= ⊥].

We say that Π is confusion-free (CF for short) if for any 1 ≤ i ≤ l, Advcf
Π[η],D[η],i

is negligible (as a function of η).

Next, we define two auxiliary notions that will enable us to focus on the the
above-mentioned gap. These will provide a “middle ground” for comparing the
WKA-EXP test with CF.

Definition 5.2 (Strong Key-Authenticity Test, Weak Key-Authenticity
Test). Let Π = (K, E ,D) be an encryption scheme, η ∈ N a security parameter.
Let P1,P2 (hereby referred to as plaintext generators) be probabilistic algorithms
that take a security parameter η (provided in unary), and for sufficiently large η

always return a x ∈ PlainΠ[η]; we write x
R
← Pj(1

η) for j ∈ {1, 2}, thinking of x
as being drawn from the probability distribution induced by Pj(1

η) on {0, 1}∗.
Let A be an algorithm. Define:

AdvtstΠ[η],P1[η],P2[η](A)

= Pr[x
R
← P1(1

η); k
R
← K(1η); c

R
← Ek(x) : A(1

η, c, k) = 1]

− Pr[x
R
← P2(1

η); k, k′
R
← K(1η); c

R
← Ek(x) : A(1

η, c, k′) = 1],

where tst ∈ {ska,wka}. We say that Π admits a strong (resp., weak) key-
authenticity test, SKA (resp., WKA) for short, if there exists a probabilistic,
polynomial-time algorithm A such that for all probabilistic, polynomial-time al-
gorithms P1,P2, Adv

ska
Π[η],P1[η],P2[η](A) (resp., Adv

wka
Π[η],P1[η],P2[η](A)) is negligibly

close to 1 (resp., is non-negligible) as a function of η.

As for the definition of integrity of plaintext security (INT-PTXT for short),
a flavor of authenticated encryption, we refer the reader to [BN00,KY00] and
to [MW02].
The following diagram depicts relationships between our notions of interest.

INT-
PTXT

−→ CF −→
Admittance

of a
SKA test

−→
6←−

Admittance
of a

WKA test
−→

Admittance
of

WKA-EXP tests

In the above, A −→ B means that an encryption scheme that meets notion
A must also meet notion B; we call such a relationship an implication. A 6−→ B

means that an encryption scheme that meets notion A does not necessarily meet
notion B; we call such a relationship a separation.
The implications in the diagram are mostly straightforward (see [HG03]).

The rest of the section is devoted to the separation of WKA from SKA. To

Weak Key Authenticity of Formal Encryption 543

that end, we show an encryption scheme that admits a WKA test but does not
admit an SKA test. We use a standard construction based on a pseudorandom
function family, with an added “weak redundancy”. To simplify the exposition,
we use a single, constant bit as redundancy; refer to the end of the section for a
generalization.
Let F be a pseudorandom family of functions with a security parameter

η ∈ N, key domain {0, 1}η, domain {0, 1}l(η)
and range {0, 1}L(η)

(where l, L are

polynomials in η); let ε be a negligible function such that Advprf
F [η](A) ≤ ε(η) for

any probabilistic, polynomial-time algorithm A. We use x1x2 · · ·xm to denote
the individual bits of a string x ∈ {0, 1}m. We use ◦ to denote the concatenation
operator on strings of bits, ⊕ to denote the bitwise XOR operator on strings of
bits of equal length.
Define an encryption scheme Π∗ = (K∗, E∗,D∗) with a security parameter

η ∈ N as follows:

K∗(1η) E∗k (x = x1x2 · · ·xL(η)−1) D
∗
k(〈y = y1y2 · · · yL(η), r〉)

k
R
← {0, 1}η; r

R
← {0, 1}l(η)

; x′ ← y ⊕ Fk(r);
Output k. y ← (x ◦ 1)⊕ Fk(r); Output x′1x

′
2 · · ·x

′
L(η)−1.

Output 〈y, r〉.

Note that PlainΠ∗[η] = {0, 1}
L(η)−1

. Also note that E∗ and D∗ can deduce η

from k (η = |k|).
Π∗ can easily be shown to be IND-CPA secure based on the pseudorandom-

ness of F . For a proof, see [GG86], or simply think of Π∗ as a degenerate version
of the randomized CTR mode, and rely on [BD97]. Using the results of [AR02],
it can further be shown to be Type-0.
We have that:

Theorem 5.3. Π∗ admits a WKA test.

To see this, consider an algorithm that takes as input 〈y, r〉 and k, computes
y ⊕ Fk(r) and outputs 1 iff the last bit of the outcome is 1. The algorithm
is a WKA test for Π∗ by a simple reduction to the pseudorandomness of F

(see [HG03]). In addition, we have that:

Theorem 5.4. Π∗ does not admit an SKA test.

Proof. Let A be a probabilistic algorithm that runs in time t, a function of the
size of its input. Let A(a1, a2, . . . ;w) denote the outcome of running A on inputs
a1, a2, . . . and randomness w. Note that the length of w is bounded by t.
Let U be an algorithm that takes η ∈ N (in unary) as input and outputs a

random, uniformly-selected element of {0, 1}L(η)−1
. We have:

AdvskaΠ∗[η],U[η],U[η](A)

= Pr

[

x
R
← {0, 1}L(η)−1 ; k

R
← {0, 1}η ; r

R
← {0, 1}l(η) ;

w
R
← {0, 1}t(η) ; y ← (x ◦ 1)⊕ Fk(r)

: A(1η, 〈y, r〉, k;w) = 1

]

− Pr

[

x
R
← {0, 1}L(η)−1 ; k, k′

R
← {0, 1}η ; r

R
← {0, 1}l(η) ;

w
R
← {0, 1}t(η) ; y ← (x ◦ 1)⊕ Fk(r)

: A(1η, 〈y, r〉, k′;w) = 1

]

,

544 O. Horvitz, V. Gligor

where t is a polynomial in η.

Let S1 and A1 ⊆ S1 denote the sample space and event, respectively, depicted
by the first term above. Let S2 and A2 ⊆ S2 be defined similarly with respect
to the second term.

Let (x0, k0, r0, w0) ∈ A1. Note that for any k ∈ {0, 1}η, if there exists an

x ∈ {0, 1}L(η)−1
such that (x ◦ 1) ⊕ Fk(r0) = (x0 ◦ 1) ⊕ Fk0

(r0), then it must
be the case that (x, k, k0, r0, w0) ∈ A2 (because in this case, A, in the second
experiment, runs on the same input and randomness as in the first experiment).
This happens when x ◦ 1 = (x0 ◦ 1) ⊕ Fk0

(r0) ⊕ Fk(r0), which must happen
for at least

(

1
2 − ε(η)

)

· 2η of the keys k ∈ {0, 1}η; otherwise, an adversary that
queries its oracle on r0, XORs the answer with (x0 ◦ 1) and with Fk0

(r0), and
outputs 1 if the last bit of the result is different than 1, 0 otherwise—breaks the
pseudorandomness of F .

For a given (x0, k0, r0, w0) ∈ A1, we’ve just described a way of counting at
least

(

1
2 − ε(η)

)

· 2η tuples in A2. We would like to argue that for a distinct
(x1, k1, r1, w1) ∈ A1, we would be counting different tuples in A2 by employing
the same method. This is clear if k1 6= k0 or r1 6= r0 or w1 6= w0. As for the case
that k1 = k0, r1 = r0, w1 = w0, we would be double-counting a tuple iff

(x0 ◦ 1)⊕ Fk0(r0)⊕ Fk(r0) = (x1 ◦ 1)⊕ Fk1(r1)⊕ Fk(r1) = (x1 ◦ 1)⊕ Fk0(r0)⊕ Fk(r0),

which happens iff x1 = x0.

We conclude that |A2| ≥
(

1
2 − ε(η)

)

· 2η · |A1|. We also know that |S2| =
2η · |S1|. Therefore:

AdvskaΠ∗[η],U [η],U [η](A) =
|A1|

|S1|
−
|A2|

|S2|
≤

(

1

2
+ ε(η)

)

·
|A1|

|S1|
≤
1

2
+ ε(η),

which is not negligibly close to 1.

Finally, we note that our construction can be easily generalized to one that
admits a WKA test with an advantage as small as desired, as follows. For any
c ∈ N+, let Π∗

c be a variation on Π∗ that adds the bit 1 with probability 1
2 +

1
2c ,

0 with probability 1
2 −

1
2c , as redundancy upon encryption (instead of the fixed

1). Our proofs easily extend to show that Π∗
c admits a WKA test with advantage

at least 1
2c − ε(η).

Acknowledgements. We thank Jonathan Katz for helpful discussions and
comments. This work was supported by the Defense Advanced Research Projects
Agency and managed by the U.S. Air Force Research Laboratory under contract
F30602-00-2-0510; the views and conclusions contained are those of the authors
and should not be interpreted as representing the official policies, either ex-
pressed or implied, of DARPA, U.S. AFRL, or the U.S. Government.

Weak Key Authenticity of Formal Encryption 545

References

[AJ01] M. Abadi, J. Jurgens. Formal Eavesdropping and its Computational Interpre-
tation. In Proc. of the Fourth International Symposium on Theoretical Aspects
of Computer Software (TACS 2001), 2001.

[AR02] M. Abadi, P. Rogaway. Reconciling Two Views of Cryptography (the compu-
tational soundness of formal encryption). In Journal of Cryptology, vol. 15,
no. 2, pp. 103–128. (also in Proc. of the First IFIP International Conference
on Theoretical Computer Science, LNCS vol. 1872, pp. 3–22, Springer Verlag,
Berlin, August 2000.)

[BB01] M. Bellare, A. Boldyreva, A. Desai, D. Pointcheval. Key-Privacy in Public-
Key Encryption. In Advances in Cryptology — ASIACRYPT 2001, LNCS
vol. 2248,pp. 566-582, Springer Verlag, 2001.

[BD97] M. Bellare, A. Desai, E. Jokipii, P. Rogaway. A Concrete Security Treatment
of Symmetric Encryption: Analysis of the DES Modes of Operation. In Pro-
ceedings of the 38th Annual Symposium on Foundations of Computer Science
(FOCS 97), 1997.

[BN00] M. Bellare, C. Namprempre. Authenticated Encryption: Relations Among No-
tions and Analysis of the Generic Composition Paradigm. In Advances in Cryp-
tology — ASIACRYPT 2000, LNCS vol. 1976, pp. 541–545, Springer Verlag,
2000.

[GG86] O. Goldreich, S. Goldwasser, S. Micali. How to Construct Random Functions.
In Journal of the ACM, vol. 33, no. 4, pp. 792–807, 1986.

[GM84] S. Goldwasser, S. Micali. Probabilistic Encryption. In Journal of Computer
and System Sciences, 28:270-299, April 1984.

[HG03] O. Horvitz, V. Gligor. Weak Key Authenticity and the Computa-
tional Completeness of Formal Encryption. Full version available at
http://www.cs.umd.edu/∼horvitz, http://www.ee.umd.edu/∼gligor

[KY00] J. Katz, M. Yung. Unforgeable Encryption and Chosen Ciphertext Secure
Modes of Operation. In Proceedings of the 7th International Workshop on
Fast Software Encryption (FSE 2000), LNCS vol. 1978, pp. 284–299, Springer
Verlag, 2000.

[Ll87] J. W. Lloyd. Foundations of Logic Programming. Second Edition, Springer-
Verlag, 1987, section 1.5.

[LN84] J. L. Lassez, V. L. Nguyen, E. A. Sonenberg. Fixpoint Theorems and Seman-
tics: a Folk Tale. In Information Processing Letters, vol. 14, no. 3, 1982, pp.
112–116.

[MW02] D. Micciancio, B. Warinschi. Completeness Theorems for the Abadi-Rogaway
Language of Encrypted Expressions. In Journal of Computer Security (to ap-
pear). Also in Proceedings of the Workshop on Issues in the Theory of Security,
2002.

[Ta55] A. Tarski. A Lattice-theoretical Fixpoint Theorem and its Applications. In
Pacific Journal of Mathematics, vol. 5, pp.285–309, 1955.

