
Cryptanalysis of 3-pass HAVAL?

Bart Van Rompay, Alex Biryukov, Bart Preneel??, and Joos Vandewalle

Katholieke Universiteit Leuven, Dept. ESAT/SCD-COSIC
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

{bart.vanrompay,alex.biryukov,bart.preneel,
joos.vandewalle}@esat.kuleuven.ac.be

Abstract. HAVAL is a cryptographic hash function proposed in 1992
by Zheng, Pieprzyk and Seberry. Its has a structure that is quite similar
to other well-known hash functions such as MD4 and MD5. The speci-
fication of HAVAL includes a security parameter: the number of passes
(that is, the number of times that a particular word of the message is
used in the computation) can be chosen equal to 3, 4 or 5. In this paper
we describe a practical attack that finds collisions for the 3-pass version
of HAVAL. This means that it is possible to generate pairs of messages
hashing to the same value. The computational complexity of the attack
corresponds to about 229 computations of the compression function of
3-pass HAVAL; the required amount of memory is negligible.

1 Introduction

A cryptographic hash function is an algorithm that can be used to compress a
message of arbitrary length into a hash value of specified length (say n bits).
Such functions are widely used in applications requiring the authentication of
information. In order to be useful for such applications it is required that the
hash function is one-way: this means that, for a given value of n bits, it should
be infeasible to find any message which hashes to this value. Another important
property for a hash function is collision-resistance: it should be infeasible to find
any two messages that are mapped by the function to the same value. This last
property is not required in all applications of hash functions; one important case
where it is needed is when a hash function is used in conjunction with a digital
signature scheme, in order to compress a message before it is being signed.

Unfortunately one cannot design efficient hash functions with provable se-
curity properties. While it is possible to base a hash function on a different
cryptographic primitive such as a block cipher (which may have received a lot of
cryptanalytic effort and thereby confidence in its security), in practice dedicated
algorithms, designed specifically for the purpose of hashing, are often preferred.
Especially the algorithms of the so-called MD-family of hash functions are very

? This work was supported by the Concerted Research Action (GOA) Mefisto-2000/06
of the Flemish Government.

?? Dr. Bart Preneel is professor at the Katholieke Universiteit Leuven, Belgium.

popular, because of their efficiency in software implementations and because of
the experience gained by cryptanalysis of some members of this family.

The first algorithms of the MD-family were MD4 [10] and MD5 [11], proposed
by Rivest in 1990 and 1991 respectively. These functions generate a hash value
of 128 bits. The HAVAL [12] algorithm was proposed by Zheng, Pieprzyk and
Seberry in 1992. In contrast to MD4 and MD5, HAVAL allows the computation of
hashes of variable length, more specifically 128, 160, 192, 224 or 256 bits. This
should result in higher security levels as the complexity of a collision-finding
attack is conjectured to be of the order of 2n/2 operations where n is the number
of bits in the hash value (this corresponds to the complexity of a generic birthday
attack). The specification of HAVAL allows for a trade-off between efficiency and
security margin by means of a parameter, the number of passes, which can be
chosen equal to 3, 4 or 5. Amongst the other hash functions which belong to the
MD-family are RIPEMD-160 [5] and SHA-1 [8], both of which have an output
length of 160 bits. In order to generate longer hash values one can also use
the recently proposed hash functions SHA-256, SHA-384 and SHA-512 [8] (with
output length of 256, 384 or 512 bits respectively).

In 1996 Dobbertin [3] showed that the MD4 hash function is not collision-
resistant: there is a practical attack that finds pairs of messages hashing to
the same value. Later he applied similar techniques to find collisions for MD5
[4], but this attack does not work for the correct initial value defined for the
algorithm (or for any other pre-specified initial value). In the case of HAVAL,
only reduced versions of the algorithm have been analysed so far: it has been
shown that collisions can be found when the number of passes is reduced to two
[7, 9, 6]. In this paper we show a cryptanalysis of HAVAL in the case where the
number of passes is equal to 3 (that is the minimum allowed by the algorithm
specification). Our analysis leads to a practical attack that finds collisions for 3-
pass HAVAL, using the correct initial value as specified for the algorithm, with a
time complexity that corresponds to about 229 computations of the compression
function (this attack works for all possible output lengths of the algorithm). The
remainder of the paper is organised as follows: in Section 2 we give a general
outline of the attack procedure. The details of the attack are then explained
in Sections 3 and 4. In Section 5 we provide a concrete example of a collision
generated with our attack and we conclude in Section 6.

2 Outline of the attack

The hash function HAVAL is defined as a simple iteration of a compression
function and can be described as follows:

H0 = IV , Hj = compress(Hj−1,Mj) (1 ≤ j ≤ t) , hash(M) = Ht .

Here M denotes the message which is divided into t blocks Mj of 1024 bits
each. IV is an initial value of 256 bits, and Hj represent chaining variables with
a length of 256 bits. Each application of the compression function transforms
the chaining variable into a new value under control of the current message

block Mj , and the final value for this chaining variable serves as 256-bit hash
value of the message M. This construction implies that the problem of finding a
collision for HAVAL can be reduced to the problem of finding a collision for its
compression function. Note that an optional output transformation is defined for
the computation of shorter hash values but this has no impact on our attack: we
obtain a collision before the output transformation, therefore the attack works
regardless of the length of the hash output.

In the following we will focus our attention on the compression function of
HAVAL. This function uses only simple operations on 32-bit words. The 256-
bit input is loaded into eight registers (A,B, C, D, E, F, G,H) and the 1024-bit
message block is divided into 32 words {X0, X1, . . . , X31}. Each step of the
compression function updates the value of one of the registers, depending on
a non-linear function of the other seven registers and also on one word of the
message. For example the first step of the compression function updates the
value of the A register in the following manner:

A ← AÀ11 + (f(B,C, D,E, F,G, H))À7 + X0,

where f is a non-linear function; (·)Às denotes rotation (circular shift) over s
bit positions to the right, and + denotes addition modulo 232. After 32 steps
all words Xi have been used, and this constitutes the first pass of the HAVAL
compression function. The 3-pass version has two more passes which again use
all words Xi of the message exactly once (32 steps per pass) but the order in
which they are applied is permuted. Also, each pass uses a different non-linear
function in the step operations. We refer to the Appendix for a more detailed
description of the compression function. We denote the values contained in the
registers at the start of the compression function by (A0, . . . , H0). Each pass of
the compression function computes four new values for each register (4 values
× 8 registers = 32 steps). Hence, three passes compute 12 new values for the
registers; these values are denoted (Ai, . . . , Hi) with 1 ≤ i ≤ 12. Note that all
steps of the compression function can be inverted, however there is a final feed-
forward operation to make the function uninvertible. This operation computes
the functions output as (A0 + A12, . . . , H0 + H12).

The goal of our attack is to find two distinct message blocks {Xi} and {X ′
i}

(0 ≤ i ≤ 31) which are mapped by the compression function to the same output
value, where the computation for the two message block starts from the same
256-bit initial value (A0, . . . , H0). We find such a collision for two message blocks
with a small difference in only one of the words, more specifically:

X ′
28 = X28 + 1 ,

X ′
i = Xi (i 6= 28) .

During the execution of the compression function some intermediate values
for the registers will be different for the message blocks {Xi} and {X ′

i}. We
define the difference after step j as

∆j = (A−A′, B −B′, C − C ′, D −D′, E − E′, F − F ′, G−G′,H −H ′) ,

where (A, . . . , H) are the contents of the registers at this point for message block
{Xi}, and similarly (A′, . . . , H ′) for {X ′

i}. Note that this difference is defined
with respect to the modular addition operation.

¿From the description of the compression function in the Appendix, it can
be seen that the word X28, respectively X ′

28 (which contains the only difference
between the two message blocks) is applied three times, once in each of the three
passes of the function. This is the case in steps 29, 38 and 69. Before step 29
all contents of the registers are equal for the two messages; a collision will be
obtained if the contents of all registers are equal again after execution of step 69
(hereafter all message words that are used are the same for both messages so no
new differences will occur in any computed register value). In order to give our
attack a chance of success we need to control the differences in registers between
step 29 and step 69 very carefully. The attack can be divided into two phases
which we describe below and in more detail in the next sections.

Phase I: Inner almost-collision

The first phase of the attack concentrates on the first two passes of the compres-
sion function, more specifically the part between steps 29 and 38. The first use
of the word X28, respectively X ′

28, is in step 29 (in pass 1 of the compression
function) where a new value is computed for the E register. This means that
the first computed register value which is not equal for the two messages, is the
value E4, respectively E′

4. At this point we have the following correspondence
between the registers for the two messages:

A4 = A′4 B4 = B′
4 C4 = C ′4 D4 = D′

4

E4 = E′
4 + (X28 −X ′

28) F3 = F ′3 G3 = G′3 H3 = H ′
3

So the difference after step 29 is:

∆29 = (0, 0, 0, 0, X28 −X ′
28, 0, 0, 0) = (0, 0, 0, 0,−1, 0, 0, 0) .

The next use of X28, respectively X ′
28, occurs in step 38 (in pass 2 of the

compression function) where a new value is computed for the F register. In this
phase of the attack we fix some words Xi of the messages in such a way that we
have the following correspondence between register values at this point:

A5 = A′5 B5 = B′
5 C5 = C ′5 D5 = D′

5

E5 = E′
5 + 1¿12 F5 = F ′5 G4 = G′4 H4 = H ′

4

Here (·)¿s denotes rotation over s bit positions to the left. So we want only a
small difference in register E after the execution of step 38. That is,

∆38 = (0, 0, 0, 0, 1¿12, 0, 0, 0) .

Such a set of differences (∆29,∆38) is called an inner almost-collision.

Phase II: Differential analysis and matching the initial value

The second phase of the attack concentrates on the last two passes of the
compression function, more specifically the part between steps 38 and 69. As
seen above we have only a small difference in the E register after step 38. We
are now ready to perform a differential cryptanalysis on the following steps.
The last occasion where the word X28, respectively X ′

28, is used is in step
69 (in pass 3 of the compression function). For 39 ≤ j ≤ 68 we require that
∆j = (0, 0, 0, 0, E − E′, 0, 0, 0). That is, we require that the difference in the E
register after step 38 does not spread to any of the other registers. Furthermore,
the difference in the E register after step 38 has been chosen in such a way that
the use of X28, respectively X ′

28, in step 69 compensates the difference in the
E register at that point. That means ∆69 = (0, 0, 0, 0, 0, 0, 0, 0). This will also
result in a collision in the output of the compression function.

In the previous phase of the attack we only needed to fix a few of the words
Xi in the messages. Therefore, we can randomly choose the remaining words in
this phase and see if the differential attack works. We found that the success
probability of our differential attack is around 2−29, so a collision can be found
by randomly guessing the remaining words Xi and computing the difference
after step 69 (which should be zero for all registers). This will succeed after, on
average, 229 trials.

There is one more complication to our attack: when all values of words Xi

are determined we can calculate backwards in pass 1 of the compression function
by inverting steps 29 down to 1. The values of (A0, . . . , H0) which we calculate
in this way have to be equal to the initial values defined in the algorithm spec-
ification. This can be realised by randomly choosing only a subset of words Xi

in this phase of the attack and calculating the values of some other words which
can still be freely chosen so that the correct initial values are obtained.

3 Finding an inner almost-collision

As noted in the previous section we first analyse the part of the compression func-
tion between step 29 and step 38. We require that ∆29 = (0, 0, 0, 0,−1, 0, 0, 0)
and that ∆38 = (0, 0, 0, 0, 1¿12, 0, 0, 0).

Table 1 below shows the difference propagation used in our attack. In step 29
a difference in the E register is introduced: E4−E′

4 = X28−X ′
28 = −1. We let this

difference spread to the F register in step 30, more specifically F4−F ′4 = 1. ¿From
step 31 up to 36 we require that the differences in the E and F registers do not
spread to any of the other registers: G4−G′4 = H4−H ′

4 = A5−A′5 = B5−B′
5 =

C5−C ′5 = D5−D′
5 = 0. Then, in step 37 we need an interaction of the differences

in the E and F registers, in such a way that the right difference E5−E′
5 = 1¿12

is obtained. Finally, the difference in the F register has to disappear in step 38
where the word X28, respectively X ′

28, is used again: F5 − F ′5 = 0.
For each step in turn, we now look at the difference which is obtained after

computing the new register value for {Xi} and {X ′
i}. To simplify the analysis

we first make the following specific choices:

E4 = −1 , E′
4 = 0 , F4 = 0 , F ′4 = −1 .

Note that these choices agree with the differences E4−E′
4 = −1 and F4−F ′4 = 1.

The values 0 and −1 (modulo 232) correspond to 32-bit quantities where all the
bits are set equal to 0 or 1 respectively.

Table 1. Overview of the difference propagation through the registers. The shown
difference values are the values after the corresponding step has been executed. We
also list the message word applied in each step. Note that ∆A = A−A′, ∆B = B−B′,
etc. Entries in bold face show which register has been updated in a particular step.

Step ∆A ∆B ∆C ∆D ∆E ∆F ∆G ∆H word

29 0 0 0 0 − 1 0 0 0 X28(+1)
30 0 0 0 0 −1 1 0 0 X29

31 0 0 0 0 −1 1 0 0 X30

32 0 0 0 0 −1 1 0 0 X31

33 0 0 0 0 −1 1 0 0 X5

34 0 0 0 0 −1 1 0 0 X14

35 0 0 0 0 −1 1 0 0 X26

36 0 0 0 0 −1 1 0 0 X18

37 0 0 0 0 1¿12 1 0 0 X11

38 0 0 0 0 1¿12 0 0 0 X28(+1)

Step 29 In this step we have a difference in the applied message word X28,
respectively X ′

28. From the definition of the step operation (see the Appendix)
and using E′

3 = E3, F
′
3 = F3, G

′
3 = G3,H

′
3 = H3, A

′
4 = A4, B

′
4 = B4, C

′
4 =

C4, D
′
4 = D4 it follows that

E4 − E′
4 = X28 −X ′

28 = −1 .

Step 30 ¿From the definition of the step operation it follows that

F4−F ′4 = (f(G3,H3, A4, B4, C4, D4, E4))À7−(f(G3,H3, A4, B4, C4, D4, E
′
4))

À7 .

If we now use the definition of the non-linear function f (see the Appendix) and
insert the values of E4, E

′
4, F4, F

′
4 we can rewrite this as

1 = (G3⊕B4C4⊕H3D4⊕A4C4⊕A4)À7−(B4C4⊕H3D4⊕A4C4⊕A4)À7 . (1)

Step 31 We require that G4 −G′4 = 0. That means,

(f(H3, A4, B4, C4, D4, E4, F4))À7 − (f(H3, A4, B4, C4, D4, E
′
4, F

′
4))

À7 = 0 .

Using the definition of f and inserting the values of E4, E
′
4, F4, F

′
4 we get

(A4 ⊕ C4D4 ⊕B4D4 ⊕B4)À7 = (H3 ⊕ C4D4 ⊕B4D4 ⊕B4)À7 .

This equation is satisfied when

A4 = H3 . (2)

Step 32 We require that H4 −H ′
4 = 0. That means,

(f(A4, B4, C4, D4, E4, F4, G4))À7 − (f(A4, B4, C4, D4, E
′
4, F

′
4, G4))À7 = 0 .

In the same manner as above we can derive the following equation:

D4 ⊕ C4 = B4 . (3)

Step 33 We require that A5 − A′5 = 0. Note that this is the first step of the
second pass of the compression function so the non-linear function g is used (see
the Appendix for the definition of the function g):

(g(B4, C4, D4, E4, F4, G4,H4))À7 − (g(B4, C4, D4, E
′
4, F

′
4, G4,H4))À7 = 0 .

We obtain the equation

C4H4 ⊕ C4 = C4G4 ⊕H4 . (4)

Step 34 We require that B5 −B′
5 = 0. That means

(g(C4, D4, E4, F4, G4,H4, A5))À7 − (g(C4, D4, E
′
4, F

′
4, G4,H4, A5))À7 = 0 ,

which is satisfied when
D4A5 ⊕H4 = 0 . (5)

Step 35 We require that C5 − C ′5 = 0. That means

(g(D4, E4, F4, G4,H4, A5, B5))À7 − (g(D4, E
′
4, F

′
4, G4,H4, A5, B5))À7 = 0 ,

which is satisfied when

G4B5 ⊕H4A5 ⊕G4 ⊕D4 = 0 . (6)

Step 36 We require that D5 −D′
5 = 0. That means

(g(E4, F4, G4,H4, A5, B5, C5))À7 − (g(E′
4, F

′
4, G4,H4, A5, B5, C5))À7 = 0 ,

which is satisfied when

H4C5 ⊕A5B5 ⊕H4 ⊕G4 = −1 . (7)

Step 37 In this step we need to obtain the right difference E5 − E′
5 = 1¿12.

¿From the definition of the step operation it follows that

E5 − E′
5 = EÀ11

4 − E
′À11
4 + (g(F4, G4,H4, A5, B5, C5, D5))À7 −

(g(F ′4, G4,H4, A5, B5, C5, D5))À7 .

Using the definition of g and inserting the values of E4, E
′
4, F4, F

′
4 we get

1¿12 = −1 + (G4A5D5 ⊕G4B5C5 ⊕G4A5 ⊕A5C5 ⊕G4H4 ⊕B5D5 ⊕
B5C5)À7 − (G4A5D5 ⊕G4B5C5 ⊕G4A5 ⊕A5C5 ⊕G4H4 ⊕B5D5 ⊕
B5C5 ⊕G4 ⊕−1)À7 . (8)

Step 38 Finally, in this step we require that the difference in the F register
disappears: F5 − F ′5 = 0. From the definition of the step operation we see that

F5 − F ′5 = FÀ11
4 − F

′À11
4 + X28 −X ′

28 +
(g(G4,H4, A5, B5, C5, D5, E5))À7 − (g(G4,H4, A5, B5, C5, D5, E

′
5))

À7 .

Because FÀ11
4 − F

′À11
4 = 1 and X28 −X ′

28 = −1 the requirement F5 − F ′5 = 0
leads to the equation

(g(G4,H4, A5, B5, C5, D5, E5))À7 − (g(G4,H4, A5, B5, C5, D5, E
′
5))

À7 = 0 ,

which is satisfied when
B5H4 ⊕ C5 = 0 . (9)

Solution for the system of equations

The equations (1) to (9) which we derived above need to be satisfied in order to
obtain an inner almost-collision. Therefore, we need a solution for an underde-
termined system of 9 equations in 12 variables. It can be seen that the following
set of register values constitutes such a solution:

G3 = 1¿7 H3 = 0 A4 = 0 B4 = 0 C4 = 0 D4 = 0
G4 = 0 H4 = 0 A5 = −1 B5 = −1 C5 = 0 D5 = 1¿18

Note that G3 = 1¿7 is a solution to GÀ7
3 = 1, and D5 = 1¿18 is a solution to

−1 + DÀ7
5 − (D5 ⊕ −1)À7 = 1¿12. These two equations are derived from (1)

and (8) respectively by inserting the values given for the other variables.
As previously seen we also have E4 = −1 and F4 = 0. Fixing these 14 register

values, in order to generate an inner almost-collision, also determines the values
of some words of the message block {Xi}. For example,

X30 = G4 −GÀ11
3 − (f(H3, A4, B4, C4, D4, E4, F4))À7 .

This follows from the definition of the step operation. In the same way, the
message words X31, X5, X14, X26, and X18 are determined. The values for these
message words are as follows (in hexadecimal notation):

X30 = f0000000x

X31 = 00000000x

X5 = bad7de19x

X14 = c72fec88x

X26 = 41ab9931x

X18 = cb1af394x

Note that we get the same values X ′
i = Xi when we use the alternative

register values G′3,H
′
3, A

′
4, B

′
4, C

′
4, D

′
4, E

′
4, F

′
4, G

′
4,H

′
4, A

′
5, B

′
5, C

′
5, D

′
5 in the com-

putations (only E′
4 and F ′4 are different). Six words of the message blocks {Xi}

and {X ′
i} are now determined. We still have a free choice for the remaining 26

words of these message blocks in phase II of the attack, as described in Section 4.

Other solutions for the system of equations

As an alternative for the solution given above, different solutions for the system
of equations (1) to (9) can be found. In general, for an arbitrary choice of two
32-bit values Q1 and Q2, the following set of register values is a solution for the
system of equations (and leads to an inner almost-collision):

G3 = (1 + QÀ7
1)¿7 ⊕Q1 G4 = (QÀ7

2 − 1¿12 − 1)¿7 ⊕Q2 ⊕−1
H3 = Q1 H4 = 0
A4 = Q1 A5 = (QÀ7

2 − 1¿12 − 1)¿7 ⊕Q2

B4 = 0 B5 = −1
C4 = 0 C5 = 0
D4 = 0 D5 = Q2

Note that for Q1 = 0 and Q2 = 1¿18 this reduces to the solution given earlier.
For any choice of Q1 and Q2 a specific set of register values is obtained, and
hence also a specific set of message words X30, X31, X5, X14, X26, and X18.
However, in those cases where bit 12 of Q2 is equal to 1 (starting the count from
the least significant bit position), the differential attack of Section 4 does not
work. Solutions with bit 12 of Q2 equal to 0 (leading to a successful differential
attack), are called admissable inner almost-collisions. 263 different admissable
inner almost-collisions can be generated, but only one of them is needed for the
next phase of the attack.

4 Differential attack

In the second phase of the attack we perform a differential cryptanalysis (the
technique of differential analysis was first applied to hash functions in [1]). We

consider the part of the compression function between step 38 and step 69. We
have an input difference ∆38 = (0, 0, 0, 0, 1¿12, 0, 0, 0) (from the first phase of
the attack) and require that ∆69 = (0, 0, 0, 0, 0, 0, 0, 0). Table 2 below shows the
difference propagation for this phase of the attack. For the E register we have the
following differences: E5−E′

5 = 1¿12, E6−E′
6 = 1¿1, E7−E′

7 = 1¿22, E8−E′
8 =

1¿11, E9 − E′
9 = 0. For the other registers all differences must be zero.

Table 2. Overview of the difference propagation through the registers. The shown
difference values are the values after the corresponding step has been executed. We
also list the message word applied in each step. Note that ∆A = A−A′, ∆B = B−B′,
etc. Entries in bold face show which register has been updated in a particular step.

Step ∆A ∆B ∆C ∆D ∆E ∆F ∆G ∆H word

38 0 0 0 0 1¿12 0 0 0 X28(+1)
39 0 0 0 0 1¿12 0 0 0 X7

...
...

...
...

...
...

...
...

...
...

44 0 0 0 0 1¿12 0 0 0 X22

45 0 0 0 0 1¿1 0 0 0 X1

...
...

...
...

...
...

...
...

...
...

52 0 0 0 0 1¿1 0 0 0 X9

53 0 0 0 0 1¿22 0 0 0 X17

...
...

...
...

...
...

...
...

...
...

60 0 0 0 0 1¿22 0 0 0 X13

61 0 0 0 0 1¿11 0 0 0 X2

...
...

...
...

...
...

...
...

...
...

68 0 0 0 0 1¿11 0 0 0 X20

69 0 0 0 0 0 0 0 0 X28(+1)

There are two different cases for the computation of the probability of a
difference propagation through a step. The content of the E register is updated
in steps 45, 53, 61 and 69. In step 45 for example we compute

E6 = EÀ11
5 + (g(F5, G5,H5, A6, B6, C6, D6))À7 + X1 + K12 ,

E′
6 = E

′À11
5 + (g(F5, G5,H5, A6, B6, C6, D6))À7 + X1 + K12 .

Hence, we see that the difference

E6 − E′
6 = EÀ11

5 − E
′À11
5 ,

and we require E5 −E′
5 = 1¿12 and E6 −E′

6 = 1¿1 (the difference gets rotated
by 11 bit positions to the right). This happens with a probability which is close
to 1. In the other steps we require that the difference in the E register does not

spread to a different register. In step 46 for example we compute

F6 = FÀ11
5 + (g(G5,H5, A6, B6, C6, D6, E6))À7 + X1 + K12 ,

F ′6 = FÀ11
5 + (g(G5,H5, A6, B6, C6, D6, E

′
6))

À7 + X1 + K12 .

Here the difference

F6−F ′6 = (g(G5,H5, A6, B6, C6, D6, E6))À7−(g(G5,H5, A6, B6, C6, D6, E
′
6))

À7 ,

and we require that F6 − F ′6 = 0 which is equivalent to

g(G5,H5, A6, B6, C6, D6, E6) = g(G5,H5, A6, B6, C6, D6, E
′
6) .

Using the definition of g we can derive the following condition:

E6B6H5 ⊕ E6C6 = E′
6B6H5 ⊕ E′

6C6 ,

which is satisfied when B6H5⊕C6 = 0 at those bit positions where E6 is different
from E′

6. Because E6 = E′
6 + 1¿1 this happens with a probability of about 1/3

(1
22 + 1

42 + 1
82 + · · · ≈ 1

3).
By combining the probabilities for all steps we can estimate the global prob-

ability for the propagation from step 38 up to step 69 as p38
69 ≈ (1/3)27 ≈ 2−42.8.

The real probability is much lower however. This is partly because of the con-
tents of the registers at the start of the differential attack.1 Furthermore, the
probabilities for consecutive steps strongly depend on each other (because every
step changes the value of only 1 out of 8 registers). If we consider a sequence of
8 steps, experiments show that the probability is about 2−9 which is better than
(1/3)7 ≈ 2−11.1. For the complete propagation from step 38 to step 69 we found
the estimation

p38
69 ≈ 2−29 .

The differential attack can be performed as follows. In the previous section
we saw that X30, X31, X5, X14, X26, and X18 are determined in order to get the
right input difference ∆38. We can now randomly choose the remaining 26 words
and calculate forwards to step 69, starting from the known register values E4,
F4, G4, H4, A5, B5, C5, D5 (or E′

4, F ′4 for the second message block). If the
difference after step 69 is equal to 0 for all registers then we have a collision
and this happens on average after 229 trials. There is one however one more
complication which we describe below.

Matching the initial value

When all message words Xi are determined we can also compute backwards in
pass 1 of the compression function, starting from the known register values G3,
1 Related to this, the reason that not all inner almost-collisions lead to a successful

differential attack is that in some cases the contents of the registers are not suitable
at the start of the differential attack.

H3, A4, B4, C4, D4, E4, F4. This is done by inverting the step operations. For
example, inverting step 30 gives us

F3 = (F4 − (f(G3,H3, A4, B4, C4, D4, E4))À7 −X29)¿11 .

In that way we finally obtain the register values (A0, . . . , H0). However these
values should be equal to the initial values specified for the algorithm (see the
Appendix). This can be solved as described below. First note that there is one
sequence of 8 message words, which are applied in consecutive steps in pass 1 of
the compression function, and none of which have been determined in phase I
of the attack (for obtaining an inner almost-collision). This sequence of message
words is the sequence of X6, X7, . . . , X13 (which is used in steps 7 to 14) and it
will be used to match the correct initial values.

In our differential attack we randomly choose values for 18 message words
(as before but excluding the 8 words needed to match the initial values). We also
know the fixed values for the words X30, X31, X5, X14, X26, X18 (determined by
phase I of the attack). Now we compute backwards in pass 1 of the compression
function down to the (inverted) step 15 where X14 is applied. In this manner
we derive the register values (G1,H1, A2, B2, C2, D2, E2, F2). Next we compute
forwards starting from the correct initial values and up to step 6 where X5

is applied. This gives us the register values (G0,H0, A1, B1, C1, D1, E1, F1) and
now we can compute the required values for the message words X6, X7, . . . , X13.
For example,

X6 = G1 −GÀ11
0 − (f(H0, A1, B1, C1, D1, E1, F1))À7 .

After we have matched the specified initial values for all registers (and thereby
determined the values for all 32 message words Xi) we check the differential at-
tack between steps 39 and 69 as before and repeat the procedure until a collision
has been found. On average we succeed after 229 trials, where a trial can be
abandoned as soon as the difference propagation in a register is not correct.
Note that the attack works equally well for the initial value specified for the
algorithm or for any other initial value. A program that implements the attack
runs on average in less than one hour on an Athlon 600MHz processor. Finally
note that the number of collisions which can be generated, at least in theory,
with this differential attack is equal to 2547, since we can freely choose 18 words
(that is a maximum of 2576 trials), and the success probability is about 2−29.
Because there are 263 different admissable inner almost-collisions to start from,
the total number of collisions which can be generated by our attack is equal to
2547+63 = 2610.

5 Example collision for 3-pass HAVAL

We give an example of two message blocks that are hashed by the compression
function of 3-pass HAVAL to the same output value. This example has been
checked using the reference implementation of HAVAL available at [2]. For both

messages the computation starts from the initial value specified for the algorithm
(this initial value is also used in [2]):

A0 = ec4e6c89x B0 = 082efa98x C0 = 299f31d0x D0 = a4093822x

E0 = 03707344x F0 = 13198a2ex G0 = 85a308d3x H0 = 243f6a88x

The first message block is:

X0 = 94c0875ex X1 = dd25f63ex X2 = f5d09361x X3 = b51db8b2x

X4 = b00c36e4x X5 = bad7de19x X6 = 32a68bb5x X7 = c5aff25dx

X8 = ad0dea24x X9 = a7e1ee7cx X10 = 617b92ddx X11 = f9da283dx

X12 = b2844d83x X13 = b8d498ebx X14 = c72fec88x X15 = 8f467c05x

X16 = 507ea2c1x X17 = c2d94121x X18 = cb1af394x X19 = 036daf20x

X20 = bba7fb8cx X21 = 6daee6aax X22 = 04fc029fx X23 = d37c05f4x

X24 = 993aea13x X25 = 3ccfab88x X26 = 41ab9931x X27 = 3c7cae0cx

X28 = f704bafcx X29 = b60635dex X30 = f0000000x X31 = 00000000x

and the second message block is determined by

X ′
i = Xi (0 ≤ i ≤ 31, i 6= 28) ,

X ′
28 = X28 + 1 .

For these two message blocks, the compression function computes the follow-
ing common output value (note that this computation includes the feed-forward
operation at the end):

A = 1f46758cx B = 7618c292x C = e5220b62x D = 77ea845bx

E = ef9fd8dex F = 41ec28afx G = 5205cb85x H = 260412c4x

The complete hash function includes an additional application of the com-
pression function, starting from the output value given above. For both messages
the same padding block is used as message input for this final application of the
compression function, therefore a collision is obtained in the final hash result:

A = 7d476278x B = f603a907x C = 6d985fefx D = 4b5e66b7x

E = b6541db5x F = 16ccd71dx G = e8f9cf7cx H = 141e38e2x

Note that the algorithm converts this set of words into a string of 32 bytes,
starting with the least significant byte of H and ending with the most significant
byte of A (see the Appendix).

6 Conclusions

We have shown a practical attack for generating collisions in 3-pass HAVAL and
believe that this version of HAVAL should no longer be used in applications
where a collision-resistant hash function is required. The strategy for our attack
is quite similar to the strategy that was used for the cryptanalysis of MD4 in [3].

Surprisingly, our result shows that the use of highly non-linear functions, which
is the main focus of the design of HAVAL, does not result in a hash function
which is significantly stronger compared to MD4 (note that MD4’s compression
function also has 3 passes but only 16 steps in each pass). We believe that it
may be possible to extend our techniques in order to generate predictable output
differences in the 4-pass version of HAVAL but further research is needed to
examine this.

References

1. E. Biham and A. Shamir, Differential Cryptanalysis of the Data Encryption Stan-
dard, Springer-Verlag, 1993.

2. Calyptix Security, “HAVAL source code (reference implementation)”, available at
http://www.calyptix.com/downloads.html

3. H. Dobbertin, “Cryptanalysis of MD4,” Fast Software Encryption ’96, LNCS 1039,
D. Gollmann, Ed., Springer-Verlag, 1996, pp. 53–69.

4. H. Dobbertin, “The status of MD5 after a recent attack,” Cryptobytes, vol. 2, no. 2,
Summer 1996, pp. 1–6.

5. H. Dobbertin, A. Bosselaers and B. Preneel, “RIPEMD-160: A strengthened ver-
sion of RIPEMD,” Fast Software Encryption ’96, LNCS 1039, D. Gollmann, Ed.,
Springer-Verlag, 1996, pp. 71–82.

6. Y.-S. Her, K. Sakurai and S.-H. Kim, “Attacks for finding collision in reduced ver-
sions of 3-pass and 4-pass HAVAL,” Proceedings International Conference on Com-
puters, Communications and Systems (2003ICCCS), CE-15, pp. 75–78.

7. P. Kasselman and W. Penzhorn, “Cryptanalysis of reduced version of HAVAL”,
Electronics letters, vol. 36, no. 1, January 2000, pp. 30–31.

8. National Institute of Standards and Technology, FIPS-180-2: Secure Hash Standard
(SHS), August 2002.

9. S. Park, S. H. Sung, S. Chee, J. Lim, “On the security of reduced versions of 3-pass
HAVAL,” Proceedings of ACISP 2002, pp. 406–419.

10. R.L. Rivest, “The MD4 message-digest algorithm,” Advances in Cryptology –
Crypto’90, LNCS 537, A. Menezes and S. Vanstone, Eds., Springer-Verlag, 1990,
pp. 303–311.

11. R.L. Rivest, “The MD5 message-digest algorithm,” Request for Comments (RFC)
1321, Internet Activities Board, Internet Privacy Task Force, April 1992.

12. Y. Zheng, J. Pieprzyk and J. Seberry, “HAVAL – a one-way hashing algorithm
with variable length of output,” Advances in Cryptology – AusCrypt ’92, LNCS
718, J. Seberry and Y. Zheng, Eds., Springer-Verlag, 1993, pp. 83-104.

Appendix

In this appendix we give a description of HAVAL and explain the notations that
are used in this paper. Not all of the details are fully described: for a complete
specification see [12]. HAVAL is defined as the iteration of a compression function
which we specify below. Each application of this compression function uses eight
words as initial value and 32 words of the message as input, and produces eight
words of output which are then used as initial value for the next application

of the compression function. All words have a length of 32 bits (4 bytes). The
initial value to be used in the first application of the compression function is
specified as follows (hexadecimal notation):

IV = ec4e6c89x 082efa98x 299f31d0x a4093822x

03707344x 13198a2ex 85a308d3x 243f6a88x .

Note that there is a padding rule that appends bytes to the message so that its
length becomes a multiple of 128 bytes (32 words × 4 bytes/word). The added
bytes include a representation of the length of the original message. The little
endian-convention is used to transform the message (sequence of bytes) into a
sequence of words.

The compression function uses three non-linear functions, each of which takes
seven words of input and produces one word of output:

f(Z6, Z5, Z4, Z3, Z2, Z1, Z0) = Z2Z3 ⊕ Z6Z0 ⊕ Z5Z1 ⊕ Z4Z2 ⊕ Z4 ,

g(Z6, Z5, Z4, Z3, Z2, Z1, Z0) = Z3Z5Z0 ⊕ Z5Z1Z2 ⊕ Z3Z5 ⊕ Z3Z1 ⊕
Z5Z4 ⊕ Z0Z2 ⊕ Z1Z2 ⊕ Z6Z5 ⊕ Z6 ,

h(Z6, Z5, Z4, Z3, Z2, Z1, Z0) = Z5Z4Z3 ⊕ Z5Z2 ⊕ Z4Z1 ⊕ Z3Z6 ⊕ Z0Z3 ⊕ Z0 .

Here ZiZj denotes the Boolean AND function of Zi and Zj , and Zi⊕Zj denotes
the Boolean exclusive-OR function of Zi and Zj . Note that the functions f , g
and h operate at bit-level: they can be performed independently at each of the
32 bit positions in the words.

Let ff(Z7, Z6, Z5, Z4, Z3, Z2, Z1, Z0, X), gg(Z7, Z6, Z5, Z4, Z3, Z2, Z1, Z0, X)
and hh(Z7, Z6, Z5, Z4, Z3, Z2, Z1, Z0, X) be equivalent to

ZÀ11
7 + (f(Z6, Z5, Z4, Z3, Z2, Z1, Z0))À7 + X ,

ZÀ11
7 + (g(Z6, Z5, Z4, Z3, Z2, Z1, Z0))À7 + X ,

ZÀ11
7 + (h(Z6, Z5, Z4, Z3, Z2, Z1, Z0))À7 + X ,

where (·)Às denotes rotation (circular shift) over s bit positions to the right,
and + denotes addition modulo 232.

Suppose that the initial value (A0, B0, C0, D0, E0, F0, G0,H0) is given. Then
the compression function applies the following 96 steps (three passes of 32 steps
each):

PASS 1 STEP

A1 = ff(A0, B0, C0, D0, E0, F0, G0,H0, X0) (1)
B1 = ff(B0, C0, D0, E0, F0, G0,H0, A1, X1) (2)
C1 = ff(C0, D0, E0, F0, G0,H0, A1, B1, X2) (3)
D1 = ff(D0, E0, F0, G0,H0, A1, B1, C1, X3) (4)
E1 = ff(E0, F0, G0,H0, A1, B1, C1, D1, X4) (5)

F1 = ff(F0, G0,H0, A1, B1, C1, D1, E1, X5) (6)
G1 = ff(G0,H0, A1, B1, C1, D1, E1, F1, X6) (7)
H1 = ff(H0, A1, B1, C1, D1, E1, F1, G1, X7) (8)
A2 = ff(A1, B1, C1, D1, E1, F1, G1,H1, X8) (9)
B2 = ff(B1, C1, D1, E1, F1, G1,H1, A2, X9) (10)
C2 = ff(C1, D1, E1, F1, G1,H1, A2, B2, X10) (11)
D2 = ff(D1, E1, F1, G1,H1, A2, B2, C2, X11) (12)
E2 = ff(E1, F1, G1,H1, A2, B2, C2, D2, X12) (13)
F2 = ff(F1, G1,H1, A2, B2, C2, D2, E2, X13) (14)
G2 = ff(G1,H1, A2, B2, C2, D2, E2, F2, X14) (15)
H2 = ff(H1, A2, B2, C2, D2, E2, F2, G2, X15) (16)
A3 = ff(A2, B2, C2, D2, E2, F2, G2,H2, X16) (17)
B3 = ff(B2, C2, D2, E2, F2, G2,H2, A3, X17) (18)
C3 = ff(C2, D2, E2, F2, G2,H2, A3, B3, X18) (19)
D3 = ff(D2, E2, F2, G2,H2, A3, B3, C3, X19) (20)
E3 = ff(E2, F2, G2,H2, A3, B3, C3, D3, X20) (21)
F3 = ff(F2, G2,H2, A3, B3, C3, D3, E3, X21) (22)
G3 = ff(G2,H2, A3, B3, C3, D3, E3, F3, X22) (23)
H3 = ff(H2, A3, B3, C3, D3, E3, F3, G3, X23) (24)
A4 = ff(A3, B3, C3, D3, E3, F3, G3,H3, X24) (25)
B4 = ff(B3, C3, D3, E3, F3, G3,H3, A4, X25) (26)
C4 = ff(C3, D3, E3, F3, G3,H3, A4, B4, X26) (27)
D4 = ff(D3, E3, F3, G3,H3, A4, B4, C4, X27) (28)
E4 = ff(E3, F3, G3,H3, A4, B4, C4, D4, X28) (29)
F4 = ff(F3, G3,H3, A4, B4, C4, D4, E4, X29) (30)
G4 = ff(G3,H3, A4, B4, C4, D4, E4, F4, X30) (31)
H4 = ff(H3, A4, B4, C4, D4, E4, F4, G4, X31) (32)

PASS 2 STEP

A5 = gg(A4, B4, C4, D4, E4, F4, G4,H4, X5 + K0) (33)
B5 = gg(B4, C4, D4, E4, F4, G4,H4, A5, X14 + K1) (34)
C5 = gg(C4, D4, E4, F4, G4,H4, A5, B5, X26 + K2) (35)
D5 = gg(D4, E4, F4, G4,H4, A5, B5, C5, X18 + K3) (36)
E5 = gg(E4, F4, G4,H4, A5, B5, C5, D5, X11 + K4) (37)
F5 = gg(F4, G4,H4, A5, B5, C5, D5, E5, X28 + K5) (38)
G5 = gg(G4,H4, A5, B5, C5, D5, E5, F5, X7 + K6) (39)
H5 = gg(H4, A5, B5, C5, D5, E5, F5, G5, X16 + K7) (40)

A6 = gg(A5, B5, C5, D5, E5, F5, G5,H5, X0 + K8) (41)
B6 = gg(B5, C5, D5, E5, F5, G5,H5, A6, X23 + K9) (42)
C6 = gg(C5, D5, E5, F5, G5,H5, A6, B6, X20 + K10) (43)
D6 = gg(D5, E5, F5, G5,H5, A6, B6, C6, X22 + K11) (44)
E6 = gg(E5, F5, G5,H5, A6, B6, C6, D6, X1 + K12) (45)
F6 = gg(F5, G5,H5, A6, B6, C6, D6, E6, X10 + K13) (46)
G6 = gg(G5,H5, A6, B6, C6, D6, E6, F6, X4 + K14) (47)
H6 = gg(H5, A6, B6, C6, D6, E6, F6, G6, X8 + K15) (48)
A7 = gg(A6, B6, C6, D6, E6, F6, G6,H6, X30 + K16) (49)
B7 = gg(B6, C6, D6, E6, F6, G6,H6, A7, X3 + K17) (50)
C7 = gg(C6, D6, E6, F6, G6,H6, A7, B7, X21 + K18) (51)
D7 = gg(D6, E6, F6, G6,H6, A7, B7, C7, X9 + K19) (52)
E7 = gg(E6, F6, G6,H6, A7, B7, C7, D7, X17 + K20) (53)
F7 = gg(F6, G6,H6, A7, B7, C7, D7, E7, X24 + K21) (54)
G7 = gg(G6,H6, A7, B7, C7, D7, E7, F7, X29 + K22) (55)
H7 = gg(H6, A7, B7, C7, D7, E7, F7, G7, X6 + K23) (56)
A8 = gg(A7, B7, C7, D7, E7, F7, G7,H7, X19 + K24) (57)
B8 = gg(B7, C7, D7, E7, F7, G7,H7, A8, X12 + K25) (58)
C8 = gg(C7, D7, E7, F7, G7,H7, A8, B8, X15 + K26) (59)
D8 = gg(D7, E7, F7, G7,H7, A8, B8, C8, X13 + K27) (60)
E8 = gg(E7, F7, G7,H7, A8, B8, C8, D8, X2 + K28) (61)
F8 = gg(F7, G7,H7, A8, B8, C8, D8, E8, X25 + K29) (62)
G8 = gg(G7,H7, A8, B8, C8, D8, E8, F8, X31 + K30) (63)
H8 = gg(H7, A8, B8, C8, D8, E8, F8, G8, X27 + K31) (64)

PASS 3 STEP

A9 = hh(A8, B8, C8, D8, E8, F8, G8,H8, X19 + K32) (65)
B9 = hh(B8, C8, D8, E8, F8, G8,H8, A9, X9 + K33) (66)
C9 = hh(C8, D8, E8, F8, G8,H8, A9, B9, X4 + K34) (67)
D9 = hh(D8, E8, F8, G8,H8, A9, B9, C9, X20 + K35) (68)
E9 = hh(E8, F8, G8,H8, A9, B9, C9, D9, X28 + K36) (69)
F9 = hh(F8, G8,H8, A9, B9, C9, D9, E9, X17 + K37) (70)
G9 = hh(G8,H8, A9, B9, C9, D9, E9, F9, X8 + K38) (71)
H9 = hh(H8, A9, B9, C9, D9, E9, F9, G9, X22 + K39) (72)
A10 = hh(A9, B9, C9, D9, E9, F9, G9,H9, X29 + K40) (73)
B10 = hh(B9, C9, D9, E9, F9, G9,H9, A10, X14 + K41) (74)
C10 = hh(C9, D9, E9, F9, G9,H9, A10, B10, X25 + K42) (75)

D10 = hh(D9, E9, F9, G9,H9, A10, B10, C10, X12 + K43) (76)
E10 = hh(E9, F9, G9,H9, A10, B10, C10, D10, X24 + K44) (77)
F10 = hh(F9, G9,H9, A10, B10, C10, D10, E10, X30 + K45) (78)
G10 = hh(G9,H9, A10, B10, C10, D10, E10, F10, X16 + K46) (79)
H10 = hh(H9, A10, B10, C10, D10, E10, F10, G10, X26 + K47) (80)
A11 = hh(A10, B10, C10, D10, E10, F10, G10,H10, X31 + K48) (81)
B11 = hh(B10, C10, D10, E10, F10, G10,H10, A11, X15 + K49) (82)
C11 = hh(C10, D10, E10, F10, G10,H10, A11, B11, X7 + K50) (83)
D11 = hh(D10, E10, F10, G10,H10, A11, B11, C11, X3 + K51) (84)
E11 = hh(E10, F10, G10,H10, A11, B11, C11, D11, X1 + K52) (85)
F11 = hh(F10, G10,H10, A11, B11, C11, D11, E11, X0 + K53) (86)
G11 = hh(G10,H10, A11, B11, C11, D11, E11, F11, X18 + K54) (87)
H11 = hh(H10, A11, B11, C11, D11, E11, F11, G11, X27 + K55) (88)
A12 = hh(A11, B11, C11, D11, E11, F11, G11,H11, X13 + K56) (89)
B12 = hh(B11, C11, D11, E11, F11, G11,H11, A12, X6 + K57) (90)
C12 = hh(C11, D11, E11, F11, G11,H11, A12, B12, X21 + K58) (91)
D12 = hh(D11, E11, F11, G11,H11, A12, B12, C12, X10 + K59) (92)
E12 = hh(E11, F11, G11,H11, A12, B12, C12, D12, X23 + K60) (93)
F12 = hh(F11, G11,H11, A12, B12, C12, D12, E12, X11 + K61) (94)
G12 = hh(G11,H11, A12, B12, C12, D12, E12, F12, X5 + K62) (95)
H12 = hh(H11, A12, B12, C12, D12, E12, F12, G12, X2 + K63) (96)

The values Ki used in the last two passes are 32-bit constants derived from the
fractional part of π. Finally, the eight-word output of the compression function
is computed with a feed-forward of the initial value:

A = A0 + A12 B = B0 + B12 C = C0 + C12 D = D0 + D12

E = E0 + E12 F = F0 + F12 G = G0 + G12 H = H0 + H12

The obtained words (A,B, C, D, E, F, G, H) serve as initial value for the next
application of the compression function. If this was the final use of the compres-
sion function (the last 32 words of the padded message have been processed),
the concatenated 256-bit value H‖G‖F‖E‖D‖C‖B‖A serves as hash value of the
message, where the little endian-convention is used to transform the sequence of
words into a sequence of bytes (the first byte is the least significant byte of H
and the last byte is the most significant byte of A). There is an optional output
transformation which allows to reduce the length of this hash value to 128, 160,
192 or 224 bits.

