
Primality Proving via One Round in ECPP

and One Iteration in AKS

Qi Cheng1?

School of Computer Science
the University of Oklahoma
Norman, OK 73019, USA

qcheng@cs.ou.edu

Abstract. On August 2002, Agrawal, Kayal and Saxena announced the
first deterministic and polynomial time primality testing algorithm. For
an input n, the AKS algorithm runs in heuristic time Õ(log6 n). Ver-
ification takes roughly the same amount of time. On the other hand,
the Elliptic Curve Primality Proving algorithm (ECPP), runs in random
heuristic time Õ(log6 n) (Õ(log5 n) if the fast multiplication is used),
and generates certificates which can be easily verified. More recently,
Berrizbeitia gave a variant of the AKS algorithm, in which some primes
cost much less time to prove than a general prime does. Building on these
celebrated results, this paper explores the possibility of designing a more
efficient algorithm. A random primality proving algorithm with heuris-
tic time complexity Õ(log4 n) is presented. It generates a certificate of
primality which is O(log n) bits long and can be verified in determin-
istic time Õ(log4 n). The reduction in time complexity is achieved by
first generalizing Berrizbeitia’s algorithm to one which has higher den-
sity of easily-proved primes. For a general prime, one round of ECPP is
deployed to reduce its primality proof to the proof of a random easily-
proved prime.

1 Introduction

Testing whether a number is prime or not is one of the fundamental problems
in computational number theory. It has wide applications in computer science,
especially in cryptography. After tremendous efforts invested by researchers in
about two hundred years, it was finally proved by Agrawal, Kayal and Saxena [3]
that the set of primes is in the complexity class P. For a given integer n, the AKS
algorithm runs in time no longer than Õ(log12 n), while the best deterministic
algorithm before it has subexponential complexity [2]. Under a conjecture con-
cerning the density of the Sophie-Germain primes, The AKS algorithm should
give out answer in time Õ(log6 n).

Notation: In this paper, we use “ln” for logarithm base e and “log” for
logarithm base 2. We write rα||n, if rα|n but rα+1 6 |n. By Õ(f(n)), we mean
O(f(n)polylog(f(n))).

? This research is partially supported by NSF Career Award CCR-0237845

338 Q. Cheng

The AKS algorithm is based on the derandomization of a polynomial identity
testing. It involves many iterations of polynomial modular exponentiation. To
test the primality of a integer n, the algorithm first searches for a suitable r,
which is provably O(log6 n), or heuristically O(log2 n). Then the algorithm will
check for l from 1 to L = d2√r log ne, whether

(x+ l)n = xn + l (mod n, xr − 1). (1)

The algorithm declares that n is a prime if all the checks pass. The computing of
(x+ l)n (mod n, xr − 1) takes time Õ(r log2 n) if we use the fast multiplication.
The total time complexity is thus Õ(rL log2 n).

While the AKS algorithm is a great accomplishment in the theory, the current
version is very slow. Unless its time complexity can be dramatically improved,
it cannot replace random primality testing algorithms with better efficiency. In
most of applications in cryptography, an efficient random algorithm is sufficient,
as long as the algorithm can generate a certificate of primality, which in deter-
ministic time convinces a verifier who does not believe any number theory con-
jectures. A primality testing algorithm which generates a certificate of primality
is sometimes called primality proving algorithm. Similarly a primality testing
algorithm which generates a certificate of compositeness is sometimes called
compositeness proving algorithm. Very efficient random compositeness proving
algorithms have long been known. Curiously, primality proving algorithms [5,
?] lag far behind of compositeness proving algorithms in term of efficiency and
simplicity.

Recently, Berrizbeitia [7] proposed a brilliant modification to the AKS origi-
nal algorithm. He used the polynomial x2s − a instead of xr − 1 in equation (1),
where 2s ≈ log2 n. Among others, he was able to prove the following proposition:

Proposition 1. Given an integer n ≡ 1 (mod 4). Denote s = d2 log log ne.
Assume that 2k||n−1 and k ≥ s. If there exists an integer a, such that (a

n
) = −1

and a
n−1

2 ≡ −1 (mod n), then

(1 + x)n ≡ 1 + xn (mod n, x2s − a)

iff n is a power of a prime.

Unlike the AKS algorithm, where each prime costs roughly the same, there
are “easily-proved primes” in Berrizbeitia’s algorithm, namely, the primes p
where p−1 has a factor of a power of two larger than log2 n. For those primes, one
iteration of polynomial modular exponentiation, which runs in time Õ(log4 n),
establishes the primality of p, provided that a suitable a exists. In fact, a can be
found easily if n is indeed a prime and randomness is allowed in the algorithm.
It serves as a prime certificate for n.

Definition 1. In this paper, for a primality proving algorithm, we call a prime
p easily-proved, if the algorithm runs in expected time Õ(log4 p) on p.

Primality Proving via One Round in ECPP 339

What is the density of the easily-proved primes in Berrizbeitia’s algorithm?

The number of primes of form 2sx+ 1 less than b is about π(b)
φ(2s) . Hence heuris-

tically for a random prime p, p − 1 has a factor 2s ≈ log2 p with probability
1

2 log2 p
, in the other words, the easily-proved primes have density 1

2 log2 p
around

p in his algorithm.

1.1 Increasing the density of easily-proved primes

We prove the following theorem in Section 5, which can be regarded as a gener-
alization of Proposition 1.

Theorem 1. (Main) Given a number n which is not a power of an integer.
Suppose that there exists a prime r, rα||n−1(α ≥ 1) and r ≥ log2 n. In addition,

there exists a number 1 < a < n, such that ar
α ≡ 1 (mod n), gcd(arα−1−1, n) =

1, and
(1 + x)n = 1 + xn (mod n, xr − a),

then n is a prime.

The number a can be found easily if n is a prime and randomness is allowed.
It serves as a prime certificate for n. Base on this theorem, we propose a random
algorithm which establishes the primality of p in time Õ(log4 p) if p− 1 contains
a prime factor between log2 p and C log2 p for some small constant C.

Definition 2. We call a positive integer n C-good, if n− 1 has a prime factor
p such that log2 n ≤ p ≤ C log2 n.

What is the density of C-good primes? Clearly the density should be higher
than the density of easily-proved primes in Berrizbeitia’s algorithm. Let m =
∏

p prime,b1≤p≤Cb1 p. First we count the number of integers between 1 and m
which have a prime factor between b1 and Cb1. This is precisely the number of
nontrivial zero-divisors in ring Z/mZ:

(m− 1)−m
∏

p prime,b1≤p≤Cb1
(1− 1

p
).

We will prove in Section 4 that this number is greater than m
ln b1

for C = c and
b1 sufficiently large, where c is an absolute constant to be determined later. We
need fix a explicit value for C in the algorithm. Without loss of generosity, set
C = 2. For simplicity, we call a number good, when it is 2-good. Since compared
with log2 n, n is very big, we expect that

Conjecture 1. There exists an absolute constant λ, such that for any sufficiently
large integer n,

Number of 2− good primes between n− 2√n+ 1 and n+ 2√n+ 1
Number of primes between n− 2√n+ 1 and n+ 2√n+ 1 >

λ

ln(log2 n)
.

We are unable to prove this conjecture however, but we present in the paper some
numerical evidences. We comment that questions about the prime distribution
in a short interval are usually very hard.

340 Q. Cheng

1.2 Algorithm for the general primes

For general primes, we apply the idea in the Elliptic Curve Primality Proving
algorithm (ECPP). ECPP was proposed by Goldwasser, Kilian [8] and Atkin [4]
and implemented by Atkin and Morain [5]. In practice, ECPP performs much
better than the current version of AKS. It has been used to prove primality of
numbers up to thousands of decimal digits [10].

In ECPP, if we want to prove that an integer n is a prime, we reduce the
problem to the proof of primality of a smaller number (less than n/2). To achieve
this, we try to find an elliptic curve with ωn′ points over Z/nZ, where ω is com-
pletely factored and n′ is a probable prime greater than (4

√
n + 1)2. Once we

have such a curve and a point on the curve with order n′, the primality of n′

implies the primality of n. Since point counting on elliptic curves is expensive,
we usually use the elliptic curves with complex multiplications of small discrim-
inants. Nonetheless, it is plausible to assume that the order of the curve has the
desired form with the same probability as a random integer does. ECPP needs
O(log n) rounds of reductions to eventually reduce the problem to a primality
proof of a very small prime, say, less than 1000. As observed in [9], one round
of reduction takes heuristic time Õ(log5 n), or Õ(log4 n) if we use the fast mul-
tiplication. To get the time complexity, it is assumed that the number of primes
between n− 2√n+1 and n+2√n+1 is greater than √n/ log2 n, and the num-
ber of points on an elliptic curve with small discriminant complex multiplication
behaves like a random number in the Hassa range. We refer the assumption as
the ECPP heuristics. Rigorous proof of the time complexity seems out of reach,
as it involves the study of the prime distribution in a short interval.

Our algorithm can be decomposed into two stages. In the first stage, for a
general probable prime n, we will use one round of ECPP to reduce its proof
of primality to a good probable prime n′ near n. For convenience, we require
that n− 2√n+1 ≤ n′ ≤ n+2

√
n+1 (See section 6 for implementation issues).

Note that up to a constant factor, the time complexity of one round reduction in
ECPP is equivalent to the time complexity of finding a curve with a prime order.
In the set of primes between n− 2√n+ 1 and n+ 2√n+ 1, the density of good
primes is λ

ln(log2 n)
by conjectures. Hence heuristically the extra condition on n′

(that n′ should be good) will increase the time complexity merely by a factor of
O(log log n). Therefore for all the primes, without significant increase of time
complexity, we reduce its primality proving to the proof of a good prime. In the
second stage, we find a primality certificate for n′. To do this, we search for a
which satisfies the conditions in the main theorem, and compute the polynomial
modular exponentiation. The total expected running time of the first and the
second stages becomes Õ(log4 n). However, because of the reasons given above, it
seems difficult to obtain the rigorous time complexity. Put it altogether, we now
have a general purpose prime proving algorithm, which has following properties:

1. it runs very fast (Õ(log4 n)) assuming reasonable conjectures.

2. For many primes, ECPP subroutine is not needed.

Primality Proving via One Round in ECPP 341

3. The certificate, which consists of the curve, a point on the curve with order
n′, n′ and a, is very short. It consists of only O(log n) bits as opposed to
O(log2 n) bits in ECPP.

4. A verifier can be convinced in deterministic time Õ(log4 n). In fact, the most
time consuming part in the verification is the computation of one polynomial
modular exponentiation.

This paper is organized as following: In Section 2, we review the proposi-
tions used by AKS and ECPP to prove primality. In Section 3, we describe our
algorithm and present the time complexity analysis. In Section 4, we prove a the-
orem which can be regarded as an evidence for the density heuristics. The main
theorem is proved in Section 5. We conclude this paper with some discussions
on the implementation of the algorithm.

2 Proving primality in AKS and ECPP

The ECPP algorithm depends on rounds of reductions of the proof of primality
of a prime to the proof of primality of a smaller prime. The most remarkable
feature of ECPP is that a verifier who does not believe any conjectures can be
convinced in time Õ(log3 n) if the fast multiplication is used. It is based on the
following proposition [5].

Proposition 2. Let N be an integer prime to 6, E be an elliptic curve over
Z/NZ, together with a point P on E and two integers m and s with s|m. Denote
the infinite point on E by O. For each prime divisor q of s, denote (m/q)P by
(xq : yq : zq). Assume that mP = O and gcd(zq, N) = 1 for all q. If s >

(4
√
N + 1)2, then N is a prime.

The certificate for N in ECPP consists of the curve E, the point P , m, s
and the certificate of primality of s. Usually the ECPP algorithm uses elliptic
curves with complex multiplications of small discriminants. For implementation
details, see [5].
The AKS algorithm proves a number is a prime through the following propo-

sition.

Proposition 3. Let n be a positive integer. Let q and r be prime numbers. Let
S be a finite set of integers. Assume

1. that q divides r − 1;
2. that n

r−1

q 6≡ 0, 1 (mod r);
3. that gcd(n, b− b′) = 1 for all the distinct b, b′ ∈ S;

4. that
(

q+|S|−1
|S|

)

≥ n2b√rc;

5. that (x+ b)n ≡ xn + b (mod xr − 1, n) for all b ∈ S.

Then n is a power of a prime.

342 Q. Cheng

3 Description and time complexity analysis of our

algorithm

Now we are ready to sketch our algorithm.

Input: a positive integer n

Output: a certificate of primality of n, or “composite”.

1. If n is a power of an integer, return “composite”.

2. Run a random compositeness proving algorithm, for example, the Rabin-
Miller testing [6, Page 282], on n. If a proof of compositeness is found, output
the proof, return “composite” and exit;

3. If n − 1 contains a prime factor between log2 n and 2 log2 n, skip this step.
Otherwise, call ECPP to find an elliptic curve over Z/nZ with n′ points,
where n′ is a probable prime and n′ is 2-good. Set n = n′;

4. Let r be the prime factor of n− 1 satisfying log2 n ≤ r ≤ 2 log2 n;
5. Randomly select a number 1 < b < n. If bn−1 6= 1 (mod n), exit;
6. Let a = b

n−1

rα (mod n); If a = 1, or ar
α−1

= 1, go back to step 5;

7. If gcd(ar
α−1 − 1, n) 6= 1, exit;

8. If (1 + x)n 6= 1 + xn (mod n, xr − a), exit;

9. Use ECPP procedure to construct the curve and the point and compute the
order. Output them with a. Return “prime”.

On any input integer n, this algorithm will either output “composite” with
a compositeness proof, or “prime” with a primality proof, or nothing. As we can
see, it output nothing, only when the probable prime n in Step 4 is actually
composite. The chance should be extremely small.

Now we analyze its time complexity. Testing whether a number n is good or
not can be done in time Õ(log3 n). The step 3 takes time Õ(log4 n), if the ECPP
heuristics is true, Conjecture 1 in the introduction section is true, and the fast
multiplication algorithm is used. If n is indeed a prime, then the probability of
going back in step 6 is at most 1/r. The step 7 takes time at most Õ(log2 n).
The step 8 takes time Õ(log4 n), since r ≤ 2 log2 n. Hence the heuristic expected
running time of our algorithm is Õ(log4 n). Obviously the verification algorithm
takes deterministic time Õ(log4 n).

4 Density of good numbers

What is the probability that a random number has a prime factor between b1
and b2 = Cb1? Let m =

∏

p prime,b1≤p≤b2 p. We first compute the density of
integers between 1 and m − 1 which has a prime factor between b1 and b2.
Those numbers are precisely the zero-divisors in Z/mZ. The number of non-
zero-divisors between 1 and m is φ(m) = m

∏

p prime,b1≤p≤b2(1−
1
p
), where φ is

the Euler phi-function. First we estimate the quantity:

Primality Proving via One Round in ECPP 343

βb1,b2 =
∏

p prime,b1≤i≤b2
(1− 1

p
)

It is known [11] that
∏

p<x,p prime(1− 1
p
) = e−γ

ln x (1 +O(1
ln x)), where γ is the

Euler constant. There must exist two absolute constants c1, c2, such that

e−γ

lnx
(1 +

c1
lnx

) ≤
∏

p<x,p prime

(1− 1
p
) ≤ e−γ

lnx
(1 +

c2
lnx

)

Set C = c where c represents ec2−c1+2.

∏

p prime,b1≤p≤b2
(1− 1

p
) =

∏

p prime,p≤b2(1−
1
p
)

∏

p prime,p≤b1(1−
1
p
)

≤ ln b1
ln cb1

1 + c2
ln cb1

1 + c1
ln b1

=
ln3 b1 + (ln c+ c2) ln

2 b1

ln3 b1 + (2 ln c+ c1) ln
2 b1 + (ln

2 c+ 2c1 ln c) ln b1 + c1 ln
2 c

Thus 1− βb1,b2 ≥ (ln c+c1−c2) ln2 b1−(ln2
c+2c2 ln c) ln b1−c2 ln2

c

ln3 b1+(2 ln c+c1) ln2 b1+(ln2
c+2c1 ln c) ln b1+c1 ln2

c
> 1

ln b1
, when

b1 is sufficiently large. It is expected that the density of good primes in the set
of primes in a large interval should not be very far away from 1

ln b1
. See Table 1

for numerical data concerning the density of 2-good primes around 2500. Notice
that

β250000,500000 = 0.9472455

1− β250000,500000 = 0.0527545

1

ln 250000
= 0.0804556

5 Proof of the main theorem

In this section we prove the main theorem. It is built on a series of lemmas. Some
of them are straight-forward generalizations of the lemmas in Berrizbeitia’s paper
[7]. We include slightly different proofs of those lemmas, though, for complete-
ness. Some of the proofs are brief, for details see [7].

Lemma 1. Let r, p be primes, r|p − 1. If a ∈ Fp is not a r-th power of any
element in Fp, then xr − a is irreducible over Fp.

344 Q. Cheng

Table 1. Number of 2-good primes around 2
500

From To Number of primes Number of 2-good primes Ratio

2500 + 0 2500 + 200000 576 35 6.07%

2500 + 200000 2500 + 400000 558 38 6.81%

2500 + 400000 2500 + 600000 539 30 5.56%

2500 + 600000 2500 + 800000 568 23 4.05%

2500 + 800000 2500 + 1000000 611 39 6.38%

2500 + 1000000 2500 + 1200000 566 26 4.59%

2500 + 1200000 2500 + 1400000 566 38 6.71%

2500 + 1400000 2500 + 1600000 526 27 5.13%

2500 + 1600000 2500 + 1800000 580 26 4.48%

2500 + 1800000 2500 + 2000000 563 20 3.55%

2500 + 2000000 2500 + 2200000 562 22 3.91%

2500 + 2200000 2500 + 2400000 561 21 3.74%

2500 + 2400000 2500 + 2600000 609 34 5.58%

2500 + 2600000 2500 + 2800000 601 28 4.66%

2500 + 2800000 2500 + 3000000 603 33 5.47%

2500 + 3000000 2500 + 3200000 579 37 6.39%

2500 + 3200000 2500 + 3400000 576 31 5.38%

2500 + 3400000 2500 + 3600000 604 35 5.79%

2500 + 3600000 2500 + 3800000 612 40 6.53%

2500 + 3800000 2500 + 4000000 588 29 4.93%

2500 + 4000000 2500 + 4200000 574 33 5.75%

2500 + 4200000 2500 + 4400000 609 27 4.43%

2500 + 4400000 2500 + 4600000 549 35 6.37%

2500 + 4600000 2500 + 4800000 561 30 5.34%

2500 + 4800000 2500 + 5000000 545 29 5.32%

2500 + 5000000 2500 + 5200000 590 20 3.39%

2500 + 5200000 2500 + 5400000 557 27 4.84%

2500 + 5400000 2500 + 5600000 591 28 4.73%

2500 + 5600000 2500 + 5800000 517 33 6.38%

2500 + 5800000 2500 + 6000000 566 18 3.18%

2500 + 6000000 2500 + 6200000 575 30 5.21%

2500 + 6200000 2500 + 6400000 573 26 4.53%

2500 + 6400000 2500 + 6600000 558 36 6.45%

2500 + 6600000 2500 + 6800000 574 32 5.57%

2500 + 6800000 2500 + 7000000 594 22 3.70%

2500 + 7000000 2500 + 7200000 596 31 5.20%

2500 + 7200000 2500 + 7400000 567 26 4.58%

2500 + 7400000 2500 + 7600000 619 28 4.52%

2500 + 7600000 2500 + 7800000 565 25 4.42%

2500 + 7800000 2500 + 8000000 561 25 4.45%

2500 + 8000000 2500 + 8200000 570 26 4.56%

Proof. Let θ be one of the roots of xr − a = 0. Certainly [Fp(θ) : Fp] > 1. Let
ξ ∈ Fp be one of the r-th primitive roots of unity.

xr − a = xr − θr =
∏

0≤i≤r−1

(x− ξiθ).

Primality Proving via One Round in ECPP 345

Let [Fp(θ) : Fp] = r′. Then for all i, [Fp(ξiθ) : Fp] = r′. Hence over Fp, xr − a
will be factored into polynomials of degree r′ only. Since r is a prime, this is
impossible, unless that r′ = r.

Lemma 2. Let n > 2 be an integer. Let r be a prime and rα||n − 1. Suppose
that there exists a integer 1 < a < n such that

1. ar
α ≡ 1 (mod n);

2. gcd(ar
α−1 − 1, n) = 1;

Then there must exist a prime factor p of n, such that rα||p− 1 and a is not a
r-th power of any element in Fp.

Proof. For any prime factor q of n, ar
α ≡ 1 (mod q) and arα−1 6≡ 1 (mod q), so

rα|q − 1. If rα+1|q − 1 for all the prime factors, then rα+1|n− 1, contradiction.
Hence there exists a prime factor p, such that rα||p− 1. Let g be a generator in
F∗p. If a = gt in Fp, then p− 1|trα, and p− 1 6 | trα−1. Hence r 6 | t.

In the following text, we assume that n is an integer, n = pld where p is
a prime and gcd(p, d) = 1. Assume r is a prime and r|p − 1. Let xr − a be an
irreducible polynomial in Fp. Let θ be one of the roots of x

r−a. For any element
in the field Fp(θ), we can find a unique polynomial f ∈ Fp[x] of degree less than
r such that the element can be represented by f(θ). Define σm : Fp(θ)→ Fp(θ)
as σ(f(θ)) = f(θm).

Lemma 3. We have that am = a in Fp iff σm ∈ Gal(Fp(θ)/Fp).

Proof. (⇐): Since σm ∈ Gal(Fp(θ)/Fp), θ
m must be a root of xr − a. Hence

a = (θm)r = am in Fp.

(⇒): For any two elements a, b ∈ Fp(θ), we need to prove that σm(a+ b) =
σm(a)+σm(b) and σm(ab) = σm(a)σm(b). The first one is trivial from the defini-
tion of σm. Let a = fa(θ) and b = fb(θ) where fa(x), fb(x) ∈ Fp[x] has degree at
most r−1. If deg(fa(x)fb(x)) ≤ r−1, it is easy to see that σm(ab) = σm(a)σm(b).
Now assume that deg(fa(x)fb(x)) ≥ r. Then fa(x)fb(x) = h(x) + (xr − a)p(x)
where h(x), p(x) ∈ Fp[x] and deg(h(x)) < r. Then σm(ab) = σm(h(θ)) =
h(θm) = h(θm) + (am − a)p(θm) = h(θm) + (θmr − a)p(θm) = fa(θ

m)fb(θ
m) =

σm(a)σm(b).

This shows that σm is a homomorphism. To complete the proof, we need to
show that it is also one-to-one. This is obvious since θm is a root of xr − a = 0.

Define Gm = {f(θ) ∈ Fp(θ)∗|f(θm) = f(θ)m}. It can be verified that Gm is
a group when σm is in Gal(Fp(θ)/Fp).

Lemma 4. Suppose σn ∈ Gal(Fp(θ)/Fp). Then for any i, j ≥ 0, σdipj ∈
Gal(Fp(θ)/Fp) and Gn ⊆ Gdipj .

346 Q. Cheng

Proof. Notice that the map x→ xp
l

is a one-to-one map in Fp(θ). The equation

an = a implies that (ad)p
l

= a, hence ad = a, and ad
ipj = a. We have σdipj ∈

Gal(Fp(θ)/Fp).

Let f(θ) ∈ Gn. Thus f(θ
n) = f(θ)n, this implies f(θp

ld) = f(θ)p
ld = f(θp

l

)d.

So θp
l

is a solution of f(xd) = f(x)d. Since it is one of the conjugates of θ, θ must
be a solution as well. This proves that f(θd) = f(θ)d. Similarly since θd is also one

of the conjugates of θ, as σd ∈ Gal(Fp(θ)/Fp), we have f(θ
d2

) = f(θd)d = f(θ)d
2

.

By reduction, f(θd
i

) = f(θ)d
i

for k ≥ 0. Hence f(θdipj) = f(θd
i

)p
j

= f(θ)d
ipj .

This implies that f(θ) ∈ Gdipj .

Lemma 5. If σm1
, σm2

∈ Gal(Fp(θ)/Fp) and σm1
= σm2

, then |Gm1
∩ Gm2

|
divides m1 −m2.

This lemma is straight forward from the definition.

Lemma 6. Let A = ar
α−1

. If (1+θ) ∈ Gn, so is 1+A
iθ for any i = 1, 2, 3, · · · , r−

1. And |Gn| ≥ 2r.

Proof. If (1 + θ) ∈ Gn, this means that (1 + θ)n = 1 + θn. It implies that
(1+θ′)n = 1+θ′n for any conjugate θ′ of θ. Since A is a primitive root of unity in
Fp, hence A

iθ are conjugates of θ. We have (1+Aiθ)n = 1+(Aiθ)n = 1+(An)iθn

and we know that An = A. This proves that 1+Aiθ ∈ Gn. The groupGn contains
all the elements in the set

{
r−1
∏

i=0

(1 +Aiθ)εi |
r−1
∑

i=0

εi < r},

by simple counting we have |Gn| ≥ 2r.

Finally we are ready to give the proof of the main theorem (Theorem 1) of
this paper.

Proof. Since |Gal(Fp(θ)/Fp)| = r, hence there exist two different pairs (i1, j1)
and (i2, j2) with 0 ≤ i1, j1, i2, j2 ≤ b

√
rc, such that σdi1pj1 = σdi2pj2 . According

to Lemma 4, Gn ⊆ Gdi1pj1 , Gn ⊆ Gdi2pj2 , this implies that Gn ⊆ Gdi1pj1 ∩
Gdi2pj2 . Therefore |Gn| divides di1pj1 − di2pj2 , but di1pj1 − di2pj2 < nb

√
rc ≤

2
√
r logn ≤ 2r. hence di1pj1 − di2pj2 = 0, which in turn implies that n is a power

of p.

6 Implementation and conclusion

In this paper, we propose a random primality proving algorithm which runs in
heuristic time Õ(log4 n). It generates a certificate of primality of length O(log n)
which can be verified in deterministic time Õ(log4 n).
When it comes to implement the algorithm, space is a bigger issues than

time. Assume that n has 1000 bit, which is in the range of practical interests. To

Primality Proving via One Round in ECPP 347

compute (1 + x)n (mod n, xr − a), we will have an intermediate polynomial of
size 230 bit, or 128M bytes. As a comparison, ECPP is not very demanding on
space. In order to make the algorithm available on a desktop PC, space efficient
exponentiation of 1+x is highly desirable. This is the case for the original version
of the AKS algorithm as well.
For the sake of theoretical clarity, we use just one round of ECPP reduction in

the algorithm. To implement the algorithm, it may be better to follow the ECPP
algorithm and launch the iteration of AKS as soon as an intermediate prime
becomes good. Again assuming that the intermediate primes are distributed
randomly, the expected number of rounds will be log log n. It is a better strategy
since the intermediate primes get smaller.
We can certainly incorporate small time-saving features suggested by various

researchers on the original version of AKS. The details will be included in the
full version of this paper.

Acknowledgments: We thank Professors Pedro Berrizbeitia and Carl Pomerance
for very helpful discussions and comments.

References

1. L. M. Adleman and M.A. Huang. Primality Testing and Abelian Varieties Over
Finite Fields. Lecture Notes in Mathematics. Springer-Verlag, 1992.

2. L. M. Adleman, C. Pomerance, and R. S. Rumely. On distinguishing prime numbers
from composite numbers. Annals of Mathematics, 117:173–206, 1983.

3. M. Agrawal, N. Kayal, and N. Saxena. Primes is in P.
http://www.cse.iitk.ac.in/news/primality.pdf, 2002.

4. A.O.L. Atkin. Lecture notes of a conference in Boulder (Colorado), 1986.
5. A.O.L. Atkin and F. Morain. Elliptic curves and primality proving. Mathematics

of Computation, 61:29–67, 1993.
6. Eric Bach and Jeffrey Shallit. Algorithmic Number theory, volume I. The MIT
Press, 1996.

7. Pedro Berrizbeitia. Sharpening “primes is in p” for a large family of numbers.
http://lanl.arxiv.org/abs/math.NT/0211334, 2002.

8. S. Goldwasser and J. Kilian. Almost all primes can be quickly certified. In Proc.
18th ACM Symp. on Theory of Computing, pages 316–329, Berkeley, CA, 1986.
ACM.

9. A. Lenstra and H. W. Lenstra Jr. Handbook of Theoretical Computer Science A,
chapter Algorithms in Number Theory, pages 673–715. Elsevier and MIT Press,
1990.

10. F. Morain. Primality proving using elliptic curves: An update. In Proceedings of
ANTS III, volume 1423 of Lecture Notes in Computer Science, 1998.

11. G. Tenenbaum. Introduction to analytic and probabilistic number theory (English
Translation). Cambridge University Press, 1995.

