
Certificateless Public Key Cryptography

Sattam S. Al-Riyami and Kenneth G. Paterson∗

Information Security Group,

Royal Holloway, University of London, Egham, Surrey, TW20 0EX

s.al-riyami@rhul.ac.uk kenny.paterson@rhul.ac.uk

Abstract

This paper introduces and makes concrete the concept of certificateless
public key cryptography (CL-PKC), a model for the use of public key cryp-
tography which avoids the inherent escrow of identity-based cryptography
and yet which does not require certificates to guarantee the authenticity
of public keys. The lack of certificates and the presence of an adversary
who has access to a master key necessitates the careful development of
a new security model. We focus on certificateless public key encryption
(CL-PKE), showing that a concrete pairing-based CL-PKE scheme is se-
cure provided that an underlying problem closely related to the Bilinear
Diffie-Hellman Problem is hard.

1 Introduction

The main difficulty today in developing secure systems based on public key
cryptography is not the problem of choosing appropriately secure algorithms or
implementing those algorithms. Rather, it is the deployment and management
of infrastructures to support the authenticity of cryptographic keys: there is a
need to provide an assurance to the user about the relationship between a public
key and the identity (or authority) of the holder of the corresponding private key.
In a traditional Public Key Infrastructure (PKI), this assurance is delivered in
the form of certificate, essentially a signature by a Certification Authority (CA)
on a public key [1]. The problems of PKI technology are well documented, see
for example [16]. Of note are the issues associated with certificate management,
including revocation, storage and distribution and the computational cost of
certificate verification. These are particularly acute in processor or bandwidth-
limited environments [9].

Identity-based public key cryptography (ID-PKC), first proposed by Shamir
[22], tackles the problem of authenticity of keys in a different way to traditional
PKI. In ID-PKC, an entity’s public key is derived directly from certain aspects of
its identity. Private keys are generated for entities by a trusted third party called
a private key generator (PKG). The first fully practical and secure identity-
based public key encryption scheme was presented in [5]. Since then, a rapid
development of ID-PKC has taken place, see [18] for a brief survey. It has also

∗This author supported by the Nuffield Foundation, NUF-NAL 02.
1

been illustrated in [8, 18, 24] how ID-PKC can be used as a tool to enforce what
might be termed “cryptographic work-flows”, that is, sequences of operations
(e.g. authentications) that need to be performed by an entity in order to achieve
a certain goal.

The direct derivation of public keys in ID-PKC eliminates the need for
certificates and some of the problems associated with them. On the other hand,
the dependence on a PKG who uses a system-wide master key to generate private
keys inevitably introduces key escrow to ID-PKC systems. For example, the
PKG can decrypt any ciphertext in an identity-based public key encryption
scheme. Equally problematical, the PKG could forge any entity’s signatures in
an identity-based signature scheme, so ID-PKC cannot offer true non-repudiation
in the way that traditional PKI can. The escrow problem can be solved to a
certain extent by the introduction of multiple PKGs and the use of threshold
techniques, but this necessarily involves extra communication and infrastructure.
Moreover, the compromise of the PKG’s master key could be disastrous in an
ID-PKC system, and usually more severe than the compromise of a CA’s signing
key in a traditional PKI. For these reasons, it seems that the use of ID-PKC
may be restricted to small, closed groups or to applications with limited security
requirements.

1.1 Certificateless Public Key Cryptography

In this paper, we introduce a new paradigm for public key cryptography, which
we name certificateless public key cryptography (CL-PKC). Our concept grew
out of a search for public key schemes that do not require the use of certificates
and yet do not have the built-in key escrow feature of ID-PKC. The solution we
propose enjoys both of these properties; it is a model for the use of public key
cryptography that is intermediate between traditional PKI and ID-PKC.

We demonstrate that our concept of CL-PKC can be made real by specifying
certificateless encryption and signature schemes. We prove that the encryption
scheme is secure in a new and appropriate model, given the hardness of an
underlying computational problem. Further development of our concept and
more certificateless schemes can be found in the full version of this paper, [2].

1.2 Defining CL-PKC

We sketch the defining characteristics of CL-PKC.

A CL-PKC system still makes use of TTP which we name the key generating
centre (KGC). By way of contrast to the PKG in ID-PKC, this KGC does not
have access to entities’ private keys. Instead, the KGC supplies an entity A with
a partial private key DA which the KGC computes from an identifer IDA for the
entity and a master key. Note that we will often equate A with its identifier IDA.
The process of supplying partial private keys should take place confidentially and
authentically: the KGC must ensure that the partial private keys are delivered
securely to the correct entities. Identifiers can be arbitrary strings.

The entity A then combines its partial private key DA with some secret

information to generate its actual private key SA. In this way, A’s private key is
not available to the KGC. The entity A also combines its secret information with
the KGC’s public parameters to compute its public key PA. Note that A need
not be in possession of SA before generating PA: all that is needed to generate
both is the same secret information. The system is not identity-based, because
the public key is no longer computable from an identity (or identifier) alone.

Entity A’s public key might be made available to other entities by transmit-
ting it along with messages (for example, in a signing application) or by placing
it in a public directory (this would be more appropriate for an encryption set-
ting). But no further security is applied to the protection of A’s public key. In
particular, there is no certificate for A’s key. To encrypt a message to A or verify
a signature from A, entity B makes use of PA and IDA.

A more formal model for certificateless public key encryption (CL-PKE)
will be given in Section 3. Much of this model is also applicable for our other
certificateless primitives.

1.3 An Adversarial Model for CL-PKC

Because of the lack of authenticating information for public keys (in the form of
a certificate, for example), we must assume that an adversary can replace A’s
public key by a false key of its choice. This might seem to give the adversary
tremendous power and to be disastrous for CL-PKC. However, we will see that
an active adversary who attacks our concrete schemes in this way gains nothing
useful: without the correct private key, whose production requires the partial
private key and therefore the cooperation of the KGC, an adversary will not
be able to decrypt ciphertexts encrypted under the false public key, produce
signatures that verify with the false public key, and so on.

Of course, we must assume that the KGC does not mount an attack of this
type: armed with the partial private key and the ability to replace public keys,
the KGC could impersonate any entity in generating a private/public key pair
and then making the public key available. Thus we must assume that, while
the KGC is in possession of the master key and hence all partial private keys,
it is trusted not to replace entities’ public keys. However, we assume that the
KGC might engage in other adversarial activity, eavesdropping on ciphertexts
and making decryption queries, for example. In this way, users invest roughly
the same level of trust in the KGC as they would in a CA in a traditional PKI
– it is rarely made explicit, but such a CA is always assumed not to issue new
certificates binding arbitrary public keys and entity combinations of its choice,
and especially not for those where it knows the corresponding private key! When
compared to ID-PKC, the trust assumptions made of the trusted third party in
CL-PKC are much reduced: in ID-PKC, users must trust the PKG not to abuse
its knowledge of private keys in performing passive attacks, while in CL-PKC,
users need only trust the KGC not to actively propagate false public keys.

The word roughly here merits further explanation. In a traditional PKI, if
the CA forges certificates, then the CA can be identified as having misbehaved
through the existence of two valid certificates for the same identity. This is

not the case in our schemes: a new public key could have been created by the
legitimate user or by the KGC, and it cannot be easily decided which is the
case. The terminology of [15] is useful here: our schemes achieve trust level
2, whereas a traditional PKI reaches trust level 3. However, we can further
strengthen security against a malicious KGC in our schemes by allowing entities
to bind together their public keys and identities. Now the existence of two
different, working public keys for the same identity will identify the KGC as
having misbehaved in issuing both corresponding partial private keys. Details
of this modification can be found in Section 5.1. With this binding in place, our
schemes do reach trust level 3.

In Section 3, we will present an adversarial model for CL-PKE which cap-
tures these capabilities in a formal way. The model we present there is a natural
generalization of the fully adaptive, multi-user model of [5] to the CL-PKC set-
ting, and involves two distinct types of adversary: one who can replace public
keys at will and another who has knowledge of the master key but does not
replace public keys. Given our detailed development of this model, the adapta-
tions to existing models that are needed to produce adversarial models for other
certificateless primitives become straightforward.

1.4 Implementation and Applications of CL-PKC

Our presentation of CL-PKC schemes will be at a fairly abstract level, in terms
of bilinear maps on groups. However, the concrete realization of these schemes
using pairings on elliptic curves is now becoming comparatively routine, after the
work of [3, 6, 7, 12] on implementation of pairings and selection of curves with
suitable properties. All the schemes we present use a small number of pairing
calculations for each cryptographic operation, and some of these can usually be
eliminated when repeated operations involving the same identities take place.
Public and private keys are small in size: two elliptic curve points for the public
key and one for the private key.

The infrastructure needed to support CL-PKC is lightweight when com-
pared to a traditional PKI. This is because, just as with ID-PKC, the need
to manage certificates is completely eliminated. This immediately makes CL-
PKC attractive for low-bandwidth, low-power situations. However, it should
be pointed out that recently introduced signatures schemes enjoying very short
signatures [7] could be used to significantly decrease the size of certificates and
create a lightweight PKI. Our CL-PKC signature scheme can also support true
non-repudiation, because private keys remain in the sole possession of their le-
gitimate owners.

Revocation of keys in CL-PKC systems can be handled in the same way as
in ID-PKC systems. In [5] the idea of appending validity periods to identifiers
IDA is given as one convenient solution. In the context of CL-PKC, this ensures
that any partial private key, and hence any private key, has a limited shelf-life.

As will become apparent, our CL-PKC schemes are actually very closely
related to existing pairing-based ID-PKC schemes. One consequence of this is
that any infrastructure deployed to support pairing-based ID-PKC (e.g. a PKG)

can also be used to support our CL-PKC schemes too: in short, the two types of
scheme can peacefully co-exist. In fact, an entity can be granted a private key for
a pairing-based ID-PKC scheme and immediately convert it into a private key
for our CL-PKC scheme. In this way, an entity who wishes to prevent the PKG
exploiting the escrow property of an identity-based system can do so, though at
the cost of losing the identity-based nature of its public key.

Although our CL-PKC schemes are no longer identity-based, they do enjoy
the property that an entity’s private key can be determined after its public
key has been generated and used. This is a useful feature. An entity B can
encrypt a message for A using A’s chosen public key and an identifier IDA of
B’s choice. This identifier should contain A’s identity but might also contain a
condition that A must demonstrate that it satisfies before the KGC will deliver
the corresponding partial private key (which in turn allows A to compute the
right private key for decryption). For more applications of “cryptographic work-
flows” which cannot be supported using certificate-based systems, see [18, 24].

1.5 Related Work

Our work on CL-PKC owes much to the pioneering work of Boneh and Franklin
[5, 6] on identity-based public key encryption. In fact, our CL-PKE scheme is
derived from the scheme of [5] by making a very simple modification (albeit, one
with far-reaching consequences). Our security proofs require significant changes
and new ideas to handle our new types of adversary. Likewise, our signature
and other schemes [2] also arise by adapting existing ID-PKC schemes. Another
alternative to traditional certificate-based PKI called self-certified keys was in-
troduced by Girault [15] and further developed in [19, 21]. The properties of the
schemes presented in [15, 19, 21] are compared to CL-PKC in the full version
[2].

Recent and independent work of Gentry [13] simplifies certificate manage-
ment in traditional PKI systems in a very neat way by exploiting pairings. Gen-
try’s scheme is presented in the context of a traditional PKI model, whereas our
work departs from the traditional PKI and ID-PKC models to present a new
paradigm for the use of public-key cryptography. Moreover, the concrete realiza-
tions of the two models are different. However, it is possible to re-cast Gentry’s
work to divorce it from the setting of a traditional PKI. Further discussion can
be found in [2].

2 Background Definitions

Throughout the paper, G1 denotes an additive group of prime order q and G2

a multiplicative group of the same order. We let P denote a generator of G1.
For us, a pairing is a map e : G1 × G1 → G2 with the following properties: (1)
The map e is bilinear: given Q,W,Z ∈ G1, we have e(Q,W + Z) = e(Q,W) ·
e(Q,Z) and e(Q + W,Z) = e(Q,Z) · e(W,Z). (2) The map e is non-degenerate:
e(P, P) 6= 1G2 . (3) The map e is efficiently computable.

Typically, the map e will be derived from either the Weil or Tate pairing

on an elliptic curve over a finite field. We refer to [3, 6, 7, 12] for a more
comprehensive description of how these groups, pairings and other parameters
should be selected in practice for efficiency and security.

We also introduce here the computational problems that will form the basis
of security for our CL-PKC schemes.

Bilinear Diffie-Hellman Problem (BDHP): Let G1, G2, P and e be as
above. The BDHP in 〈G1,G2, e〉 is as follows: Given 〈P, aP, bP, cP 〉 with uni-
formly random choices of a, b, c ∈ Z∗q , compute e(P, P)abc ∈ G2. An algorithm
A has advantage ε in solving the BDHP in 〈G1,G2, e〉 if
Pr

[A(〈P, aP, bP, cP 〉) = e(P, P)abc
]

= ε.

Here the probability is measured over the random choices of a, b, c ∈ Z∗q and
the random bits of A.

Generalized Bilinear Diffie-Hellman Problem (GBDHP): Let G1, G2, P
and e be as above. The GBDHP in 〈G1,G2, e〉 is as follows: Given 〈P, aP, bP, cP 〉
with uniformly random choices of a, b, c ∈ Z∗q , output a pair 〈Q ∈ G∗1, e(P, Q)abc ∈
G2〉. An algorithm A has advantage ε in solving the GBDHP in 〈G1,G2, e〉 if
Pr

[A(〈P, aP, bP, cP 〉) = 〈Q, e(P, Q)abc〉] = ε.

Here the probability is measured over the random choices of a, b, c ∈ Z∗q and
the random bits of A.

Notice that the BDHP is a special case of the GBDHP in which the al-
gorithm outputs the choice Q = P . While the GBDHP may appear to be in
general easier to solve than the BDHP because the solver gets to choose Q, we
know of no polynomial-time algorithm for solving either when the groups G1,G2

and pairing e are appropriately selected. If the solver knows s ∈ Z∗q such that
Q = sP , then the problems are of course equivalent.

BDH Parameter Generator: As in [5], the formal output of this randomized
algorithm is a triple 〈G1,G2, e〉 where G1 and G2 are of prime order q and
e : G1 ×G1 → G2 is a pairing.

Our security proofs will yield reductions to the BDHP or GBDHP in groups
generated by a BDH parameter generator IG.

3 Certificateless Public Key Encryption

In this section we present a formal definition for a certificateless public key
encryption (CL-PKE) scheme. We also examine the capabilities which may be
possessed by the adversaries against such a scheme and give a security model
for CL-PKE.

A CL-PKE scheme is specified by seven randomized algorithms.

Setup: This algorithm takes security parameter k and returns the system param-
eters params and master-key. The system parameters includes a description
of the message space M and ciphertext space C. Usually, this algorithm is run

by the KGC. We assume throughout that params are publicly and authentically
available, but that only the KGC knows master-key.

Partial-Private-Key-Extract: This algorithm takes params, master-key and
an identifier for entity A, IDA ∈ {0, 1}∗, as input. It returns a partial private
key DA. Usually this algorithm is run by the KGC and its output is transported
to entity A over a confidential and authentic channel.

Set-Secret-Value: This algorithm takes as inputs params and an entity A’s
identifier IDA as inputs and outputs A’s secret value xA.

Set-Private-Key: This algorithm takes params, an entity A’s partial private
key DA and A’s secret value xA as input. The value xA is used to transform DA

into the (full) private key SA. The algorithm returns SA.

Set-Public-Key: This algorithm takes params and entity A’s secret value xA

as input and from these constructs the public key PA for entity A.

Normally both Set-Private-Key and Set-Public-Key are run by an entity
A for itself, after running Set-Secret-Value. The same secret value xA is used
in each. Separating them makes it clear that there is no need for a temporal
ordering on the generation of public and private keys in our CL-PKE scheme.
Usually, A is the only entity in possession of SA and xA, and xA will be chosen
at random from a suitable and large set.

Encrypt: This algorithm takes as inputs params, a message M ∈ M, and the
public key PA and identifier IDA of an entity A. It returns either a ciphertext
C ∈ C or the null symbol ⊥ indicating an encryption failure. This will always
occur in the event that PA does not have the correct form. In our scheme, this
is the only way an encryption failure will occur.

Decrypt: This algorithm takes as inputs params, C ∈ C, and a private key SA.
It returns a message M ∈M or a message ⊥ indicating a decryption failure.

Naturally, we insist that output M should result from applying algorithm
Decrypt with inputs params, SA on a ciphertext C generated by using algorithm
Encrypt with inputs params, PA, IDA on message M .

3.1 Security Model for CL-PKE

Given this formal definition of a CL-PKE scheme, we are now in a position
to define adversaries for such a scheme. The standard definition for security
for a public key encryption scheme involves indistinguishability of encryptions
against a fully-adaptive chosen ciphertext attacker (IND-CCA) [4, 10, 20]. In
this definition, there are two parties, the adversary A and the challenger C. The
adversary operates in three phases after being presented with a random public
key. In Phase 1, A may make decryption queries on ciphertexts of its choice. In
the Challenge Phase, A chooses two messages M0, M1 and is given a challenge
ciphertext C∗ for one of these two messages Mb by the challenger. In Phase 2,
A may make further decryption queries, but may not ask for the decryption of
C∗. The attack ends with A’s guess b′ for the bit b. The adversary’s advantage

is defined to be Adv(A) = 2(Pr[b′ = b]− 1
2).

This model was strengthened for ID-PKC in [5] to handle adversaries who
can extract the private keys of arbitrary entities and who choose the identity
IDch of the entity on whose public key they are challenged. This extension is
appropriate because the compromise of some entities’ private keys should not
affect the security of an uncompromised entity’s encryptions.

Here, we extend the model of [5] to allow adversaries who can extract partial
private keys, or private keys, or both, for identities of their choice. Given that
our scheme has no certificates, we must further strengthen the model to allow
for adversaries who can replace the public key of any entity with a value of
their choice. We must also consider carefully how a challenger should respond
to key extraction and decryption queries for identities whose public keys have
been changed.

Here then is a list of the actions that a general adversary against a CL-PKE
scheme may carry out and a discussion of each action.
(1) Extract partial private key of A: C responds by running algorithm
Partial-Private-Key-Extract to generate the partial private key DA for en-
tity A.
(2) Extract private key for A: As in [5], we allow our adversary A to make
requests for entities’ private keys. If A’s public key has not been replaced then
C can respond by running algorithm Set-Private-Key to generate the private
key SA for entity A (first running Set-Secret-Value for A if necessary). But
it is unreasonable to expect C to be able to respond to such a query if A has
already replaced A’s public key. Of course, we insist that A does not at any
point extract the private key for the selected challenge identity IDch.
(3) Request public key of A: Naturally, we assume that public keys are
available to A. On receiving a first request for A’s public key, C responds by
running algorithm Set-Public-Key to generate the public key PA for entity A
(first running Set-Secret-Value for A if necessary).
(4) Replace public key of A: A can repeatedly replace the public key PA for
any entity A with any value P ′A of its choice. In our concrete CL-PKE schemes,
our public keys will have a certain structure that is used to test the validity of
public keys before any encryption. We assume here that the adversary’s choice
P ′A is a valid public key; this assumption can be removed (and our schemes re-
main secure) at the cost of some additional complexity in our definitions. Note
that in our schemes, any entity can easily create public keys that are valid. The
current value of an entity’s public key is used by C in any computations (for
example, preparing a challenge ciphertext) or responses to A’s requests (for ex-
ample, replying to a request for the public key). We insist that A cannot both
replace the public key for the challenge identity IDch before the challenge phase
and extract the partial private key for IDch in some phase – this would enable A
to receive a challenge ciphertext under a public key for which it could compute
the private key.
(5) Decryption query for ciphertext C and entity A: If A has not re-
placed the public key of entity A, then C responds by running the algorithm
Set-Private-Key to obtain the private key SA, then running Decrypt on ci-
phertext C and private key SA and returning the output to A. However, if A

has already replaced the public key of A, then in following this approach, C
would (in general) not decrypt using a private key matching the current public
key. However, we insist that C properly decrypts ciphertexts even for entities
whose public keys have been replaced (these decryptions will be handled using
special purpose knowledge extractors in our security proofs). This results in
a very powerful security model because decryption queries made under public
keys that have been changed are potentially far more useful to A. Naturally,
as in [5], we prohibit A from ever making a decryption query on the challenge
ciphertext C∗ for the combination of identity IDch and public key Pch that was
used to encrypt Mb. However A is, for example, allowed to replace the public
key for IDch with a new value and then request a decryption of C∗, or to change
another entity A’s public key to Pch (or any other value) and then request the
decryption of C∗ for entity A.

We also want to consider adversaries who are equipped with master-key, in
order to model security against an eavesdropping KGC. As discussed in Section
1, we do not allow such an adversary to replace public keys: in this respect,
we invest in the KGC the same level of trust as we do in a CA in a traditional
PKI. So we will distinguish between two adversary types, with slightly different
capabilities:

CL-PKE Type I Adversary: Such an adversary AI does not have access
to master-key. However, AI may request public keys and replace public keys
with values of its choice, extract partial private and private keys and make
decryption queries, all for identities of its choice. As discussed above, we make
several natural restrictions on such a Type I adversary: (1) AI cannot extract
the private key for IDch at any point. (2) AI cannot request the private key
for any identity if the corresponding public key has already been replaced. (3)
AI cannot both replace the public key for the challenge identity IDch before the
challenge phase and extract the partial private key for IDch in some phase. (4)
In Phase 2, AI cannot make a decryption query on the challenge ciphertext C∗
for the combination of identity IDch and public key Pch that was used to encrypt
Mb.

CL-PKE Type II Adversary: Such an adversary AII does have access to
master-key, but may not replace public keys of entities. Adversary AII can
compute partial private keys for itself, given master-key. It can also request
public keys, make private key extraction queries and decryption queries, both
for identities of its choice. The restrictions on this type of adversary are: (1)
AII cannot replace public keys at any point. (2) AII cannot extract the private
key for IDch at any point. (3) In Phase 2, AII cannot make a decryption query
on the challenge ciphertext C∗ for the combination of identity IDch and public
key Pch that was used to encrypt Mb.

Chosen ciphertext security for CL-PKE: We say that a CL-PKE scheme
is semantically secure against an adaptive chosen ciphertext attack (“IND-CCA
secure”) if no polynomially bounded adversary A of Type I or Type II has a
non-negligible advantage against the challenger in the following game:

Setup: The challenger takes a security parameter k and runs the Setup algo-

rithm. It gives A the resulting system parameters params. If A is of Type I,
then the challenger keeps master-key to itself, otherwise, it gives master-key
to A.

Phase 1: A issues a sequence of requests, each request being either a partial pri-
vate key extraction, a private key extraction, a request for a public key, a replace
public key command or a decryption query for a particular entity. These queries
may be asked adaptively, but are subject to the rules on adversary behaviour
defined above.

Challenge Phase: Once A decides that Phase 1 is over it outputs the chal-
lenge identity IDch and two equal length plaintexts M0,M1 ∈ M. Again, the
adversarial constraints given above apply. The challenger now picks a random
bit b ∈ {0, 1} and computes C∗, the encryption of Mb under the current public
key Pch for IDch. If the output of the encryption is ⊥ , then A has immediately
lost the game (it has replaced a public key with one not having the correct form).
Otherwise, C∗ is delivered to A.

Phase 2: A issues a second sequence of requests as in Phase 1, again subject
to the rules on adversary behaviour above.

Guess: Finally, A outputs a guess b′ ∈ {0, 1}. The adversary wins the game if
b = b′. We define A’s advantage in this game to be Adv(A) := 2(Pr[b = b′]− 1

2).

4 CL-PKE Schemes from Pairings

In this section, we describe a pair of CL-PKE schemes. Our first scheme,
BasicCL-PKE, is analogous to the scheme BasicIdent of [5], and is included
only to serve as a warm-up for our main scheme FullCL-PKE. The main scheme
is in turn an analogue of the scheme FullIdent of [5] and is IND-CCA secure,
assuming the hardness of the GBDHP. We prove this in Theorem 1.

4.1 A Basic CL-PKE Scheme

We describe the seven algorithms needed to define BasicCL-PKE. We let k be
a security parameter given to the Setup algorithm and IG a BDH parameter
generator with input k.

Setup: This algorithm runs as follows:
(1) Run IG on input k to generate output 〈G1,G2, e〉 whereG1 andG2 are groups
of some prime order q and e : G1×G1 → G2 is a pairing. (2) Choose an arbitrary
generator P ∈ G1. (3) Select a master-key s uniformly at random from Z∗q and
set P0 = sP . (4) Choose cryptographic hash functions H1 : {0, 1}∗ → G∗1 and
H2 : G2 → {0, 1}n. Here n will be the bit-length of plaintexts.

The system parameters are params= 〈G1,G2, e, n, P, P0,H1,H2〉. The
master-key is s ∈ Z∗q . The message space is M = {0, 1}n and the ciphertext
space is C = G1 × {0, 1}n.

Partial-Private-Key-Extract: This algorithm takes as input an identifier

IDA ∈ {0, 1}∗, and carries out the following steps to construct the partial private
key for entity A with identifier IDA:
(1) Compute QA = H1(IDA) ∈ G∗1.
(2) Output the partial private key DA = sQA ∈ G∗1.

The reader will notice that the partial private key of entity A here is identical
to that entity’s private key in the schemes of [5]. Also notice that A can verify the
correctness of the Partial-Private-Key-Extract algorithm output by checking
e(DA, P) = e(QA, P0).

Set-Secret-Value: This algorithm takes as inputs params and an entity A’s
identifier IDA as inputs. It selects xA ∈ Z∗q at random and outputs xA as A’s
secret value.

Set-Private-Key: This algorithm takes as inputs params, an entity A’s partial
private key DA and A’s secret value xA ∈ Z∗q . It transforms partial private key
DA to private key SA by computing SA = xADA = xAsQA ∈ G∗1.
Set-Public-Key: This algorithm takes params and entity A’s secret value xA ∈
Z∗q as inputs and constructs A’s public key as PA = 〈XA, YA〉, where XA = xAP
and YA = xAP0 = xAsP .

Encrypt: To encrypt M ∈ M for entity A with identifier IDA ∈ {0, 1}∗ and
public key PA = 〈XA, YA〉, perform the following steps:
(1) Check that XA, YA ∈ G∗1 and that the equality e(XA, P0) = e(YA, P) holds.
If not, output ⊥ and abort encryption. (2) Compute QA = H1(IDA) ∈ G∗1.
(3) Choose a random value r ∈ Z∗q . (4) Compute and output the ciphertext:
C = 〈rP, M ⊕H2(e(QA, YA)r)〉.

Notice that this encryption operation is identical to the encryption algo-
rithm in the scheme BasicIdent of [5], except for the check on the structure of
the public key in step 1 and the use of YA in place of P0 = Ppub in step 4.

Decrypt: Suppose C = 〈U, V 〉 ∈ C. To decrypt this ciphertext using the private
key SA, compute and output: V ⊕H2(e(SA, U)).

Notice that if 〈U = rP, V 〉 is the encryption of M for entity A with public
key PA = 〈XA, YA〉, the decryption is the inverse of encryption.

Again, the similarity to the decryption operation of BasicIdent should be
apparent.

We have presented this scheme to help the reader understand our FullCL-PKE
scheme, and so we do not analyse its security in detail.

4.2 A Full CL-PKE Scheme

Now that we have described our basic CL-PKE scheme, we add chosen cipher-
text security to it, adapting the Fujisaki-Okamoto padding technique [11]. The
algorithms for FullCL-PKE are as follows:

Setup: Identical to Setup for BasicCL-PKE, except that we choose two additional
cryptographic hash functions H3 : {0, 1}n × {0, 1}n → Z∗q and H4 : {0, 1}n →
{0, 1}n.

The system parameters are params= 〈G1,G2, e, n, P, P0,H1,H2,H3,H4〉.
The master-key and message space M are the same as in BasicCL-PKE. The
ciphertext space is now C = G1 × {0, 1}2n.

Partial-Private-Key-Extract, Set-Secret-Value, Set-Private-Key,
and Set-Public-Key: Identical to BasicCL-PKE.

Encrypt: To encrypt M ∈ M for entity A with identifier IDA ∈ {0, 1}∗ and
public key PA = 〈XA, YA〉, perform the following steps:
(1) Check that XA, YA ∈ G∗1 and that the equality e(XA, P0) = e(YA, P) holds.
If not, output ⊥ and abort encryption.
(2) Compute QA = H1(ID) ∈ G∗1.
(3) Choose a random σ ∈ {0, 1}n.
(4) Set r = H3(σ,M).
(5) Compute and output: C = 〈rP, σ ⊕H2(e(QA, YA)r),M ⊕H4(σ)〉.
Decrypt: Suppose the ciphertext C = 〈U, V,W 〉 ∈ C. To decrypt this ciphertext
using the private key SA:
(1) Compute V ⊕H2(e(SA, U)) = σ′.
(2) Compute W ⊕H4(σ′) = M ′.
(3) Set r′ = H3(σ′,M ′) and test if U = r′P . If not, output ⊥ and reject C.
(4) Output M ′ as the decryption of C.

When C is a valid encryption of M using PA and IDA, it is easy to see
that decrypting C will result in an output M ′ = M . We note that W can be
replaced by W = EH4(σ)(M) where E denotes a semantically secure symmetric
key encryption scheme as in [11] (though our security proofs will require some
modifications to handle this case). This concludes the description of FullCL-PKE.

4.3 Security of the Scheme FullCL-PKE

We have the following theorem about the security of FullCL-PKE.

Theorem 1 Let hash functions H1, H2, H3 and H4 be random oracles. Sup-
pose further that there is no polynomially bounded algorithm that can solve
the GBDHP in groups generated by IG with non-negligible advantage. Then
FullCL-PKE is IND-CCA secure.

This theorem follows from a sequence of lemmas that are proved in the
appendices. It can be made into a concrete security reduction relating the ad-
vantage ε of a Type I or Type II attacker against FullCL-PKE to that of an
algorithm to solve GBDHP or BDHP.

5 Further CL-PKC Schemes

In this section, we sketch another CL-PKC primitives: a signature scheme based
on the identity-based scheme of [17]. We begin by outlining an alternative key
generation technique which enhances the resilience of our schemes against a
cheating KGC and allows for non-repudation of certificateless signatures.

5.1 An Alternative Key Generation Technique

Up to this point, we have assumed that the KGC is trusted to not replace the
public keys of users and to only issue one copy of each partial private key, to the
correct recipient. This may involve an unacceptable level of trust in the KGC for
some users. Our current set up also allows users to create more than one public
key for the same partial private key. This can be desirable in some applications,
but undesirable in others.

Here we sketch a simple binding technique which ensures that users can
only create one public key for which they know the corresponding private key.
In our technique, an entity A must first fix its secret value xA and its public
key PA = 〈XA, YA〉. We then re-define QA to be QA = H1(IDA‖PA) – now QA

binds A’s identifier and public key. The partial private key delivered to entity A
is still DA = sQA and the private key created by A is still xsQA. However, these
are also now bound to A’s choice of public key. This binding effectively restricts
A to using a single public key, since A can now only compute one private key
from DA.

This technique has a very important additional benefit: it reduces the degree
of trust that users need to have in the KGC in our certificateless schemes. In
short, the technique raises our schemes to trust level 3 in the trust hierarchy of
[15], the same level as is enjoyed in a traditional PKI. Now, with our binding
technique in place, a KGC who replaces an entity’s public key will be implicated
in the event of a dispute: the existence of two working public keys for an identity
can only result from the existence of two partial private keys binding that identity
to two different public keys; only the KGC could have created these two partial
private keys. Thus our binding technique makes the KGC’s replacement of a
public key apparent and equivalent to a CA forging a certificate in a traditional
PKI.

Theorem 1 still applies for our CL-PKE scheme with this binding in place
because of the way in which H1 is modelled as a random oracle. Notice too that
with this binding in place, there is no longer any need to keep partial private keys
secret: informally, knowledge of the key DA = sQA does not help an adversary to
create the unique private key SA = xsQA that matches the particular public key
PA that is bound to DA. When applied to the certificateless signature primitive
in this section, the binding technique ensures a stronger form of non-repudiation:
without the binding, an entity could always attempt to repudiate a signature by
producing a second working public key and claiming that the KGC had created
the signature using the first public key.

Even with this binding in place, the security analysis of our original encryp-

tion scheme (in which an adversary can replace public keys) is still important: it
models the scenario where an adversary temporarily replaces the public key PA

of an entity A with a new value P ′A in an attempt to obtain a ciphertext which
he can distinguish, and then resets the public key. In this case, our proof shows
that the adversary does not gain any advantage in a distinguishing game unless
he has access to the matching partial private key D′

A = sH1(IDA‖P ′A). In turn,
this partial private key should not be made available by the KGC. Of course,
nothing can prevent a KGC from mounting an attack of this type, but the same
applies for the CA in a traditional PKI.

5.2 A Certificateless Signature Scheme

We will describe a certificateless public-key signature (CL-PKS) scheme that is
based on a provably secure ID-PKC signature scheme of [17].

In general, a CL-PKS scheme can be specified by seven algorithms: Setup,
Partial-Private-Key-Extract, Set-Secret-Value, Set-Private-Key,
Set-Public-Key, Sign and Verify. These are similar to the algorithms used to
define a CL-PKE scheme: Setup and params are modified to include a descrip-
tion of the signature space S, Partial-Private-Key-Extract,
Set-Secret-Value, Set-Private-Key and Set-Public-Key are just as before
and Sign and Verify are as follows:

Sign: This algorithm takes as inputs params, a message M ∈ M to be signed
and a private key SA. It outputs a signature Sig ∈ S.

Verify: This algorithm takes as inputs params, a message M ∈M, the identifier
IDA and public key PA of an entity A, and Sig ∈ S as the signature to be verified.
It outputs valid, invalid or ⊥ .

Given this general description, we now outline a CL-PKS scheme:

Setup: This is identical to Setup for our scheme BasicCL-PKE, except that
now there is only one hash function H : {0, 1}∗ × G2 → Z∗q and params is
〈G1,G2, n, e, P, P0,H〉. The signature space is defined as S = G1 × Z∗q .
Partial-Private-Key-Extract, Set-Secret-Value, Set-Private-Key and
Set-Public-Key: Identical to BasicCL-PKE.

Sign: To sign M ∈M using the private key SA, perform the following steps: (1)
Choose random a ∈ Z∗q . (2) Compute r = e(P, P)a ∈ G2. (3) Set v = H(M, r) ∈
Z∗q . (4) Compute U = vSA + aP ∈ G1. (5) Output as the signature 〈U, v〉.
Verify: To verify a purported signature 〈U, v〉 on a message M ∈M for identity
IDA and public key 〈XA, YA〉: (1) Check that the equality e(XA, P0) = e(YA, P)
holds. If not, output ⊥ and abort verification. (2) Compute r = e(U,P) ·
e(QA,−YA)v. (3) Check if v = H(M, r) holds. If it does, output valid, other-
wise output invalid.

5.3 Other Schemes

The hierarchical encryption and signature schemes of [14] and the key agreement
scheme of [23] can be adapted to our certificateless setting. These adaptations
are presented in the full paper [2].

6 Conclusions

In this paper we introduced the concept of certificateless public key cryptography,
a model for the use of public key cryptography that is intermediate between
the identity-based approach and traditional PKI. We showed how our concept
can be realized by specifying a certificateless public key encryption (CL-PKE)
scheme that is based on bilinear maps. We showed that our CL-PKE scheme is
secure in an appropriate model, assuming that the Generalized Bilinear Diffie-
Hellman Problem (GBDHP) is hard. We also rounded out our treatment by
briefly presenting a certificateless signature scheme.

Acknowledgement

We would like to thank Dan Boneh, Alex Dent, Steven Galbraith and Craig
Gentry for their comments and helpful discussions on the paper.

References

[1] C. Adams and S. Lloyd. Understanding Public-Key Infrastructure – Concepts, Standards,
and Deployment Considerations. Macmillan, Indianapolis, USA, 1999.

[2] S.S. Al-Riyami and K.G. Paterson. Certificateless public key cryptography. Cryptology
ePrint Archive, Report 2003/126, 2003. http://eprint.iacr.org/.

[3] P.S.L.M. Barreto et al. Efficient algorithms for pairing-based cryptosystems. In Proc.
CRYPTO 2002, LNCS vol. 2442, pp. 354–368. Springer, 2002.

[4] M. Bellare et al. Relations among notions of security for public-key encryption schemes.
In Proc. CRYPTO 1998, LNCS vol. 1462. Springer, 1998.

[5] D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. In J. Kilian,
editor, Proc. CRYPTO 2001, LNCS vol. 2139, pp. 213–229. Springer, 2001.

[6] D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. SIAM J.
Computing, 32(3):586–615, 2003.

[7] D. Boneh, H. Shacham, and B. Lynn. Short signatures from the Weil pairing. In C. Boyd,
editor, Proc. ASIACRYPT 2001, LNCS vol. 2248, pp. 514–532. Springer, 2001.

[8] L. Chen et al. Certification of public keys within an identity based system. In A. H.
Chan and V. D. Gligor, editors, Information Security, 5th International Conference,
ISC, LNCS vol. 2433, pp. 322–333. Springer, 2002.

[9] J. Dankers et al. Public key infrastructure in mobile systems. IEE Electronics and
Commucation Engineering Journal, 14(5):180–190, 2002.

[10] D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography. SIAM Journal of
Computing, 30(2):391–437, 2000.

[11] E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric encryption
schemes. In M. J. Wiener, editor, Proc. CRYPTO 1999, LNCS vol. 1666, pp. 537–554.
Springer, 1999.

[12] S.D. Galbraith, K. Harrison, and D. Soldera. Implementing the Tate pairing. In Algo-
rithmic Number Theory 5th International Symposium, ANTS-V, LNCS vol. 2369, pp.
324–337. Springer, 2002.

[13] C. Gentry. Certificate-based encryption and the certificate revocation problem. In E. Bi-
ham, editor, Proc. EUROCRYPT 2003, LNCS vol. 2656, pp. 272–293. Springer, 2003.

[14] C. Gentry and A. Silverberg. Hierarchical ID-based cryptography. In Y. Zheng, editor,
Proc. ASIACRYPT 2002, LNCS vol. 2501, pp. 548–566. Springer, 2002.

[15] M. Girault. Self-certified public keys. In D. W. Davies, editor, Proc. EUROCRYPT 1991,
LNCS vol. 547, pp. 490–497. Springer, 1992.

[16] P. Gutmann. PKI: It’s not dead, just resting. IEEE Computer, 35(8):41–49, 2002.
[17] F. Hess. Efficient identity based signature schemes based on pairings. In K. Nyberg and

H. Heys, editors, Selected Areas in Cryptography 9th Annual International Workshop,
SAC 2002, LNCS vol. 2595, pp. 310–324. Springer, 2003.

[18] K.G. Paterson. Cryptography from pairings: a snapshot of current research. Information
Security Technical Report, 7(3):41–54, 2002.

[19] H. Petersen and P. Horster. Self-certified keys – concepts and applications. In 3rd Int.
Conference on Communications and Multimedia Security. Chapman and Hall, 1997.

[20] C. Rackoff and D. Simon. Non-interactive zero-knowledge proof of knowledge and chosen
ciphertext attacks. In Proc. CRYPTO 1991, LNCS vol. 576, pp. 433–444. Springer, 1991.

[21] S. Saeednia. Identity-based and self-certified key-exchange protocols. In V. Varadharajan,
J. Pieprzyk, and Y. Mu, editors, Information Security and Privacy, Second Australasian
Conference, ACISP, LNCS vol. 1270, pp. 303–313. Springer, 1997.

[22] A. Shamir. Identity-based cryptosystems and signature schemes. In Proc. CRYPTO
1984, LNCS vol. 196, pp. 47–53. Springer, 1984.

[23] N.P. Smart. An identity based authenticated key agreement protocol based on the Weil
pairing. Electronics Letters, 38(13):630–632, 2002.

[24] N.P. Smart. Access control using pairing based cryptography. In M. Joye, editor, Pro-
ceedings CT-RSA 2003, LNCS vol. 2612, pp. 111–121. Springer, 2003.

Appendix A: Proofs of Security for FullCL-PKE

A.1 Two Public Key Encryption Schemes

We define a public key encryption scheme HybridPub. It will be used as a tool
in our security proof for FullCL-PKE.

HybridPub: This scheme is specified by three algorithms: Key-Generation,
Encrypt and Decrypt.

Key-Generation: (1) Run IG to generate 〈G1,G2, e〉 with the usual proper-
ties. Choose a generator P ∈ G1. (2) Pick a random Q ∈ G∗1, a random
s ∈ Z∗q and a random x ∈ Z∗q . (3) Set P0 = sP , X = xP , Y = xsP and
S = xsQ. (4) Choose the cryptographic hash functions H2 : G2 → {0, 1}n,
H3 : {0, 1}n × {0, 1}n → Z∗q and H4 : {0, 1}n → {0, 1}n. The public key is
〈G1,G2, e, n, P, P0, X, Y, Q, H2,H3,H4〉. The private key is S = xsQ, the mes-
sage space is M = {0, 1}n and the ciphertext space is C = G1 × {0, 1}2n.

Encrypt: To encrypt M ∈ M, perform the following steps: (1) Check that the
equality e(X, P0) = e(Y, P) holds. If not, output ⊥ and abort encryption. (2)
Choose a random σ ∈ {0, 1}n. (3) Set r = H3(σ,M). (4) Compute and output
the ciphertext: C = 〈rP, σ ⊕H2(e(Q,Y)r),M ⊕H4(σ)〉.
Decrypt: To decrypt C = 〈U, V,W 〉 ∈ C using private key S, do the following:
(1) Compute V ⊕ H2(e(S,U)) = σ′. (2) Compute W ⊕ H4(σ′) = M ′. (3) Set
r′ = H3(σ′,M ′) and test if U = r′P . If not, output ⊥ and reject the ciphertext.
(4) Output M ′ as the decryption of C.

A second scheme BasicPub is defined in [2]; it is a simplified version of
HybridPub in which the encryption of message M equals 〈rP, M⊕H2(e(Q,Y)r)〉.
The full paper [2] also defines Type I and II IND-CCA, IND-CPA and OWE ad-
versaries for BasicPub and HybridPub: these are similar to the usual definitions,
except that a Type I adversary is allowed to replace the public key, while a Type
II adversary has the value s.

A.2: Statements of Lemmas

We present a series of lemmas. Theorem 1 for Type I adversaries follows by
combining Lemmas 2, 3, 4, 5 and 8. Similarly, Theorem 1 for Type II adversaries
follows by combining Lemmas 6, 7 and 8.

Lemma 2 Suppose that H1, H2, H3 and H4 are random oracles and that there
exists an IND-CCA Type I adversary AI against FullCL-PKE. Suppose AI has
advantage ε, runs in time t, makes qi queries to Hi (1 ≤ i ≤ 4) and makes qd

decryption queries. Then there is an algorithm B which acts as either a Type
I or a Type II IND-CPA adversary against HybridPub. Moreover, B either
has advantage at least ελqd/4q1 when playing as a Type I adversary, or has
advantage at least ελqd/4q1 when playing as a Type II adversary. B runs in time
t + O((q3 + q4)qdt

′). Here t′ is the running time of the BasicCL-PKE encryption
algorithm and

1− λ ≤ (q3 + q4) · εOWE(t + O((q3 + q4)qdt
′, q2)

+εGBDHP(t + O((q3 + q4)qdt
′) + 3q−1 + 2−n+1,

where εOWE(T, q′) denotes the highest advantage of any Type I or Type II OWE
adversary against BasicPub which operates in time T and makes q′ hash queries
to H2, and εGBDHP(T) denotes the highest advantage of any time T algorithm to
solve GBDHP in groups of order q generated by IG.

Lemma 3 Suppose that H3 and H4 are random oracles. Let AI be a Type I
IND-CPA adversary against HybridPub which has advantage ε and makes q4

queries to H4. Then there exists a Type I OWE adversary A′I against BasicPub
which runs in time O(time(AI)) and has advantage at least ε/2(q3 + q4).

Lemma 4 Suppose that H3 and H4 are random oracles. Let AI be a Type
II IND-CPA adversary against HybridPub which has advantage ε and makes q4

queries to H4. Then there exists a Type II OWE adversary A′I against BasicPub
which runs in time O(time(AII)) and has advantage at least ε/2(q3 + q4).

Lemma 5 Suppose that H2 is a random oracle. Suppose there exists a Type I
OWE adversary AI against BasicPub which makes at most q2 queries to H2 and
which has advantage ε. Then there exists an algorithm B to solve the GBDHP
which runs in time O(time(AI)) and has advantage at least (ε− 1

2n)/q2.

Lemma 6 Suppose that H1 is a random oracle and that there exists an IND-
CCA Type II adversary AII on FullCL-PKE with advantage ε which makes
at most q1 queries to H1. Then there is an IND-CCA Type II adversary on
HybridPub with advantage at least ε/q1 which runs in time O(time(AII)).

Lemma 7 Suppose that H3 and H4 are random oracles. Let AII be a Type
II IND-CCA adversary against HybridPub which has advantage ε, makes qd

decryption queries, q3 queries to H3 and q4 queries to H4. Then there exists a
Type II OWE adversary A′II against BasicPub with

time(A′II) = time(AII) + O(n(q3 + q4))
Adv(A′II) ≥ 1

2(q3+q4)

(
(ε + 1)(1− q−1 − 2−n)qd − 1

)
.

Lemma 8 Suppose that H2 is a random oracle. Suppose there exists a Type II
OWE adversary AII against BasicPub which makes at most q2 queries to H2

and which has advantage ε. Then there exists an algorithm B to solve the BDHP
which runs in time O(time(AII)) and has advantage at least (ε− 1

2n)/q2.

A.3: Proofs of Lemmas

Proof of Lemma 2: Let AI be a Type I IND-CCA adversary against
FullCL-PKE. Suppose AI has advantage ε, runs in time t, makes qi queries to
random oracle Hi (1 ≤ i ≤ 4) and makes qd decryption queries. We show
how to construct from AI an adversary B that acts either as a Type I IND-
CCA adversary against HybridPub or as a Type II IND-CCA adversary against
HybridPub. We assume that challengers CI , CII for both types of game are
available to B.

Adversary B begins by choosing a random bit c and an index I uniformly
at random with 1 ≤ I ≤ q1. If c = 0, then B chooses to play against CI and
aborts CII . Here, B will build a Type I IND-CPA adversary against HybridPub
and fails against CII . When c = 1, B chooses to play against CII and aborts CI .
Here, B will build a Type II IND-CPA adversary against HybridPub and fails
against CI . In either case, C will denote the challenger against which B plays
for the remainder of this proof. We let H denote the event that AI chooses IDI

as the challenge identity IDch. We let F0 denote the event that AI extracts the
partial private key for entity IDI and F1 denote the event that AI replaces the
public key of entity IDI at some point in its attack.

If c = 0, then C is a Type I challenger for HybridPub and begins by sup-
plying B with a public key Kpub = 〈G1,G2, e, n, P, P0, X, Y, Q, H2,H3,H4〉.
If c = 1, then C is a Type II challenger and so supplies B with a public
key Kpub together with the value s such that P0 = sP . Then B simulates
the algorithm Setup of FullCL-PKE for AI by supplying AI with params=
〈G1,G2, e, n, P, P0,H1,H2,H3,H4〉. Here H1 is a random oracle that will be
controlled by B. Adversary AI may make queries of the random oracles Hi,
1 ≤ i ≤ 4, at any time during its attack. These are handled as follows:

H1 queries: B maintains a list of tuples 〈IDi, Qi, bi, xi, Xi, Yi〉 which we call the
H1 list. The list is initially empty, and whenAI queries H1 on input ID ∈ {0, 1}∗,
B responds as follows:
(1) If ID already appears on the H1 list in a tuple 〈IDi, Qi, bi, xi, Xi, Yi〉, then B
responds with H1(ID) = Qi ∈ G∗1.
(2) If ID does not already appear on the list and ID is the I-th distinct H1 query
made by AI , then B picks bI at random from Z∗q , outputs H(ID) = bIQ and

adds the entry 〈ID, bIQ, bI ,⊥ , X, Y 〉 to the H1 list.
(3) Otherwise, when ID does not already appear on the list and ID is the i-th
distinct H1 query made by AI where i 6= I, B picks bi and xi at random from
Z∗q , outputs H(ID) = biP and adds 〈ID, biP, bi, xi, xiP, xiP0〉 to the H1 list.

Notice that with this specification of H1, the FullCL-PKE partial private
key for IDi (i 6= I) is equal to biP0 while the public key for IDi is 〈xiP, xiP0〉 and
the private key for IDi is xibiP0. These can all be computed by B when c = 0.
Additionally, when c = 1 (so B has s), B can compute sbIQ, the partial private
key of IDI .

H2 queries: Any H2 queries made by AI are passed to C to answer. We do
need to assume in the course of the proof that H2 is a random oracle.

H3 and H4 queries: Adversary B passes AI ’s H3 and H4 queries to C to
answer, but keeps lists 〈σj ,Mj ,H3,j〉 and 〈σ′i,H4,i〉 of AI ’s distinct queries and
C’s replies to them.

Phase 1: After receiving params from B, AI launches Phase 1 of its attack, by
making a series of requests, each of which is either a partial private key extraction
for an entity, a private key extraction for an entity, a request for a public key
for an entity, a replacement of a public key for an entity or a decryption query
for an entity. We assume that AI always makes the appropriate H1 query on
the identity ID for that entity before making one of these requests. B replies to
these requests as follows:

Partial Private Key Extraction: Suppose the request is on IDi. There are
three cases: (1) If i 6= I, then B replies with biP0. (2) If i = I and c = 0, then
B aborts. (3) If i = I and c = 1, then B replies with sbIQ.

Private Key Extraction: Suppose the request is on IDi. We can assume that
the public key for IDi has not been replaced. There are two cases: (1) If i 6= I,
then B outputs xibiP0. (2) If i = I, then B aborts.

Request for Public Key: If the request is on IDi then B returns 〈Xi, Yi〉 by
accessing the H1 list.

Replace Public Key: Suppose the request is to replace the public key for IDi

with value 〈X ′
i, Y

′
i 〉. (We know that this will be a valid public key, i.e. a key

satisfying e(X ′
i, P0) = e(Y ′

i , P)). There are two cases: (1) If i = I and c = 1,
then B aborts. (2) Otherwise, B replaces the current entries Xi, Yi in the H1 list
with the new entries X ′

i, Y
′
i . If i = I, then B makes a request to its challenger C

to replace the public key components 〈X, Y 〉 in Kpub with new values 〈X ′
I , Y

′
I 〉.

Decryption Queries: Suppose the request is to decrypt ciphertext 〈U, V,W 〉
for ID`, where (as discussed in Section 3), the private key that should be used
is the one corresponding to the current value of the public key for IDi. Notice
that even when ` = I, B cannot make use of C to answer the query, because B is
meant to be an IND-CPA adversary. Instead B makes use of an algorithm KE .

Algorithm KE: The input to the algorithm is a ciphertext C = 〈U, V,W 〉, an
identity ID` and the current value of the public key 〈X`, Y`〉. We assume that

KE also has access to the H3 and H4 lists. KE operates as follows:

(1) Find all triples 〈σj ,Mj ,H3,j〉 on the H3 list such that

〈U, V 〉 = BasicCL-PKE-EncryptID`,〈X`,Y`〉(σj ;H3,j).

Here, BasicCL-PKE-EncryptIDA,〈XA,YA〉(M ; r) denotes the BasicCL-PKE encryp-
tion of message M for IDA using public key 〈XA, YA〉 and random value r. Collect
all these triples in a list S1. If S1 is empty, output ⊥ and halt.
(2) For each triple 〈σj ,Mj ,H3,j〉 in S1, find all pairs 〈σ′i,H4,i〉 in the H4 list
with σj = σ′i. For each such match, place 〈σj ,Mj ,H3,j ,H4,i〉 on a list S2. If S2

is empty, then output ⊥ and halt.
(3) Check in S2 for an entry such that W = Mj ⊕H4,i. If such an entry exists,
then output Mj as the decryption of 〈U, V,W 〉. Otherwise, output ⊥ .

We prove that KE correctly decrypts with high probability in Lemma 9.

Challenge Phase: At some point, AI should decide to end Phase 1 and pick
IDch and two messages m0, m1 on which it wishes to be challenged. We can
assume that IDch has already been queried of H1 but that AI has not extracted
the private key for this identity. Algorithm B responds as follows. If IDch 6= IDI

then B aborts. Otherwise IDch = IDI and B gives C the pair m0, m1 as the
messages on which it wishes to be challenged. C responds with the challenge
ciphertext C ′ = 〈U ′, V ′,W ′〉, such that C ′ is the HybridPub encryption of mb

under Kpub for a random b ∈ {0, 1}. Then B sets C∗ = 〈b−1
I U ′, V ′,W ′〉 and

delivers C∗ to AI . It is easy to see that C∗ is the FullCL-PKE encryption of
mb for identity IDI under public key 〈XI , YI〉. We let 〈Xch, Ych〉 denote the
particular value of the public key for identity IDch during the challenge phase
(AI may change this key in Phase 2 of its attack).

Phase 2: B continues to respond to AI ’s requests as in Phase 1.

Guess: Eventually, AI should make a guess b′ for b. Then B outputs b′ as its
guess for b. If AI has used more than time t, or attempts to make more than qi

queries to random oracle Hi or more than qd decryption queries, then B should
abort AI and output a random guess for bit b (in this case algorithm KE has
failed to perform correctly at some point).

Analysis: We claim that if algorithm B does not abort during the simulation
and if all of B’s uses of the algorithm KE result in correct decryptions, then
algorithm AI ’s view is identical to its view in the real attack. Moreover, if this
is the case, then 2(Pr[b = b′]− 1

2) ≥ ε. This is not hard to see: B’s responses to all
hash queries are uniformly and independently distributed as in the real attack.
All responses to AI ’s requests are valid, provided of course that B does not abort
and that KE performs correctly. Furthermore, the challenge ciphertext C∗ is a
valid FullCL-PKE encryption of mb under the current public key for identity
IDch, where b ∈ {0, 1} is random. Thus, by definition of algorithm AI we have
that 2(Pr[b = b′]− 1

2) ≥ ε.

So we must examine the probability that B does not abort during the simula-
tion given that the algorithm KE performs correctly. Examining the simulation,

we see that B can abort for one of four reasons:

(0) Because c = 0 and the event F0 occurred during the simulation.
(1) Because c = 1 and event F1 occurred during the simulation.
(2) Because AI made a private key extraction on IDI at some point.
(3) Or because AI chose IDch 6= IDI .

We name the event (c = i) ∧ Fi as Hi for i = 0, 1. We also name the last two
events here as F2 and F3. Of course, F3 is the same as event ¬H. Now AI

makes q1 queries of H1 and chooses IDch from amongst the responses IDi, while
B’s choice of I is made uniformly at random from the set of q1 indices i. So the
probability that IDch = IDI is equal to 1/q1. Hence Pr[H] = 1/q1. Notice too
that the event ¬F3 implies the event ¬F2 (if AI chooses IDch = IDI , then no
private key extraction on IDI is allowed). Gathering this information together:

Pr[B does not abort] = Pr[¬H0 ∧ ¬H1 ∧ ¬F2 ∧ ¬F3] =
1
q1
· Pr[¬H0 ∧ ¬H1|H].

Notice now that the events H0 and H1 are mutually exclusive (because one
involves c = 0 and the other c = 1). Therefore we have

Pr[¬H0 ∧ ¬H1|H] = 1− Pr[H0|H]− Pr[H1|H].
Moreover, Pr[Hi|H] = Pr[(c = i) ∧ Fi|H] = 1

2 Pr[Fi|H], where the last equality
follows because the event Fi|H is independent of the event c = i. So we have

Pr[B does not abort] =
1
q1

(
1− 1

2
Pr[F0|H]− 1

2
Pr[F1|H]

)
.

Finally, we have that Pr[F0 ∧ F1|H] = 0 because of the rules on adversary
behaviour described in Section 3 (an adversary cannot both extract the partial
private key and change the public key of the challenge identity). This implies
that Pr[F0|H]+Pr[F1|H] ≤ 1. Hence we see that Pr[B does not abort] ≥ 1/2q1.

Now we examine the probability that algorithm KE correctly handles all of
AI ’s qd decryption queries. We will show in Lemma 9 below that the probability
that KE correctly replies to individual decryption queries is at least λ, where λ
is bounded as in the statement of this lemma.

It is now easy to see that B’s advantage is at least ε
2q1

λqd . It follows that
either B’s advantage as a Type I adversary against HybridPub or B’s advantage
as a Type II adversary against HybridPub is at least ε

4q1
λqd . The running time

of B is time(AI) + qd · time(KE) = t + O((q3 + q4)qdt
′) where t′ is the running

time of the BasicCL-PKE encryption algorithm. This completes the proof.

Lemma 9 In the simulation in the proof of Lemma 2, Algorithm KE correctly
replies to individual decryption queries with probability at least λ where

1− λ ≤ (q3 + q4) · εOWE(t + O((q3 + q4)qdt
′, q2)

+εGBDHP(t + O((q3 + q4)qdt
′) + 3q−1 + 2−n+1.

Here t is the running time of adversary AI , t′ is the running time of the
BasicCL-PKE encryption algorithm, εOWE(T, q′) denotes the highest advantage of
any Type I or Type II OWE adversary against BasicPub which operates in time
T and makes q′ hash queries to H2, and εGBDHP(T) denotes the highest advantage
of any algorithm to solve GBDHP in time T in groups of order q generated by
IG.

Proof of Lemma 9: The proof, which is given in [2], is closely modelled on the
proof of [11, Lemma 11], but differs in several key respects: we need to build an
algorithm which handles multiple public keys, and the algorithm can be asked
to decrypt the challenge ciphertext (but under a different identity/public key
combination from the challenge identity). This substantially complicates the
analysis.

Proof of Lemma 3: This proof is modelled on the proof of [11, Lemma 10],
modified to handle AI ’s ability to replace public keys. See [2] for details.

Proof of Lemma 4: The proof technique is similar to that used in Lemma 3.

Proof of Lemma 5: This proof is similar to that of [5, Theorem 4.1], with
modifications to handle adversaries who can replace public keys.

Proof of Lemma 6: The proof is in the full version [2]; it uses ideas from both
the c = 1 case of the proof of Lemma 2, and the proof of [5, Lemma 4.6].

Proof of Lemma 7: This is easily proven using [11, Theorem 14], noting that
s can be made available to Type II adversaries simply by including it in public
keys. We also use the fact that HybridPub is 1/q-uniform in the sense of [11].

Proof of Lemma 8: The proof in [2] uses similar techniques to the proof of
Lemma 5 with a twist to handle the Type II adversary’s knowledge of s.

