Efficient One-time Proxy Signatures

Huaxiong Wang and Josef Pieprzyk

Centre for Advanced Computing — Algorithms and Cryptography
Department of Computing
Macquarie University
Sydney, NSW 2109, AUSTRALIA
hwang/josef@ics.mq.edu.au

Abstract. One-time proxy signatures are one-time signatures for which
a primary signer can delegate his or her signing capability to a proxy
signer. In this work we propose two one-time proxy signature schemes
with different security properties. Unlike other existing one-time proxy
signatures that are constructed from public key cryptography, our pro-
posed schemes are based one-way functions without trapdoors and so
they inherit the communication and computation efficiency from the
traditional one-time signatures. Although from a verifier point of view,
signatures generated by the proxy are indistinguishable from those cre-
ated by the primary signer, a trusted authority can be equipped with
an algorithm that allows the authority to settle disputes between the
signers. In our constructions, we use a combination of one-time signa-
tures, oblivious transfer protocols and certain combinatorial objects. We
characterise these new combinatorial objects and present constructions
for them.

1 Introduction

In general, digital signatures can be divided into two classes. The first class in-
cludes one-time signatures and their variants based on one-way functions without
trapdoors. These schemes can be used to sign a predetermined number of mes-
sages only, we will call them one/multiple-time signature schemes (examples of
such schemes includes one-time signatures by Lamport [16] and Rabin [27], but
also multiple-time signatures by Rohatgi [32], by Reyzin and Reyzin [30], and
by Pieprzyk, Wang and Xing [26]). The second class of schemes is based on
public-key cryptography and they can be used to sign an unlimited number of
messages. The RSA [29] and the ElGamal [10] signatures represent this class.

One-time signatures were first proposed by Rabin [27] and Lamport [16] and
are based on the idea of committing public keys to secret keys using one-way
functions. For more than 25 years, various variants of Rabin’s schemes have
been proposed and investigated by many researchers (see, for example, [3,4,11,
16, 20]). Indeed, one-time signatures have found many interesting applications [7,
21], including on-line/off-line signatures [9], digital signatures with forward secu-
rity properties [1], broadcast authentication protocols [25] and stream-oriented
authentication [32] etc.

One of the main advantages of one-time signatures is their reliance on one-
way functions without trapdoors that can be implemented using fast hash func-
tions such as SHA-1 or MD5. The resulting signatures are the order of magnitude
faster than signatures based on public cryptography. With the advent of low-
powered, resource-constrained, small devices, such as cell phones, pagers, Palm
pilots, smart cards etc. in recent years, one-time signatures have attracted more
and more attention, as an attractive alternative to the traditional signatures
based on public key cryptography (see, for example 15,25, 30]).

Although digital signatures have been successfully applied to ensure the in-
tegrity, authenticity, and non-repudiation for the electronic documents, standard
signatures (both based on public-key cryptography and on one-way functions)
alone are too inflexible and inefficient to handle many practical requirements in
new applications. Thus, many variants of the standard signatures with additional
functionalities have been proposed. These include blind, undeniable, and group
signatures to mention a few. Motivated by applications that require the power
to sign to be transfered from one person to another, Mambo et al [19] proposed
proxy signatures. Proxy signatures allow a designated person, called a prozy, to
sign on behalf of a primary signer. A proxy signature convinces a verifier that
the primary signer has delegated the signing power to the proxy and that the
proxy has signed the message.

To our best knowledge, all the previously published proxy signatures are
based on public-key cryptography. Most of the proxy signatures can be viewed
as modifications of the ElGamal signature and their security typically relies
on the assumption of the difficulty of the discrete logarithm problem (the DL
assumption). In addition, these proxy schemes can generally be used for signing
multiple messages and for multiple proxy signers.

In this paper, we will study one-time proxy signatures (or simply OTP signa-
tures). As the name suggests, we consider one-time signatures with the additional
prozxy functionality. It should be noted that the notion of one-time proxy signa-
ture itself is not new, and it has been proposed by Kim et al [15] in a different
context. Their signature is a variant of the ElGamal signature (or more precisely,
a variant of one-time fail-stop signature [13]) and its security rests on the DL
assumption. The motivation behind their work is to limit the power of the proxy
signer so the proxy signer can sign once only. In contrast, our motivation is to
enable the primary signer to delegate a proxy to sign in the applications where
one-time signatures (based on one-way functions) are used.

To define our proxy signatures, we employ two basic cryptographic primitives
as the building blocks. The first one is a one-time (or multiple-time) signature
primitive based on one-way functions. The second building block is an obliv-
ious transfer (OT) primitive. We then combine these primitives with certain
combinatorial objects to obtain our OTP signatures. We formulate the general
framework for proxy signatures, define their security goals and attacks against
them. We then show that the efficiency of any OTP signature can be measured
by the properties of the underlying combinatorial objects. We introduce proxy
patterns that characterise the properties of these OTP signatures. Next, we give

constructions for the desired proxy patterns, using polynomials over finite fields
and error-correcting codes, and link them with other combinatorial structures
(such as Steiner systems).

The rest of the paper is organised as follows. In Section 2, we introduce our
model of one-time proxy signatures. In Section 3, we consider candidates for the
two building blocks that can be used to construct one-time proxy signatures. In
Section 4, we propose a simple scheme for one-time proxy signatures and later
we describe a basic scheme and analyse its security. In Section 5, we analyse the
basic scheme and and its security against the swallow attacks. Finally, Section
6 concludes the paper.

2 The Model

A prozxy signature enables the primary signer to delegate his/her signing capa-
bility to a proxy signer so the proxy signer can generate a signature on behalf of
the primary signer. Mambo et al [19] introduced the concept of proxy signature.
They defined three classes of delegation: full delegation, partial delegation and
delegation by warrant. A full delegation scheme assumes that the primary signer
and the proxy signer have the same secret key, so the proxy signer can sign any
message that is indistinguishable from the signature generated by the primary
signer. A signature with partial delegation allows the primary signer to delegate
the power of signing to a proxy in such a way that the signatures generated
by the primary and proxy signers are different. This is normally done by mak-
ing verification algorithms different for primary and proxy signatures. In other
words, proxy signatures are distinguishable from primary signatures. A signa-
ture with delegation by warrant requires an additional piece of message (called
a warrant) that determines the proxy signer that is delegated by the primary
signer. Signatures with full delegation do not provide non-repudiation while sig-
natures with partial delegation do. Signatures with delegation by warrant can
be implemented using double signatures and therefore, they are not as efficient
as signatures with full or partial delegations.

In this paper, we are interested in one-time signatures that allow full delega-
tion with an added feature that allows to trace the authorship of the signature
(if both proxy and primary signers agree to settle a dispute). Being more pre-
cise, we are going to consider proxy signatures with full delegation, in which the
private signing key of the proxy signer is derived from the private key of the
primary signer. In particular, we restrict our attention to signatures that can be
used once only.

Informally, a one-time prozy signature scheme (OTP signature) includes two
parties: a primary signer and a prozy signer together with the following three
algorithms.

Key Generation: For a given security parameter, it outputs a pair of private
and public keys for the primary signer and a private key for the proxy signer.
The key generation may involve a two-party protocol run between the pri-

mary and proxy signers, or a multi-party protocol that is run amongst three
parties: the primary signer, the proxy, and a trusted authority.

Singing: For an input that consists of a message to be signed and the private
key of the signer (either primary or proxy), it outputs a valid signature.
Verifying: For an input that includes a pair (a message and a signature) and

the public key of the primary signer, it outputs either accept or reject.

In the following, we consider the basic security requirements imposed on OTP
signatures. If an OTP signature satisfies the requirements, it is called secure.

Unforgeability: It is infeasible for any third party (that has not been involved
in signing) to forge a message/signature that passes the signature verifi-
cation. This means that if a signature has been generated by the primary
signer, no body (including the proxy) can forge a message/signature. Also if
the signature has been generated by the proxy, then no body (including the
primary signer) can forge a message/signature.

Verifiability: For a valid signature, a verifier is convinced that the primary
signer has agreed to sign a message (either the primary signer has signed it
or the proxy has).

Traceability: In case of a dispute between the primary and proxy signers, there
exists a tracing algorithm that reveals the identity of the actual signer. That
is, the algorithm guarantees that it should be infeasible for

- the primary singer to sign a message and to claim later that it has been
signed by the proxy signer.

- the proxy signer to sign a message and to claim later that it has been
signed by the primary signer.

We note that the model of our OTP signature is slightly different from previ-
ous proxy signatures in the sense that there is only one public key of the primary
signer for the signature verification. Thus, from a verifier point of view, signa-
tures generated by primary or proxy signers are indistinguishable (like in the
full delegation). However, the tracing algorithm guarantees the non-repudiation
property for the primary signer and the proxy singer. Thus, unlike in full dele-
gation signatures, the primary singer and the proxy signer have different private
keys for signature generation, and in case a dispute occurs between the two po-
tential signers, the tracing algorithm is called to resolve it. We argue that the
indistinguishable between the signatures by the primary signer and the proxy
signer is an interesting property, for example, it can be used to protect the pri-
vacy of the actual signer. However, in this paper we are not going to explore it
beyond this point.

3 Building Blocks

In this section, we review two cryptographic primitives that are needed in the
our constructions of proxy signatures.

3.1 One-time Signature

One-time signatures are based on one-way functions. Rabin published the first
one-time signature based on a private-key encryption or a one-way function
without a trapdoor [27], requiring interaction between the signer and the verifier.
Lamport [16] gave a non-interactive one-time signature using a one-way function.
The idea of Lamport is as follows. For a given one-way function f, one selects
two random strings xo, 1 as the secret key, and publishes f(xg) and f(z1) as
the public key. Then the single-bit message b € {0,1} can be signed by revealing
xp. Various modifications of the Lamport signature with improved efficiency and
functionalities have been proposed (see, for example [2,4,5,9,12,14,21, 25, 30,
32]).

As our building block, we are going to use a one-time signature defined as
follows. Let b, , k be integers such that () > 2°. Let T’ denote the set {1,2,...,t}
and 7j be the family of k-subsets of T'. Let S be a one-to-one mapping from
{0,1,...,2° — 1} to 7. such that for a message m, S(m) assigns a unique k-
element subset from 7. Let f be a one-way function operating on ¢-bit strings
(¢ is a security parameter).

The signature scheme consists of three algorithms: key generation, signing
and wverification. For a given security parameter ¢, the key generator chooses
at random ¢t strings s; of the length ¢ bits and creates the secret key SK =
(s1,...,8¢). The public key is the image of the secret key obtained using the
one-way function f, i.e., PK = (v1,...,v:) such that v1 = f(s1),...,0: = f(s¢).

To sign a b-bit message m, the signer interprets m as an integer between 0

and 2° — 1 and computes S(m) = {iy,...,ir} € Tx. The value s;,,...,s;, is the
signature of m.

To verify a signature (s/,s5,...,s,) on a message m, the verifier again in-
terprets m as an integer between 0 and 2° — 1 and computes {iy,...,i,} as

the m-th k-element subset of 7. Finally, the verifier checks whether f(s}) =
Uip"'vf(sg) = Vi, -
Definition 1. We call the above one-time signature scheme a (t,k) one-time

signature scheme and denote it by O = (T, S, f), or simply by O. The parameters
(t, k) specify efficiency of the signature.

Note that the Bos-Chaum one-time signature scheme [2] is a special case of
the (¢, k) scheme in which k = t/2. Note also that for a (¢, k) one-time signature
O = (T,S, f), the most expensive part of computation is the implementation
of the mapping S. In [30], Reyzin and Reyzin present two algorithms for im-
plementation for S with computation costs of O(tklog®t) or O(k*logtlogk).
In [26], Pieprzyk et al give more efficient implementations for S through the
explicit constructions of S using polynomials over finite fields, error-correcting
codes, and algebraic curves.

3.2 Oblivious Transfer (OT)

An oblivious transfer (OT) refers to a two-party protocol executed between a
sender S and a receiver R. The goal of the protocol is to transfer the knowledge

about an input string held by the sender to the receiver in such a way that the
receiver learns some part of the input but the sender cannot figure out which
part of the input is now known to the receiver. Consider a 1-out-n oblivious
transfer (OT}") protocol. The sender S has n secrets (strings) mi,ma, ..., My,
and is willing to disclose one of them (m,) to R for some index a chosen by
R. However, R does not want to reveal its choice of the index « to S and at
the same time, S does not want R to gain any information about other secrets
m;,i # a. In general, we may have a k-out-n oblivious transfer (OT}"), in which
R may choose k indices out of n.

The concept of oblivious transfer has been introduced by Rabin in 1981 [28]
and it has been extensively studied (see, for example, [8,22,23]). Here is an
example of OT}* proposed recently by Tzeng [33], which is among the most
efficient OT protocols proposed so far. Let g and h be two (public) generators
in a g-order group G, where ¢ is prime. Assume that the secret input of S
is mi,ma,...,m, € Gy, and the choice of R is o, 1 < a < n. The protocol
proceeds as follows.

1. R— §:y=g"h" for arandom r € Z,
2. S randomly chooses n elements k; € Z, and

S — R:c;= (g%, mi(y/hH)*), 1 <i<n.
3. R computes m, = b/a”, assuming ¢, = (a, b).

It is proved in [33] that in the above OTY protocol, the confidentiality of the
receiver choice is unconditionally secure and the confidentiality of un-chosen se-
crets is at least as strong as the hardness of the decision Diffie-Hellman problem.
As to computations required in the protocol, the receiver needs to compute 2
modular exponentiations and the sender computes 2n modular exponentiations.

4 One-time Proxy Signatures

Our basic idea behind the constructions of OTP signatures is as follows. The
primary signer generates n private/public key pairs for one time signatures, say
(sk1,pk1), ..., (Skn,pkn). The proxy signer gains one of the n private keys, say
sk; in such a way that the primary signer does not know, which key was obtained
by the proxy signer, i.e., the primary signer does not know the index ¢. The
primary signer publishes the public key pki,...,pk, in an authenticated way.
The proxy signer uses sk; to sign the message, which can be verified by anyone
who knows the public key. Note that the verification of signatures generated by
primary and proxy signers is the same.

To prevent cheating by signers, a tracing algorithm has to be carefully de-
signed. The algorithm should be run by a trusted authority and should identify
the true signer with a high probability. Note that the oblivious transfer enables
us to identify the true signer. To do this, the trusted authority always asks the
proxy to sign the disputed message again. If the proxy is unable to produce a

different signature it means that either the proxy really signed the message or
the primary signer has applied the same secret key as proxy (this event happens
with the probability 1/n).

4.1 A simple proxy signature scheme

We present a simple and somewhat trivial scheme to illustrate the basic idea.
Then we improve its efficiency using some combinatorial techniques. The scheme
is based on a (t, k) one-time signature O = (T, S, f) and an oblivious transfer
protocol OTY* (or OT}'), and it works as follows.

Key Generation: It consists of the following three steps.
- The primary signer randomly chooses an n x t array A = (8;;)nxt as
her private key. Each row holds ¢ secret keys of an instance of the (¢, k)
one-time signature O. The public key is V' = (v;)nx¢, where v;; = f(s;5)
and f is the one-way function from O.
- The primary and proxy signers execute an OT7* (or OT}') protocol. At
the end of the protocol, the proxy signer learns one row from A, say

(8i1---,84), as his private key, but nothing more. The primary signer
has no information about the index 1.
- The proxy singer applies f to (s;1,. .., s;¢) and compares the results with

the 7th row of public array V. If the check fails to hold, the proxy exits
the scheme and complains to the primary signer.

Signing: The proxy signer applies the ith row of A, i.e., (s;1,...,5it), as his
private key of the one-time signature O and signs the message m. That is
the proxy signer first computes S(m) = {j1,...,Jx} C {1,...,t} and then
reveals m and the signature 6 = {(sij,,. .., Sij.), 4}

Verifying: This part follows the steps necessary to verify an instance of the
(t, k) one-time signature.

Security We discuss the security requirements of the scheme. Obviously, un-
forgeability and verifiability of the OTP signature follow directly from the un-
forgeability and verifiability of the underlying one-time signature ©O. What we
need to consider is the traceability of the true signer (in case of cheating attempts
from either the proxy or the primary signer).

Unforgeability against the primary signer: Assume that the primary singer wants
to cheat. She generates a signature for a message m and later claims that it
was generated by the proxy signer. Note that to sign m, the primary signer
has to choose a row of A and to sign using the chosen instance of one-time
signature. Suppose that she has chosen jth row of A. The generated signature is
0; ={(Sjirs- -, Sjix),j}, where S(m) = {i1,...,ir}. The proxy signer can prove
that the signature was not generated by him, by revealing another signature
for m using his private key (s;1,..., ;). That is, he reveals the signature §; =
{(Siiys- -, Siiy,), 1}, which shows that §; # J;. As the proxy signer knows only one
row of the private keys, he can only sign the message with one of the rows, so
0; must have been generated by the primary signer. The OT protocol provides

unconditional security for the proxy signer and the probability of success of the
primary signer is 1/n.

Unforgeability against the proxy singer: Suppose that the proxy signer wants to
cheat, he generates a signature, later denies it and claims that the primary signer
(or someone else) has generated the signature. His claim can be accepted only if
he can generate a different signature for the same message. In other words, the
proxy is able to produce two different signatures for the same message. This is
impossible unless, he is able to break the OT protocol or to invert the one-way
function.

We stress that the tracing algorithm is called only if the dispute between the

primary signer and the proxy signer occurs. The knowledge of a valid signature
alone is not sufficient to identify the actual signer (the signature provides full
delegation).
Efficiency We look at the efficiency of the scheme. The signing and verifica-
tion of the signature are exactly the same as the underlying one-time signature
scheme, so could be very fast. The key generation requires n times costs of
key generation for one-time signatures, plus the cost of running an OT}]* (or
OT}") protocol. The length of public and secret keys increases n times as well.
However, observe that the key generation, which is the most expensive part of
computations, can be precomputed. Furthermore, an expensive OT protocol can
be avoided if a third trusted party helps during the key generation. The private
key of the primary signer can be discarded after the key generation. In the next
section we propose methods to reduce the public key length.

4.2 The basic proxy signature scheme

To decrease the probability of successful cheating by the primary signer, it is
required to increase the parameter n and consequently the number of rows in A.
This causes that the simple proxy signature secure against a dishonest primary
signer must have a long private/public key. We show that the simple proxy
signatures can be converted into proxy signatures with shorter public keys using
combinatorial techniques.

Definition 2. Given a set X = {z1,...,zp} and ann x t array C = [¢;;] with
entries from X. The array C is called a (t,k,n, M) proxy pattern, denoted by
PP(t, k,n,M), for a (t,k) one-time signature if

1. each row of C contains t different elements of X,
2. any two distinct rows of C' have at most k — 1 common elements, i.e., for
any i # j,
‘{C’le - ,Cit} M {th . 7Cjt}| < k.

For a given PP(t,k,n, M), we combine it with a (¢,k) one-time signature
to construct an OTP signature that is a generalisation of the simple scheme
presented above. Without the loss of generality, assume that C' = (¢;;) is a
PP(t,k,n, M) with entries taken from X = {1,..., M} and O = (T, S, f) is a
(t, k) one-time signature. Our basic proxy signature works as follows.

Key Generation: It goes through the following three steps.

- The primary signer randomly chooses M distinct values (s1, $2, ..., Sar)
as the private key (for example, each s; is an ¢-bit string if the underlying
one-time signature O is defined for the security parameter £). The public
key is V = (v1,...,vn), where v; = f(s;),i=1,..., M.

- The primary and proxy signers execute an OTM protocol. At the end of
the protocol, the proxy signer learns the ith row of C, that is (s¢,;, - - - » Sy,)
as his private key, but nothing more. The primary signer has no infor-
mation about the index i.

- The proxy singer applies f to (sc,,,- .., S¢;,) and checks the results with
the corresponding components of the public key V. If the check fails, the
proxy aborts and complains.

Signing: For a given message m, the proxy signer applies his private key (sc,,, . . .
S¢;,) to the one-time signature O and signs the message. That is, the proxy
signer first computes S(m) = {j1,...,jx} C {1,...,t} and then reveals the
signature § = {(sc;;, - - -+ 8¢y,)1}

Verifying: It follows the verification of the (¢, k) one-time signature (applied
to the appropriate instance of the one-time signature) in a straightforward
manner.

It is easy to see that the security of this scheme is similar to the security of
the simple scheme. The traceability is guaranteed by the properties of the proxy
pattern C, that is, any two rows will have at most £—1 common elements. Since a
signature requires the knowledge of k secret values of the private key, the proxy
signer can resolve disputes by showing two valid signatures (corresponding to
two different rows of C).

The main advantage of the basic signature scheme is a reduction of the length
of public key (and the corresponding private key) from nt values to M values.
In the remainder of this section, we will give constructions for proxy patterns
with small M and derive a bound on the minimal value for M.

4.3 Constructions of proxy patterns

It is easy to see that the simple signature uses a trivial PP(t, k,n,nt) for any
k,1 < k < t. By fixing k, as this is the case for the underlying (k,t) one-time
signature, we are able to construct a PP(t, k,n, M) such that M is significantly
smaller than nt, and so to reduce the length of the public key.

Assume GF(q) is a finite field with ¢ elements and aq, ..., a; are ¢ distinct
elements from GF(q). We construct a PP(t,k,n, M) as follows. Consider a set
X = {a1,...,at} x GF(q) and all polynomials of the degree at most k — 1
over GF(q). Next write them as g1(z),..., gy (). Note that there are ¢* such
polynomials. Further define a ¢* x ¢ array C' = [c;;] with entries taken from X,
SO

Cij = (aj,gi(aj)), fOI‘ 7= 1,2,...,qk,j = 1,2,...,t.
Now we show that C is a PP(t,k,q", qt). Indeed, for 1 < i < ¢*, the ith row of
Cis
((a1,9i(a1)), (a2, gi(az)), . .., (at, gi(ar))).

Thus, for i # 7,

|{ (alagi(al))v RN (atagi(at))} N {((alagj(al))a R (atagj(at))H
=a | gi(a) = g;(a)}|
{a | (g; — g5)(a) = 0}|

<k

otherwise there are k or more than k roots for the polynomial g; — g;. But ¢; —g;
is a polynomial of degree at most k, it follows that g; = g; which contradicts
that i # j. We have proved the following result.

Theorem 1. Let g be a prime power. For any integers t, k such that k <t < q,
there exists a PP(t,k,q", qt).

Note that for the simple proxy signature, a PP(t, k, ¢*, ¢*t) is required. Thus,
for the fixed parameters ¢, k and ¢**', we can reduce the number of elements in
the public key from ¢*t for the simple proxy signature to gt in the basic proxy
signature.

A generalisation of the above polynomial construction uses error-correcting
codes. Let Y be an alphabet of ¢ elements. An (N, W, D, q) code is a set M of W
vectors in YV such that the Hamming distance between any two distinct vectors
in M is at least D. Consider an (N, W, D, q) code M. We write each codeword
as m; = (M1, ...,m;n) with m;; € Y, where 1 <4 < W,1 < j < N. For a set
X ={1,...,N} xY, we define a proxy pattern C = (c¢;;) as follows,

cij:(j,mij), fori:1,2,...,VV,j:1,2,...,N.
Now for each distinct 7, j, we have

Heit, cio, - seinvy N {ejn, ¢jo, ..o, cin
=|{(k,m) : 1 <k < NPn{(k,mjx): 1<k <N}
= [{k: mu = mj}|
<N-—-D+1.

This shows that the array C' constructed above is a PP(N, N — D + 1,W, Nq).
We then have

Theorem 2. If there exists an (N, W, D, q) code, then there exists a PP(N, N —
D +1,W,Nq).

In the coding theory, it is known that for given k and ¢ there are construc-
tions (e.g. using algebraic geometry codes [24]) for (N, W, D, q) codes for which
N = O(logW). In the context of proxy patterns, this means that there exists
PP(N,N—D,W, Nq) in which N = O(log W). Applying this observation to one-
time proxy signature, we can reduce the number of elements in the public key
from O(n), for the simple proxy signature, to O(logn) for the proxy signature
based on the coding construction.

4.4 Bounds for proxy patterns

To minimise the success probability of cheating by the primary signer, we need
to have a PP(t, k,n, M) for which the value n is as large as possible while other
parameters t, k and M are fixed. In the following we derive an upper bound for
such n.

Theorem 3. For any PP(t,k,n, M), the following inequality holds

Proof. Assume that C' = [¢;;] is a PP(t, k,n, M) with entries taken from an M-
set of X . For each row i, we associate a subset B; of X, i.e., B; = {cij1,...,¢i1} C
X, where i = 1,...,n. Clearly, |B;| =t and |B; N B;| < k for all ¢, j where i # j.
For each 1 < ¢ < n, denote R; to be the family of all the k-subsets of B;. This
implies that |R;| = (}). Now we claim that R; N R; = () for each i # j. If this
claim is not true or B € R; N'R; is a k-subset of X, then B is a k-subset of both
B; and Bj, which contradicts the fact that |B; N B;| < k. Thus we have

M . t
(%) = 1um R =it = ().

The desired result follows immediately. a

Next, we show that the bound in Theorem 3 is tight for some parameter set.
Recall that a Steiner system S(k,t, M) is a pair (X, B), where X is a set of M
elements called points and B is a family of ¢-subsets of X called blocks, such
that every k-subset of points is contained in a unique block. It is known that the
number of blocks of an S(k,t, M) is (J;I)/(Z)
Corollary 1. An PP(t,k,n, M) with n = (Ag)/(z) exists if and only if there
exists an S(k,t, M).

Proof. Let (X,B) be an S(k,t, M). For each block, associate a row of an n x ¢
array in a natural way, i.e., entries of the ith row are assigned to the elements
in the block B;. It is easy to see that assignment gives rise to a PP(t,k,n, M)
with n = (3))/(}).

On the other hand, assume that C is a PP(t,k, (]Z[)/(Z),M) with entries
from M-set X, each row of C is a subset of X, we obtain a set system (X, B)
where B={B;:1<i< (],Vf)/(z)} It is clear that each k-subset of X appears
in at most one block. So we need to show that it is contained in at least one
block. Using the same notation as in Theorem 3, we know that each block B;

contributes (z) k-subsets R; of X. Since R;s are disjoint and there are (]\g) / (Z)

such R;, which gives rise all the (Ak/t) possible choices of k-subsets of X, that
means that any k-subset must be in one of the R;. This concludes the proof. O

5 Proxy Signatures Secure against Swallow Attacks

Consider the following attack: suppose the primary signer has seen a valid signa-
ture (m,d) produced by the proxy. She knows that the private key of the proxy
signer is the ith row of the proxy pattern. Now the primary signer swallows the
signature generated by the proxy signer, and generates the signature for another
new message, using the private key of the proxy signer. In this case, the proxy
signer is unable to prove his innocence. We will call it, the swallow attack.

In order to protect proxy signatures against the swallow attack, the primary
signer should not be able to guess the private key of the proxy from a signature
produced by the proxy. Looking at a message and its signature, the primary
signer should not be able to determine the private key of the proxy. In other
words, a single proxy signature should point at many (potential) private keys
of the proxy. On the other hand, there should not be too many private keys
corresponding to a given proxy signature. Otherwise, the proxy signature can
be subject to an attack in which the primary signer chooses at random the
proxy private key (without looking at the signature) and succeeds with a high
probability. Based on this observation, we propose a new proxy signature that
is secure against the swallow attack.

First we need some notation. Let C' = (¢;;) be an n x ¢ array with entries
from an M-set of X. Forany 1 <i¢ <nand 1< j; <js < - < jp < t, we
denote

Clisju, j2, - - di] = {0 | cojy = cijy, - - Coju = ciji }-
In other words, C[i;j1,ja, ..., k] is the set of indices of the rows which are
identical to ¢th row when restricted to the ji, ..., jr columns.

Definition 3. Given a set X = {z1,...,xm}. Ann xt array C = (¢;5), with
entries from X, is called a (A1, A2)-strong (t,k,n, M) proxy pattern, denoted by
(M1, X2)-SPP(t,k,n, M) for a (t,k) one-time signature if

1. each row of C' contains t different elements of X,
2. any two distinct rows of C' have at most k common elements, i.e., for any
i # s
‘{C’le - ,Cit} N {le, e 7Cjt}| S k
8. for any row 1 <i<mn and any k columns 1 < j1 < jo < -+ < jp <,

)\1 < |C[l7j17.7277.7k]| <)\2'

We now combine a (A1, A\2)-SPP(¢, k,n, M) and a (t,k) one-time signature
to construct an OTP signature secure against the swallow attack. Assume C' =
(¢ij) is a (A1, A2)-SPP(t, k,n, M) with entries taken from X = {1,..., M} and
O =(T,S, f)is a (t,k) one-time signature. The signature works as follows.

Key Generation: It consists of the following three steps.

- The primary signer randomly chooses M distinct elements (s1, S2, ..., Sar)
as the private key (for example, each s; is a ¢-bit string if the private
key of underlying one-time signature O consists of ¢-bits strings). The
public key is V' = (v1,...,vpr), where v; = f(s;),i=1,..., M.

- The primary and proxy signers execute an OTM protocol. At the end
of the protocol, the proxy signer learns a t-subset of X that is the ith
row of C, i.e., (S¢;y,---,Se,), as his private key, but nothing more. The
primary signer has no information about the index .

- The proxy singer applies f to (S¢,,,---,S¢;,) and checks the results by
comparing them to the corresponding components of the public key V.
If the check fails, the proxy aborts and complains.

Signing: To sign a message m, the proxy signer computes S(m) = {j1,ja2,- -,k }
and C[é;j1,...,Jk]. Then he randomly chooses ¢ € C[i; ji,..., x|, and re-
veals & = {(Sc,;, s, Se,,) £} as the signature.

Verifying: It follows the verification of the (¢, k) one-time signature (applying
to the fth row) in a straightforward manner.

Clearly, the unforgeability against the third party is the same as the underlying
one-time signature scheme O. Next we show that the scheme is secure against
regular attacks and the swallow attacks from the primary signer.

Lemma 1. The probability that the primary signer succeeds in the regular attack
(without seeing any signature) is at most Ag/n.

Proof. In this attack, the primary signer generates a signature and later claims
that it is generated by the proxy signer. She succeeds if the proxy signer fails to
prove that he has not generated the signature. As the primary signer has no infor-
mation about the index 7 chosen by the proxy signer, she may try to guess it. As-
sume that she has chosen the index j. For a message m, the primary signer com-
putes S(m) = {ji,...,jx} and reveals the signature {s.,; ,...,sc,, ,{}, where
¢ € Clj;d1,y.--, k). Note that if j & C[é;j1,..., k], then the proxy can sign
the message m using a different key from the ith row, which results in differ-
ent signature of the primary signer. The primary signer succeeds if and only if
Jj € Clis g1, o, - -, jk)- Since C is a (A1, A\2)-SPP(¢t, k + 1,n, M), we know that
|C[é; 915 - - -, Jx]| < A2 and the result follows. O

Lemma 2. The probability that the primary signer succeeds in the swallow at-
tack (having seen a signature) is at most max{1/\, \a/n}.

Proof. In this attack, the primary signer has seen a message/signature pair (m, J)
generated by the proxy signer. Next she swallows the data and generates an-
other message/signature pair (m’,d’). She succeeds if the proxy signer fails to
prove that there is a cheating from the primary signer. Suppose that the proxy
signer has chosen the index 4. For a signature (m,d) generated by the proxy
signer, we may assume that § = {(sc,;, ;- - - Sc,;,), €}, where S(m) = {j1,...,jx}
and ¢ € C[i; 1, ..., jr]. Having seen the signature 4, the primary signer knows
that the secret index chosen by the proxy signer is one of the elements in
Cl4; 41, ..., jk]. One attack strategy from the primary signer is to randomly
choose j € Cl;j1,...,Jk] and use secret key from jth row to generate the
signature (m’,d"). She succeeds with probability 1/|C[¢; ji, ..., jx]| that j = i.
If j # i, then the proxy signer can generate the signature for m/, say ¢”. It can

be seen that ¢’ # §”, which means that the proxy can create two signatures for
the same message m’ using two different row keys. This proves that the primary
signer attempted to cheat. Another strategy for the primary signer is to choose
Jj & Cl;ja,...,jk]- In this case, she succeeds if and only if j € C[i; 41, .-, ji],
where S(m') = {ji,...,j,}- As in the proof of Lemma 1, the probability of a
successful attack using this strategy is at most Ay /n. Therefore, the overall suc-
cess probability of the attack is bounded by max{1/A1, Aa/n}. O

Previously, we have used polynomials over a finite field to construct a PP(t, k,
q", qt). We will show that this construction can be extended for (g, q)-SPP(t, k—1,

¢~ qt).

Theorem 4. The polynomial construction for a PP(t,k, ¢*, qt) given in Section
4 results in a (q,q)-SPP(t,k —1,¢", qt).

Proof. We already know that the polynomial construction gives rise to a PP(t, k, ¢*,
qt), C = (ci;). To show that C is a (q,q)-SPP(¢,k — 1,4¢", qt). We need to show
that for any 1 <i < ¢* and 1 < j; < ja...,j5k—1 < t, we have

C[i;jlajéa DR 7jk71] =4q.

In other words, we need to show that for any k—1 distinct elements a;,,...,a;, , €
GF(q), and any k — 1 elements a7, ...,ar_1 € GF(q), there are exactly g poly-
nomials g of degree at most k — 1 such that

g(ail):a17"'7g(a’ik—1):ak*1’ (1)

Indeed, choose a € GF(q) \ {as,,...,ai,_,}, then a polynomial g satisfying (1)
is uniquely determined by the value of g(a), there are ¢ different possible choices
for g(a) which in turn give rise to ¢ possible polynomial polynomials satisfying
(1). This proves our desired result. O

It should be noted that constructions for strong proxy patterns can also
be based on error-correcting codes. The argument follows the one developed in
Section 4.3. However, it is not clear how the parameters A1, Ao are related to the
parameters of the codes. We believe that it is an interesting problem for further
research.

6 Conclusions

In this work, we have studied one-time proxy signature schemes. Unlike other
existing one-time proxy signature scheme that are constructed using public-key
cryptography, we have proposed one-time proxy signatures based on one-way
functions. These signatures preserve the basic functionalities and properties of
one-time signatures (including their fast generation and verification) but also
allow the primary signer to delegate the power of signing to a chosen proxy.
The one-time proxy signatures permit full delegation for which potential
verifiers are not able to distinguish primary signers from proxy. However, in case

of a dispute between the signers about the authorship of a signature, a trusted
authority is able to run an algorithm to resolve the dispute. The algorithm asks
the proxy to re-generate a signature for the disputed message. If the proxy is
able to produce a signature different from the disputed one, then the true signer
of the signature is the primary signer. Otherwise, the proxy has generated the
signature.

One-time proxy signatures can be especially useful where there is a need for
fast generation and verification together with a need to share power of signing.
Applications may include authentication of streams of packets in a distributed
environment with mirror servers generating proxy signatures.

Our approach is based on a combination of certain type of existing one-time
signature with some combinatorial objects. While the former can be optimised
using the known techniques in the literature, the latter are new combinatorial
objects we introduce in this paper and so are of independent interest. In partic-
ular, the structures of strong proxy patterns are far from clear, and providing
efficient constructions for them is an interesting research problem.

Acknowledgement

The work was in part supported by Australian Research Council Discovery
grants DP0345366 and DP0344444.

References

1. M. Abdalla and L. Reyzin. A new forward-secure digital signature scheme, Advances
in Cryptology — Asiacrypt’00, LNCS, 1976(2000), 116-129.

2. J.N. E. Bos and D. Chaum. Provably unforgeable signature, Advances in Cryptology
- Crypto’92, LNCS, 740(1993), 1-14.

3. M. Bellare and S. Micali. How to sign given any trapdoor function. Journal of
Cryptology, 39(1992), 214-233.

4. D. Bleichenbacher and U. Maurer. Directed acyclic graphs, one-way functions and
digital signatures, Advances in Cryptology — Crypto’94, LNCS, 839(1994), 75-82.

5. D. Bleichenbacher and U. Maurer. On the efficiency of one-time digital signatures,
Advances in Cryptology — Asiacrypt’96, LNCS, 1163(1996), 145-158.

6. D. Bleichenbacher and U. Maurer. Optimal tree-based one-time digital signature
schemes, STACS 96, LNCS, 1046(1996), 363-374.

7. C. Dwork and M. Naor. An efficient existentially unforgeable signature scheme and
its applications, Advances in Cryptology — Crypto’94, LNCS, 839(1994), 234-246.

8. G. Di Crescenzo, T. Malkin and R. Ostrovsky. Single database private information
retrieval implies oblivious transfer, Advances in Cryptology - Eurocrypt’00, LNCS,
2000, 122-138.

9. S. Even, O. Goldreich and S. Micali. On-line/off-line digital signatures, Journal of
Cryptology, 9(1996), 35-67.

10. T. ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms, IEEE Transactions on Information Theory. 31(1985), 469-472.

11. S. Goldwasser, S. Micali and R. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal on Computing, 17(1988), 281-308.

12. A. Hevia and D. Micciancio. The provable security of graph-based one-time sig-
natures and extensions to algebraic signature schemes. Advances in Cryptology —
Asiacrypt’02, LNCS, 2501(2002), 379-396.

13. T. P. Pedersen and B. Pfitzmann. Fail-stop signatures. SIAM Journal on Comput-
ing, 26/2(1997), 291-330.

14. Y.-C Hu, A. Perrig and D.B. Johnson. Packet Leashes: A defense against wormhole
attacks in wireless Ad Hoc Networks. Proceedings of the 22nd Annual Joint Con-
ference of the IEEE Computer and Communications Societies (INFOCOM 2003),
2003, to appear.

15. H. Kim, J. Baek, B. Lee and K. Kim. Secret Computation with secrets for mobile
agent using one-time proxy signature. The 2001 Symposium on Cryptography and
Information Security, Oiso, Japan.

16. L. Lamport. Constructing digital signatures from a one way function. Technical
Report CSL-98, SRI International, 1979.

17. L. Lamport. Password authentication with insecure communication. Communica-
tion of the ACM, 24(11), 1981, 770-772.

18. B. Lee, H. Kim and K. Kim. Strong proxy signature and its applications. The 2001
Symposium on Cryptography and Information Security, Oiso, Japan.

19. M. Mambo, K. Usuda and E. Okamoto. Proxy signatures: Delegation of the power
to sign messages. IEICE Trans. Fundamentals, Vol. E79-A (1996), 1338-1353.

20. R.C. Merkle. A digital signature based on a conventional function. Advances in
Cryptology — Crypto’87, LNCS, 293(1987), 369-378.

21. R.C. Merkle. A certified digital signature. Advances in Cryptology — Crypto’87,
LNCS, 435(1990), 218-238.

22. M. Naor and B. Pinkas. Oblivious transfer and polynomial evaluation. Proceedings
of the 81st ACM Symposium on Theory of Computing, 1999, 245-254

23. M. Naor and B. Pinkas. Efficient oblivious transfer protocols. SODAO01, 2001.

24. H. Niederreiter and C. P. Xing, Rational Points on Curves over Finite Fields:
Theory and Applications, Cambridge University Press, LMS 285, 2001.

25. A. Perrig. The BiBa one-time signature and broadcast authentication. Eighth ACM
Conference on Computer and Communication Security, ACM, 2001, 28-37.

26. J. Pieprzyk, H. Wang and C. Xing. Multiple-time signature schemes secure against
adaptive chosen message attacks. the 10th annual workshop on Selected Areas in
Cryptography (SAC03), LNCS, to appear.

27. M.O. Rabin. Digitalized signatures. Foundations of Secure Communication, Aca-
demic Press, 1978, 155-168.

28. M.O. Rabin. How to exchange secrets by oblivious transfer. Technical Report TR-
81, Harvard University, 1981.

29. R.L. Rivest, A. Shamir and L. Adleman. A method for obtaining digital signatures
and public key cryptosystems. Communications of the ACM, 21(1978), 120-12.

30. L. Reyzin and N. Reyzin. Better than BiBa: Short one -time signatures with
fast signing and verifying. Information Security and Privacy (ACISP02), LNCS,
2384(2002), 144-153.

31. R. Rivest and A. Shamir. PayWord and MicroMint: two simple micro payment
schemes. Tech. Rep., MIT Lab. for Computer Science, 1996.

32. P. Rohatgi. A compact and fast hybrid signature scheme for multicast packet au-
thentication. 6th ACM conference on Computer and Communication Security, 1999,
93-100.

33. W-G Tzeng. Efficient 1-out-n Oblivious Transfer Schemes. PKC’02, LNCS, 159-
171.

