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Abstract. We describe a block-cipher mode of operation, CMC, that
turns an n-bit block cipher into a tweakable enciphering scheme that acts
on strings of mn bits, where m ≥ 2. When the underlying block cipher
is secure in the sense of a strong pseudorandom permutation (PRP), our
scheme is secure in the sense of tweakable, strong PRP. Such an object
can be used to encipher the sectors of a disk, in-place, offering security
as good as can be obtained in this setting. CMC makes a pass of CBC
encryption, xors in a mask, and then makes a pass of CBC decryption;
no universal hashing, nor any other non-trivial operation beyond the
block-cipher calls, is employed. Besides proving the security of CMC we
initiate a more general investigation of tweakable enciphering schemes,
considering issues like the non-malleability of these objects.

1 Introduction

Enciphering schemes. Suppose you want to encrypt the contents of a disk, but
the encryption is to be performed by a low-level device, such as a disk controller,
that knows nothing of higher-level concepts like files and directories. The disk is
partitioned into fixed-length sectors and the encrypting device is given one sector
at a time, in arbitrary order, to encrypt or decrypt. The device needs to operate
on sectors as they arrive, independently of the rest. Each ciphertext must have
the same length as its plaintext, typically 512 bytes. When the plaintext disk
sector P is put to the disk media at location T what is stored on the media
should be a ciphertext C = ETK(P ) that depends not only on the plaintext P
and the key K, but also on the location T , which we call the tweak. Including
the dependency on T allows that identical plaintext sectors stored at different
places on the disk will have computationally unrelated ciphertexts.
The envisioned attack-model is a chosen plaintext/ciphertext attack: the ad-

versary can learn the ciphertext C for any plaintext P and tweak T , and it can
learn the plaintext P for any ciphertext C and tweak T . Informally, we want
a tweakable, strong, pseudorandom permutation (PRP) that operates on a wide

blocksize (like 512 bytes). We call such an object an enciphering scheme. We
want to construct the enciphering scheme from a standard block cipher, such
as AES, giving a mode of operation. The problem is one of current interest for
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standardization [11]. We seek an algorithm that is simple, and is efficient in both
hardware and software.

Naor-Reingold approach. Naor and Reingold give an elegant approach for
making a strong PRP on N bits from a block cipher on n < N bits [17, 18].
Their hash–encipher–hash paradigm involves applying to the input an invertible

blockwise-universal hash-function, enciphering the result (say in ECB mode), and
then applying yet another invertible blockwise-universal hash-function. Their
work stops short of fully specifying a mode of operation, but in [17] they come
closer, showing how to make the invertible blockwise-universal hash-function
out of an xor-universal hash-function. So the problem, one might imagine, is
simply to instantiate the approach [17], selecting an appropriate xor-universal
hash function from the literature.

It turns out not to be so simple. Despite many attempts to construct a desir-
able hash function to use with the hash–encipher–hash approach, we could find
no desirable realization. We wanted a hash function that was simple and more
efficient, per byte, across hardware and software, than AES. The collision bound
should be about 2−128 (degrading with the length of messages). Many techniques
were explored, but nothing with the desired constellation of characteristics was
ever found. We concluded that while making a wide-blocksize, strong PRP had
“in principal” been reduced to a layer of block-cipher calls plus two “cheap”
layers of universal hashing, the story, in practice, was that the “cheap” hashing
layers would come to dominate the total cost in hardware, software, or both.

Our contributions. Our main contribution is a simple, practical, completely-
specified enciphering mode. CMC starts with a block cipher E: K × {0, 1}n →
{0, 1}n and turns it into an enciphering scheme CMC[E]: K′ × T ×M → M
where T = {0, 1}n and M contains strings with any number (at least two) of
n-bit blocks. See Figs. 1 and 2 for a preview. CMC stands for CBC–Mask–CBC.

CMC uses 2m + 1 block-cipher calls. No “non-elementary” operations are
used—in particular, no form of universal hashing is employed. The mode is
highly symmetric: deciphering is the same as enciphering except that one uses
the inverse block cipher E−1

K in place of EK . We prove that CMC[E] is secure,
in the sense of a tweakable, strong PRP. This assumes that E itself is secure
as a strong PRP. The actual results are quantitative, with the usual quadratic
degradation in security.

Apart from the specific scheme, we investigate, more generally, the under-
lying goal. We show that being secure as a tweakable, strong, PRP implies the
appropriate versions of indistinguishability [2, 9] and non-malleability [3, 8] under
a chosen-ciphertext attack. Following Liskov, Rivest and Wagner [14], we show
how tweaks can be cheaply added to the untweaked version of the primitive.

Joux’s attack. In an earlier, unpublished, manuscript we described a different
version of CMC mode [19]. Although the algorithmic change between the old
and new mode is small, its consequences are not: the old mode was wrong, as
recently shown by Antoine Joux [12]. His simple and clever attack is described
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in Appendix A. In the same appendix we describe the bug in the proof that
corresponds to the attack. This paper fixes the mode and its proof.

Other prior work. Efforts to construct a block cipher with a large blocksize
from one with a smaller blocksize go back to Luby and Rackoff [15], whose work
can be viewed as building a 2n-bit block cipher from an n-bit one. They also
put forward the notion of a PRP and a strong (“super”) PRP. The concrete-
security treatment of PRPs begins with Bellare, Kilian, and Rogaway [4]. The
notion of a tweakable block-cipher is due to Liskov, Rivest and Wagner [14].
Earlier work by Schroeppel describes a block cipher that was already designed to
incorporate a tweak [20]. The first attempt to directly construct an nm-bit block
cipher from an n-bit one is due to Zheng, Matsumoto and Imai [21], who give
a Feistel-type construction. Bellare and Rogaway [5] give an enciphering mode
that works on messages of varying lengths but is not a strong PRP. Another
enciphering scheme that is potentially a strong PRP appears in unpublished
work of Bleichenbacher and Desai [6]. Yet another suggestion we have seen [11]
is forward-then-backwards PCBC mode [16]. The mode is easily broken in the
sense of a strong PRP, but the possibility of a simple, two-layer, CBC-like mode
helped to motivate us. A different approach for disk-sector encipherment is to
build a wide-blocksize block cipher from scratch. Such attempts include BEAR,
LION, and Mercy [1, 7].

Afterwards. Recent work by the authors has focused on providing a fully
parallelizable enciphering scheme having serial efficiency comparable to that of
CMC. We shall report on that work elsewhere. The full version of the current
paper appears as [10].

2 Preliminaries

Basics. A message space M is a set of strings M =
⋃
i∈I{0, 1}

i for some
nonempty index set I ⊆ N. A length-preserving permutation is a map π:M→M
where M is a message space and π is a permutation and |π(P )| = |P | for all
P ∈ M. A tweakable enciphering scheme, or simply an enciphering scheme, is
a function E: K × T ×M →M where K (the key set) is a finite nonempty set
and T (the tweak set) is a nonempty set and M is a message space and for
every K ∈ K and T ∈ T we have that E(K,T, ·) = ETK(·) is a length-preserving
permutation. An untweakable enciphering scheme is a function E: K×M→M
where K is a finite nonempty set andM is message space and E(K, ·) = EK(·)
is a length-preserving permutation for every K ∈ K. A block cipher is a func-
tion E: K × {0, 1}n → {0, 1}n where n ≥ 1 and K is a finite nonempty set and
E(K, ·) = EK(·) is a permutation for each K ∈ K. The number n is the blocksize.
An untweakable enciphering scheme can be regarded as a tweakable enciphering
scheme with tweak set T = {ε} and a block cipher can be regarded as a tweakable
enciphering scheme with tweak set T = {ε} and message space M = {0, 1}n.
The inverse of an enciphering scheme E is the enciphering schemeD = E−1 where
X = DT

K(Y ) if and only if E
T
K(X) = Y . An adversary A is a (possibly probabilis-

tic) algorithm with access to some oracles. Oracles are written as superscripts.
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By convention, the running time of an algorithm includes its description size.
We let Timef (µ) be a function that bounds the worst-case time to compute f

on strings that total µ bits. We write Õ(f) for O(f(n) lg(f(n)). Constants inside

of O and Õ notations are absolute constants, depending only on details of the
model of computation. If X and Y are strings of possibly different lengths we let
X ←⊕ Y be the string one gets by xoring the shorter string into the beginning

of the longer string, leaving the rest of the longer string alone.

Security notions. The definitions here are adapted from [4, 14, 15]. WhenM
is a message space and T is a nonempty set we let Perm(M) denote the set of
all functions π:M → M that are length-preserving permutations, and we let
PermT (M) denote the set of functions π: T ×M → M for which π(T, ·) is a
length-preserving permutation for all T ∈ T .
Let E: K × T ×M →M be an enciphering scheme and A be an adversary.

We define the advantage of A in distinguishing E from a random, tweakable,
length-preserving permutation and its inverse as

Adv±p̃rp
E

(A)
def
= Pr

[
K

$
←K : AEK(·,·) E

−1
K

(·,·) ⇒ 1
]

− Pr
[
π

$
← PermT (M) : Aπ(·,·) π−1(·,·) ⇒ 1

]

The notation above shows, in the brackets, an experiment to the left of the colon
and an event to the right of the colon. We are looking at the probability of the
indicated event after performing the specified experiment. By A⇒ 1 we mean
the event that A outputs the bit 1. Often we omit writing the experiment, the or-
acle, or the placeholder-arguments of the oracle. The tilde above the “prp” serves
as a reminder that the prp is tweakable, while the ± symbol in front of the “prp”
serves as a reminder that this is the “strong” (i.e., chosen plaintext/ciphertext
attack) notion of security. Thus we omit the tilde for untweakable enciphering
schemes and block ciphers, and we omit the ± sign to mean that the adversary
is given only the first oracle from each pair.
For each “advantage notion” Advxxx

Π we write Advxxx
Π (R) for the maximal

value of Advxxx
Π (A) over all adversaries A that use resources at most R. Re-

sources of interest are the running time t, the number of queries q, the total
length of all queries µ (sometimes written as µ = nσ when µ is a multiple of
some number n), and the length of the adversary’s output ς. The name of an
argument (t, t′, q, etc.) will be enough to make clear what resource it refers to.

Pointless queries. There is no loss of generality in the definitions above to
assume that regardless of responses that adversary A might receive from an
arbitrary pair of oracles, it never repeats a query (T, P ) to its left oracle, never
repeats a query (T,C) to its right oracle, never asks its right oracle a query
(T,C) if it earlier received a response of C to a query (T, P ) from its left oracle,
and never asks its left oracle a query (T, P ) if it earlier received a response of P
to a query (T,C) from its right oracle. We call such queries pointless because
the adversary “knows” the answer that it should receive. A query is called valid

if it is well-formed and not pointless. A sequence of queries and their responses
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Algorithm E
T

KK̃
(P1 · · ·Pm)

100 T← E
K̃
(T )

101 PPP0← T

102 for i← 1 to m do

103 PP i← Pi ⊕ PPP i−1

104 PPP i← EK(PP i)

110 M ← 2 (PPP1 ⊕ PPPm)
111 for i ∈ [1 .. m] do

112 CCC i← PPPm+1−i ⊕M

120 CCC 0← 0n

121 for i ∈ [1 .. m] do

122 CC i← EK(CCC i)
123 Ci← CC i ⊕ CCC i−1

130 C1← C1 ⊕ T

131 return C1 · · ·Cm

Algorithm D
T

KK̃
(C1 · · ·Cm)

200 T← E
K̃
(T )

201 CCC 0← T

202 for i← 1 to m do

203 CC i← Ci ⊕ CCC i−1

204 CCC i← E−1
K (CC i)

210 M ← 2 (CCC 1 ⊕ CCCm)
211 for i ∈ [1 .. m] do

212 PPP i← CCCm+1−i ⊕M

220 PPP0← 0n

221 for i ∈ [1 .. m] do

222 PP i← E−1
K (PPP i)

223 Pi← PP i ⊕ PPP i−1

230 P1← P1 ⊕ T

231 return P1 · · ·Pm

Fig. 1. Enciphering (left) and deciphering (right) under E = CMC[E], where E: K ×
{0, 1}n → {0, 1}n is a block cipher. The tweak is T ∈ {0, 1}n and the plaintext is P =
P1 · · ·Pm and the ciphertext is C = C1 · · ·Cm.

is valid if every query in the sequence is valid. We assume that adversaries ask
only valid queries.

The finite field GF (2n).Wemay think of an n-bit string L = Ln−1 . . . L1L0 ∈
{0, 1}n in any of the following ways: as an abstract point in the finite field
GF(2n); as the number in [0..2n − 1] whose n-bit binary representation is L;
and as the polynomial L(x) = Ln−1x

n−1 + · · · + L1x + L0. To add two points,
A⊕B, take their bitwise xor. To multiply two points we must fix an irreducible
polynomial Pn(x) having binary coefficients and degree n: say the lexicographi-
cally first polynomial among the irreducible degree-n polynomials having a min-
imum number of nonzero coefficients. For n = 128, the indicated polynomial is
P128(x) = x128 + x7 + x2 + x + 1. Now multiply A(x) and B(x) by forming the
degree 2n−2 (or less) polynomial that is their product and taking the remainder
when this polynomial is divided by Pn(x).
Often there are simpler ways to multiply in GF(2n) than the definition above

might seem to suggest. In particular, given L it is easy to “double” L. We
illustrate the procedure for n = 128, in which case 2L = L<<1 if firstbit(L) = 0,
and 2L = (L<<1)⊕ Const87 if firstbit(L) = 1, where Const87 is 012010000111.
Here firstbit(L) means Ln−1 and L<<1 means Ln−2Ln−3 · · ·L1L0 0.

3 Specification of CMC Mode

We construct from block cipher E: K× {0, 1}n → {0, 1}n a tweakable encipher-
ing scheme that we denote by CMC-E or CMC[E]. The enciphering scheme
has key space K × K. It has tweak space T = {0, 1}n. The message space
M =

⋃
m≥2{0, 1}

mn contains any string having any number m of n-bit blocks,



A Tweakable Enciphering Mode 485

CCC 4

T

T

MMMM

C4 C3 C2 C1

P4P3P1 P2

PP2 PP3 PP4PP1

PPP1 PPP2 PPP3 PPP4

CC 3 CC 2 CC 1CC 4

CCC 2 CCC 1CCC 3

Fig. 2. Enciphering under CMC mode for a message of m = 4 blocks. The boxes rep-
resent EK . We set mask M = 2 (PPP1 ⊕ PPPm). This value can also be computed as
M = 2 (CCC 1 ⊕ CCCm). We set T = E

K̃
(T ) where T is the tweak.

where m ≥ 2. We specify in Fig. 1 both the forward direction of our construc-
tion, E = CMC-E, and its inverse D. An illustration of CMC mode is given in
Fig. 2. In the figures, all capitalized variables except for K and K̃ are n-bit
strings (keys K and K̃ are elements of K). Variable names P , C, and M are
meant to suggest plaintext, ciphertext, and mask. When we write ETK(P1 · · ·Pm)
we mean that the incoming plaintext P = P1 · · ·Pm is silently partitioned into
n-bit strings P1, . . . , Pm (and similarly when we write DT

K(C1 · · ·Cm)). It is an
error to provide E (or D) with a plaintext (or ciphertext) that is not mn bits for
some m ≥ 2.

4 Discussion

Basic observations. Deciphering C = ET
KK̃
(P ) produces the same mask M

as enciphering P because CCC 1 ⊕ CCCm = (PPP1 ⊕M)⊕ (PPPm ⊕M) =
PPP1 ⊕ PPPm. Also note that the multiply by two in computing M cannot be
dispensed with; if it were, CCCm would not depend on PPP1 so the mode could
not be a PRP.

The CMC core. Consider the untweakable enciphering scheme CMC one gets
by ignoring T and setting T to 0n in Figs. 1 and 2. The CMC algorithm can then
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be viewed as taking CMC and “adding in” a tweak according to the construction
CMCT

KK̃
(P ) = T ←⊕ CMCK(P ←⊕ T) where T = E

K̃
(T ). A similar approach

to modifying an untweakable enciphering scheme to create a tweakable one was
used by Liskov, Rivest, and Wagner [14, Theorem 2]. See Section 6.

Symmetry. Encryption under CMC is the same as decryption under CMC ex-
cept that EK is swapped with E

−1
K (apart from the computation of T). Pictori-

ally, this high degree of symmetry can be seen by observing that if the picture
in Fig. 2 is rotated 180 degrees it is unchanged, apart from swapping letters P
and C. Symmetry is a useful design heuristic in trying to achieve strong PRP
security, as the goal itself provides the adversary with capabilities that are in-
variant with respect to replacing an enciphering scheme E by its inverse D.

Notice that output blocks in CMC mode are taken in reverse order from
the input blocks (meaning that CCC i = PPPm+1−i ⊕M instead of CCC i =
PPP i ⊕M). This was done for purposes of symmetry: if one had numbered out-
put blocks in the “forward” direction then deciphering would be quite different
from enciphering. As an added benefit, the reverse-numbering may improve the
cache-interaction characteristics of CMC by improving locality of reference. That
said, an application is always free to write its output according to whatever con-
vention it wishes, and an application with limited memory may prefer to write
its output as Cm · · ·C1.

Re-orienting the bottom layer. It is tempting to orient the second block-
cipher layer in the opposite direction as the first, thinking that this improves
symmetry. But if one were to use E−1

K in the second layer then CMC would be-
come an involution, and thus easily distinguishable from a random permutation.

Limitations. CMC has the following limitations: (1) The mode is not paral-
lelizable. (2) The sector size must be a multiple of the blocksize. (3) In order to
make due with 2m + 1 block-cipher calls one needs Θ(nm) bits of extra mem-
ory. Alternatively, one can use Θ(n) bits of memory, but then one needs 3m+1
block-cipher calls and one should output the blocks in reverse order. (4) The
key for CMC is longer than the key for the underlying block cipher; to keep
things simple, we have done nothing to “collapse keys” for this mode. (5) Both
directions of the block cipher are used to decipher, due to the one block-cipher
call used for producing T from T .

All of the above limitations could potentially be addressed. Further limita-
tions are inherent characteristics of the type of object that is being constructed.
Namely: (a) a good PRP necessarily achieves less than semantic security: repeti-
tions of plaintexts that share a tweak are manifest in the ciphertexts. (b) A PRP
must process the entire plaintext before emitting the first bit of ciphertext (and
it must process the entire ciphertext before emitting the first block of plaintext).
Depending on the context, these limitations can be significant.
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5 Security of CMC

The concrete security of the CMC is summarized in the following theorem. The
theorem relates the advantage that an adversary has in attacking CMC-E to the
advantage that an adversary can get in attacking the underlying block cipher E.

Theorem 1. [CMC security] Fix n, t, q ≥ 1, m ≥ 2, and a block cipher

E: K×{0, 1}n → {0, 1}n. Let message spaceM = {0, 1}mn and let σ = mq. Let

CMC and CMC be the modes with the indicated message space. Then

Adv±prp
CMC[Perm(n)](nσ) ≤

5σ2

2n
(1)

Adv±p̃rp
CMC[Perm(n)](nσ) ≤

7σ2

2n
(2)

Adv±p̃rp
CMC[E](t, nσ) ≤

7σ2

2n
+ 2Adv±prp

E (t′, 2σ) (3)

where t′ = t+O(nσ). 2

Although we defined CMC and CMC to have message space
⋃
m≥2{0, 1}

mn the
theorem restricts messages to one particular length, mn bits for some m. In
other words, proven security is for a fixed-input-length (FIL) cipher and not a
variable-input-length (VIL) one. We believe that, in fact, security also holds in
the sense of a VIL cipher, but we do not at this time provide a proof. All other
results in this paper are done for arbitrary (VIL) message spaces.
The heart of Theorem 1 is Equation (1), which is sketched in Appendix C.

Equation (2) follows immediately using Theorem 2, as given below. Equation (3)
embodies the standard way to pass from the information-theoretic setting to the
complexity-theoretic one.
Since the proof of Equation (1) is long (and only a small portion of it is in-

cluded in this proceedings version), let us try to get across some basic intuition
for it. Refer to Fig. 2 (but ignore the T, as we are only considering CMC). Sup-
pose the adversary asks to encipher some new four-block plaintext P . Plaintext P
must be different from all previous plaintexts, so it has some first block where it
is different, say P3. This will usually result in PP3 being new—some value not
formerly acted on by the block cipher π. This, in turn, will result in PPP 3 being
nearly uniform, and this will propagate to the right, so that PPP 4 will be nearly
uniform as well. The values PPP1 and PPP2 will usually have been different
from each other, and they’ll usually be different from the freshly chosen PPP 3

and PPP4 values. Now M = 2(PPP1 ⊕ PPP4) and so M will be nearly uniform
due to the presence of PPP4. When we add M to the PPP i values we will get a
bunch of sums CCC i that are almost always new and distinct. This in turn will
cause the vector of CC i-values to be uniform, which will cause C to be uniform.
The argument for a decryption query is symmetric.
Though it is ultimately the above intuition that the proof formalizes, one

must be careful, as the experience with the Joux-attack drives home [12]. One
must be sure that an adversary cannot, by cutting and pasting parts of plaintexts
and ciphertexts, force any nontrivial repetitions in intermediate values.
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6 Transforming an Untweakable Enciphering Scheme to a

Tweakable One

Let E: K̃ × {0, 1}n → {0, 1}n be a block cipher and let E: K ×M → M be
an untweakable enciphering scheme where the message space M contains no
string of length less than n bits. We construct a tweakable enciphering scheme
E = E / E where E: (K×K̃)×{0, 1}n×M→M. The construction is ET

KK̃
(M) =

T ←⊕ EK(M ←⊕ T) where T = E
K̃
(T ). (Recall that←⊕ just means to xor in the

shorter string at the beginning.) Notice that the cost of adding in the tweak is
one block-cipher call and two n-bit xors, regardless of the length of the sector
being enciphered or deciphered. Also notice that CMC = CMC / E.
The specified construction is similar to that of Liskov, Rivest and Wagner [14,

Theorem 2] but, instead of a PRP E, those authors used an xor-universal hash
function. One can view a secure block cipher as being “computationally” xor-
universal, and try to conclude the security of the construction in that way. But
we have also broadened the context to include enciphering schemes whose input
is not a string of some fixed length, and so it seems better to prove the result from
scratch. We show that E = E / E is secure (as a tweakable, strong, enciphering
scheme) as long as E is secure (as an untweakable, strong enciphering scheme)
and E is secure (as a PRP). The proof is given in the full version of this paper [10].

Theorem 2. [Adding in a tweak] Let E: K̃ × {0, 1}n → {0, 1}n be a block

cipher and let E: K ×M → M be an untweakable enciphering scheme whose

message space M has a shortest string of N ≥ n bits. Then

Adv±p̃rp
E/E (t, q, µ) ≤

q2

2n
+

q2

2N
+Adv±prp

E (t′, q, µ) +Advprp
E (t′, q) (4)

where t′ = t+ Õ(µ+ qTimeE +TimeE(µ)). 2

7 Indistinguishability and Nonmalleability of Tweakable

Enciphering Schemes

The definition we have given for the security of an enciphering scheme is simple
and natural, but it is also quite far removed from any natural way to say that
an encryption scheme does what it should do. In this section we explore two
notions of security that speak more directly about the privacy and integrity of
an enciphering scheme. First we give a definition of indistinguishability and then
we give a definition for the nonmalleability. We show that, as one would expect,
security in the sense of a tweakable PRP implies both of these notions, and by
tight reductions.

Indistinguishability. To define the indistinguishability of a tweakable enci-
phering scheme E: K × T ×M→M we adapt the left-or-right notion from [2].
We imagine the following game. At the onset of the game we select at random
a key K from K and a bit b. The adversary is then given access to two ora-
cles, E = EbK and D = D

b
K . The attacker can query the E-oracle with any 4-tuple
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When query gets an answer of then these queries are no longer allowed:

E(T0, P0; T1, P1) C D(T0, C, ·, ·) D(·, ·, T1, C)
E(T0, P0, ·, ·) E(·, ·, T1, P1)

D(T0, C0, T1, C1) P E(T0, P, ·, ·) E(·, ·, T1, P )
D(T0, C0, ·, ·) D(·, ·, T1, C1)

Table 1. Disallowed queries. The dot refers to an arbitrary argument—all are disallowed.

(T0, P0, T1, P1) where T0, T1 ∈ T and P0 and P1 are equal-length strings in
M. The oracle returns EK(Tb, Pb). Alternatively, the adversary can query the D
oracle with a 4-tuple (T0, C0, T1, C1) where T0, T1 ∈ T and C0 and C1 are equal-
length strings inM. The oracle returns DK(Tb, Cb) where D is the inverse of E.
The adversary wants to identify the bit b. We must disallow the adversary from
asking queries that will allow it to win trivially. The disallowed queries are given
in Table 1.
The advantage of the adversary in guessing the bit b is defined by

Adv±ĩnd
E

(A)
def
= Pr[K

$
←K : AE

1
K D

1
K ⇒ 1 ] − Pr[K

$
←K : AE

0
K D

0
K ⇒ 1 ]

We now show a tight equivalence between the PRP-security of a tweakable en-
ciphering scheme and its indistinguishability. In Theorem 3 we show that PRP-
security implies indistinguishability, and in Theorem 4 we show the converse.
The proofs are in the full version of this paper [10].

Theorem 3. [±p̃rp-security ⇒ ±ĩnd-security] Let E: K × T ×M → M
be an enciphering scheme whose message space M consists of strings of length

at least n bits. Then for any t, q, µ,

Adv±ĩnd
E

(t, q, 2µ) ≤ 2Adv±p̃rp
E

(t′, q, µ) +
2q2

2n − q

where t′ = t+O(µ). 2

Theorem 4. [±ĩnd-security ⇒ ±p̃rp-security] Let E: K × T ×M → M

be an enciphering scheme. Then for any t, q, µ, we have Adv±p̃rp
E

(t, q, µ) ≤

Adv±ĩnd
E

(t′, q, 2µ), where t′ = t+ Õ(µ). 2

Nonmalleability. Nonmalleability is an important cryptographic goal that
was first identified and investigated by Dolev, Dwork, and Naor [8]. Informally,
an encryption scheme is nonmalleable if an adversary cannot modify a cipher-
text C to create a ciphertext C∗ where the plaintext P ∗ of C∗ is related to the
plaintext P of C. In this section we define the nonmalleability of a tweakable
enciphering scheme with respect to a chosen-ciphertext attack and we show that
±p̃rp-security implies nonmalleability. The result mirrors the well-known result
that indistinguishability of a probabilistic encryption scheme under a chosen-
ciphertext attack implies its nonmalleability under the same kind of attack [3, 8].
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Fix an enciphering scheme E: K×T ×M→M and an adversary A. Consider
running A with two oracles: an enciphering oracle EK(·, ·) and a deciphering
oracle DK(·, ·), where D = E−1 and K is chosen randomly from K. After A has
made all of its oracle queries and halted, we define a number of sets:

Known plaintexts. For every T ∈ T we define the PT as the set of all P
such that A asked EK to encipher (T, P ) or A asked DK to decipher some
(T,C) and A got back an answer of P . Thus PT is the set of all plaintexts P
associated to T that the adversary already “knows”.

Known ciphertexts. For every T ∈ T we define CT as the set of all C such A
asked DK to decipher (T,C) or A asked EK to encipher some (T, P ) and A
got back an answer of C. Thus CT is the set of all ciphertexts C associated
to T that the adversary already “knows”.

Plausible plaintexts. For every T ∈ T and C ∈ M we define PT (C) as the
singleton set {DT

K(C)} if C ∈ C
T and as {0, 1}|C| \ PT otherwise. Thus

PT (C) is the set of all plaintexts P for which the adversary should regard
it as plausible that C = ETK(P ).

With enciphering scheme E: K × T ×M → M and adversary A still fixed, we
consider the following two games, which we call games Real and Ideal. Both

games begin by choosing a random key K
$
←K and letting the adversary A

interact with oracles EK and DK where D = E−1. Just before termination,
after the adversary has asked all the queries that it will ask, it outputs a three-
tuple (T,C, f) where T ∈ T and C ∈ M and f is the encoding of a predicate
f :M→ {0, 1} (we do not distinguish between the predicate and its encoding).

Now for game Real we set P ←DT
K(C) and for game Ideal we set P

$
← PT (C).

Finally, we look at the event that f(P ) = 1. Formally, we define the advantage
of A, in the sense of nonmalleability under a chosen-ciphertext attack, as follows:

Adv±ñm
E

(A) = Pr[K
$
←K; (T,C, f)

$
←AEK(·,·) DK(·,·); P ←D

T
K(C): f(P )=1]−

Pr[K
$
←K; (T,C, f)

$
←AEK(·,·) DK(·,·); P

$
← P

T (C): f(P )=1]

We emphasize that in game Ideal (the second experiment) the set PT (C) depends
on the oracle queries asked by A and the answers returned to it (even though this

is not reflected in the notation). For the resource-bounded version of Adv±ñm
E

we let the running time t include the running time to compute f(P ). We have the
following result, the proof of which appears in the full version of this paper [10].

Theorem 5. [±p̃rp-security ⇒ ±ñm-security] Let E: K × T ×M → M
be an enciphering scheme. Then for any t, q, µ, ς

Adv±ñm
E

(t, q, µ, ς) ≤ 2Adv±p̃rp
E

(t′, q + 1, µ+ ς)

where t′ = t+ Õ(µ+ ς). 2
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A The Joux Attack

In an early, unpublished version of the current paper [19] the scheme CMC, then
called EMD, worked a little bit differently: instead of computing T = EK(T )
and xoring T into P1 and C1, we simply xored T into the mask M , setting
M = 2(PPP1 ⊕ PPPm)⊕ T . We claimed—incorrectly—that the scheme was
secure (as a tweakable, strong PRP). Antoine Joux [12] noticed that the scheme
was wrong, pointing out that it is easy to distinguish the mode and its inverse
from a tweakable truly random permutation and its inverse. Below is (a slightly
simplified variant of) his attack:

1. The adversary picks an arbitrary tweak T and an arbitrary 4-block plaintext
P1P2P3P4. It encrypts (T, P1P2P3P4), obtaining ciphertext C1C2C3C4, and
it encrypts (T + 1, P1P2P3P4), obtaining a different ciphertext C

′
1C

′
2C

′
3C

′
4 .

2. The adversary now decrypts (T,C1(C
′
2 +1)(C3 +1)C4), obtaining plaintext

P ′′1 P ′′2 P ′′3 P ′′4 .

If P ′′1 = P1 then the adversary outputs 1 (it guesses that it has a “real” enci-
phering oracle; otherwise, the adversary answers 0 (it knows that it has a “fake”
enciphering oracle). It is easy to see that this attack has advantage of nearly 1.
What went wrong? Clearly the provided proof had a bug. The bug turns out

not to be a particularly interesting one. On the 14-th page of the proof [19] begins
a detailed case analysis. The case denoted X1–X5 was incorrect: two random
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variables are said to rarely collide, but with an appropriate choice of constants
the random variables become degenerate (constants) and always collide. The
same happens for case Y1–Y5. The current paper restructures the case analysis.
Our earlier manuscript [19] also mentioned a parallelizable mode that we

called EME. Joux also provides an attack on EME, using the tweak in a manner
similar to the attack on CMC. We later found that, as opposed to CMC, the
EME scheme remains insecure even as an untweakable PRP. Thus one cannot
repair EME simply by using a different method of incorporating the tweak.

B A Useful Lemma — ±p̃rp-security ⇔ ±r̃nd-security

Before proving security for CMC, we provide a little lemma that says that a
(tweakable) truly random permutation and its inverse looks very much like a
pair of oracles that just return random bits (assuming you never ask pointless
queries). Let E: K × T ×M → M be a tweaked block-cipher and let D be its

inverse. The advantage of distinguishing E from random bits, Adv±r̃nd
E

, is

Adv±r̃nd
E

(A) = Pr[K
$
←K : AEK(·,·) DK(·,·) ⇒ 1 ]− Pr[A$(·,·) $(·,·) ⇒ 1 ]

where $(T,M) returns a random string of length |M |. We insist that A makes
no pointless queries, regardless of oracle responses, and A asks no query (T,M)
outside of T ×M. We extend the definition above in the usual way to its resource-
bounded versions. We have the following:

Lemma 1. [±p̃rp-security ≈ ±r̃nd-security] Let E: K × T × M → M

be a tweaked block-cipher and let q ≥ 1. Then |Adv±p̃rp
E

(q) − Adv±r̃nd
E

(q)| ≤
q(q − 1)/2N+1, where N is the length of a shortest string in M.

The proof, which is standard, appears in the full paper [10].

C Sketch of Theorem 1 — Security of CMC

Our proof of security for CMC is divided into two parts: (1) a game-substitution
argument, reducing the analysis of CMC to the analysis of a simpler probabilistic
game; and (2) analyzing that game. We also use Lemma 1 from above.

The game-substitution sequence. Let n, m, and q all be fixed, and σ = mq.
Let A be an adversary that asks q oracle queries (none pointless), each of nm bits.
Our first major goal is to describe a probability space, NON2, this probability
space depending on constants derived from A, and to define an event on the
probability space, denoted NON2 sets bad , for which Adv±p̃rp

CMC[Perm(n)](A) ≤

2·Pr[NON2 sets bad ]+σ2/2n. Later we bound Pr[NON2 sets bad ] and, putting
that together with Lemma 1, we will get Equation (1) of Theorem 1. The rest of
Theorem 1 follows easily, as explained in Section 5. Game NON2 is obtained by
a game-substitution argument, as carried out in works like [13]. The goal is to
simplify the rather complicated setting of A adaptively querying its oracles and
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Initialization:

bad← false; Domain← Range←∅; for all X ∈ {0, 1}n do π(X)← undef

Respond to the s-th adversary query as follows:

An encipher query, Enc(P s
1 · · ·P

s
m):

u[s]← the largest value in [0 .. m] s.t. P s
1 · · ·P

s
u[s] = P r

1 · · ·P
r
u[s] for some r < s

PPPs
0← CCC s

0← 0n; for i← 1 to u[s] do PPs
i ← P s

i ⊕ PPPs
i−1, PPPs

i ← PPPr
i

for i← u[s] + 1 to m do

PPs
i ← P s

i ⊕ PPPs
i−1

PPPs
i

$
←{0, 1}n; if PPPs

i ∈ Range then bad← true, PPPs
i

$
← Range

if PPs
i ∈ Domain then bad← true, PPPs

i ← π(PPs
i )

π(PPs
i )← PPPs

i , Domain←Domain ∪ {PP s
i }, Range← Range ∪ {PPPs

i}

Ms← 2 (PPPs
1 ⊕ PPPs

m); for i ∈ [1 .. m] do CCC s
i ← PPPs

m+1−i ⊕Ms

for i← 1 to m do

CC s
i

$
←{0, 1}n; if CC s

i ∈ Range then bad← true, CC s
i

$
← Range

if CCC s
i ∈ Domain(π) then bad← true, CC s

i ← π(CCC s
i )

Cs
i ← CC s

i ⊕ CCC s
i−1

π(CCC s
i )← CC s

i , Domain←Domain ∪ {CCC s
i}, Range← Range ∪ {CC s

i}

return C1 · · ·Cm

A decipher query, Dec(Cs
1 · · ·C

s
m), is handled similarly

Fig. 3. Game CMC1 provides a perfect simulation of CMC[Perm(n)]. The boxed state-
ments are events where we need to reset a previously chosen value.

to arrive at a simpler setting where there is no adversary and no interaction—just
a program that flips coins and a flag bad that does or does not get set.

The various games. We describe the attack of A against CMC[Perm(n)] as a
probabilistic game in which the permutation π is chosen “on the fly”, as needed to
answer the queries of A. Initially, the partial function π: {0, 1}n → {0, 1}n is ev-
erywhere undefined. When we need π(X) and π isn’t yet defined at X we choose
this value randomly among the available range values. When we need π−1(Y )
and there is no X for which π(X) has been set to Y we likewise choose X at
random from the available domain values. As we fill in π its domain and its range
thus grow. In the game we keep track of the domain and range of π by main-
taining two sets, Domain and Range, that include all the points for which π is
already defined. We let Domain and Range be the complement of these sets rela-
tive to {0, 1}n. The game, denoted CMC1, is shown in Fig. 3. Since game CMC1
accurately represent the attack scenario, we have that

Pr[AEπ Dπ ⇒ 1 ] = Pr[ACMC1 ⇒ 1 ] (5)

The basic idea in the proof is that the bad events that we need to analyze are
“accidental collisions”, where a value that was supposed to be “new” happens to



A Tweakable Enciphering Mode 495

be equal to one of the values currently in the sets Domain and Range. The full
proof therefore goes through a sequence of intermediate games—RND1, RND2,
RND3, NON1, and NON2—that are designed to help us reason about the prob-
ability of these “accidental collisions” (and therefore the advantage an adversary
can get in distinguishing CMC1 from a random permutation and its inverse).
Specifically, in game RND1 we omit all the boxed “resetting events” that

immediately follow the setting of the flag bad (this is the usual trick under the
game-substitution approach). In games RND2 and RND3 we just re-arrange the
code without effecting the distribution of any of the variables in the game. In
game NON1 we eliminate the interaction, essentially by letting the adversary
specify not only the queries in the game, but also the answers to these queries
(with some minor restrictions). Finally, in game NON2 we use the symmetry of
CMC, arguing that it is sufficient to analyze only half of the “collision events”
since the other half is completely symmetric. These games are designed so that:

• Pr[ACMC1 ⇒ 1 ]− Pr[ARND1 ⇒ 1 ] ≤ Pr[ARND1 sets bad ]

• Pr[ARND1 ⇒ 1 ] = Pr[ARND2 ⇒ 1 ] = Pr[A±r̃nd ⇒ 1 ]
• Pr[ARND1 sets bad ] = Pr[ARND2 sets bad ] = Pr[ARND3 sets bad ]

≤ Pr[NON1 sets bad ] + q(q−1)
2n+1 ≤ 2 · Pr[NON2 sets bad ] + q(q−1)

2n+1

Combining these statements with Equation (5) and Lemma 1 we have reduced
the problem of bounding the adversary’s advantage to answering a question
about game NON2. We now look at game NON2, which is shown in Fig. 4.
Game NON2 (the name suggests “noninteractive”) depends on a fixed tran-

script τ = 〈ty,P,C〉 with ty = (ty1, · · · , tyq), P = (P1, · · · ,Pq), and C =
(C1, · · · ,Cq) where tys ∈ {Enc,Dec} and Ps = Ps1 · · ·P

s
m and Cs = Cs1 · · ·C

s
m for

|Pri | = |C
r
i | = n. This fixed transcript may not specify any “immediate colli-

sions” or “pointless queries”; we call such a transcript allowed. Formally, saying
that τ is allowed means that for all r < s we have the following: if tys = Enc

then (i) Ps 6= Pr and (ii) Cs1 6= Cr1; while if ty
s = Dec then (i) Cs 6= Cr and

(ii) Ps1 6= Pr1. Now fix an allowed transcript τ that maximizes the probability of
the flag bad being set. This one transcript τ is hardwired into game NON2.

Analysis of game NON2. It is helpful to view the multiset D as a set of
formal variables (rather than a multiset containing the values that these variables
assume). Namely, whenever in game NON2 we setD←D∪{X} for some variable
X, we would think of it as setting D←D∪{“X”} where “X” is the name of that
formal variable. Viewed in this light, our goal now is to bound the probability
that two formal variables in D assume the same value in the execution of NON2.
We observe that the formal variables in D are uniquely determined by τ—they
don’t depend on the random choices made in the game NON2; specifically,

D = {PPs
i | tys = Dec} ∪ {PPs

i | tys = Enc and i > u[s]} ∪

{CCC s
i | tys = Enc} ∪ {CCC s

i | tys = Dec and i > u[s]}

We view the formal variables inD as ordered according to when they are assigned
a value in the execution of game NON2. This ordering too is fixed, depending
only on the fixed transcript τ . The crucial claim is the following:
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D←∅ // Multiset
for s← 1 to q do

if tys = Enc then

u[s]← largest value in [0 .. m] s.t. Ps
1 · · ·P

s
u[s] = Pr

1 · · ·P
r
u[s] for some r < s

PPPs
0← CCC s

0← 0n

for i← 2 to u[s] do PPs
i ← Ps

i ⊕ PPPs
i−1, PPPs

i ← PPPr
i

for i← u[s] + 1 to m do

PPs
i ← Ps

i ⊕ PPPs
i−1 ; D←D ∪ {PPs

i}

PPPs
i

$
←{0, 1}n

for i ∈ [1 .. m] do CCC s
i ← PPPs

m+1−i ⊕ 2 (PPPs
1 ⊕ PPPs

m)
D←D ∪ {CCC s

i}

else (tys = Dec)
u[s]← largest value in [0 .. m] s.t. Cs

1 · · ·C
s
u[s] = Cr

1 · · ·C
r
u[s] for some r < s

CCC s
0← PPPs

0← 0n

for i← 1 to u[s] do CC s
i ← Cs

i ⊕ CCC s
i−1, CCC s

i ← CCC r
i

for i ∈ [u[s] + 1 .. m] do CCC s
i

$
←{0, 1}n ; D←D ∪ {CCC s

i}

for i ∈ [1 .. m] do PPPs
i ← CCC s

m+1−i ⊕ 2 (CCC s
1 ⊕ CCC s

m)

for i ∈ [1 .. m] do PPs
i ← Ps

i ⊕ PPPs
i−1; D←D ∪ {PPs

i}

bad← (some value appears more than once in D)

Fig. 4. Game NON2. The boxed statements are the random choices in this game.

Claim. For any two distinct variables X,X ′ ∈ D we have Pr[X = X ′] ≤ 2−n 2

The proof, consisting of an exhaustive case analysis, can be found in the full
version of this paper [10]. The idea is to look at the “free variables” that are
directly chosen at random in game NON2 (the boxed statements in Fig. 4), and
to show that the sum of any two variables in D depends linearly on at least one
free variable. We now show how this claim finishes the proof of Theorem 1. As
there are no more than 2σ variables in D, we use the union bound to conclude
Pr[NON2 sets bad ] ≤

(
2σ
2

)
/2n. Combining the results given so far we have that:

Adv±p̃rp
CMC[Perm(n)](A) ≤ Adv±r̃nd

CMC[Perm(n)](A) + q(q − 1)/22n+1

≤ 2 · Pr[NON2 sets bad] + q(q − 1)/2n+1 + q(q − 1)/22n+1

≤ 2 ·

(
2σ

2

)
/2n + q(q − 1)/2n+1 + q(q − 1)/22n+1 ≤ 5σ2/2n

This completes the proof, assuming the missing claim from above.


