
On Class Group Computations Using the
Number Field Sieve

Mark L. Bauer1 and Safuat Hamdy2

1 University of Waterloo
Centre for Applied Cryptographic Research

Waterloo, Ontario, N2L 3G1
mbauer@math.uwaterloo.ca

2 University of Calgary
Department of Mathematics and Statistics

Calgary, Alberta, T2N 1N4
hamdy@math.ucalgary.ca

Abstract. The best practical algorithm for class group computations in
imaginary quadratic number fields (such as group structure, class num-
ber, discrete logarithm computations) is a variant of the quadratic sieve
factoring algorithm. Paradoxical as it sounds, the principles of the num-
ber field sieve, in a strict sense, could not be applied to number field
computations, yet. In this article we give an indication of the obstruc-
tions.
In particular, we first present fundamental core elements of a number
field sieve for number field computations of which it is absolutely un-
known how to design them in a useful way. Finally, we show that the
existence of a number field sieve for number field computations with a
running time asymptotics similar to that of the genuine number field
sieve likely implies the existence of an algorithm for elliptic curve related
computational problems with subexponential running time.

Keywords. imaginary quadratic number fields, class groups, number
field sieve, imaginary quadratic function fields, hyperelliptic curve dis-
crete logarithm.

1 Introduction

The best practical algorithm for class group computations in quadratic num-
ber fields so far is a variant of the quadratic sieve algorithm. In the imagi-
nary quadratic case such computations include the computation of class struc-
tures, class numbers, discrete logarithms, and Diffie-Hellman secrets; in the real
quadratic case such computations include the computation of regulators, fun-
damental units, and principal ideal generators. In this article we focus on the
imaginary quadratic case, though, some arguments may be generalized to the
real quadratic case or even to the case of number fields of arbitrary degree.

We refer to the quadratic sieve algorithm for the imaginary quadratic case as
by the IQ-MPQS. The IQ-MPQS has an asymptotic running time proportional

to L|∆|
[
1
2 , c1 + o(1)

]
for some positive constant c1 (numerical evidence strongly

suggests that c1 = 1), where ∆ is the discriminant.

1.1 Our Result

It is tempting to ask whether the number field sieve could not be used for number
field computations as well. In fact, before the invention of the number field sieve
the quadratic sieve was the best known algorithm to factor large integers, and
the principles of the number field sieve could be profitably applied to many
other computational problems which admit to algorithms of index-calculus type.
However, paradoxical as it sounds, the number field sieve does not seem to work
for number field computations.

In this article we give an indication of the obstructions in the imaginary
quadratic case; we refer to the number field sieve in this case as by IQ-NFS. It
must be clear, though, that if we ask for an IQ-NFS, then we mean to find an
algorithm that is superior to the IQ-MPQS, i.e. having an asymptotic running
time proportional to L|∆|

[
1
3 , c2 + o(1)

]
for some positive constant c2, or even

L|∆|
[
1
2 , c3 + o(1)

]
for some positive constant c3 non-negligibly smaller than 1.

By examining the connection between the number field computations and
function field computations, we also show that an IQ-NFS with a running time
proportional to L|∆|

[
1
3 , c4 + o(1)

]
for some positive constant c4 could almost

certainly be exploited to develop an algorithm for elliptic curve related compu-
tational problems.

We will conclude that if there exists an IQ-NFS, it will most likely not be
superior to the IQ-MPQS, and if it did, its design would probably not follow
that of the genuine NFS.

We must point out that this article is of somewhat speculative nature, and
thus it should be understood as a starting point for further research.

1.2 Cryptographic Relevance

We outline now briefly the cryptographic relevance of our results. There is a fam-
ily of cryptographic public-key schemes based on the intractability of some com-
putational problems with class groups of imaginary quadratic number fields [8];
we call these cryptographic schemes IQ-schemes. Due to the sparseness of inde-
pendent computational problems that admit to efficient cryptographic schemes,
these public-key schemes were introduced as an alternative to existing schemes.
More precisely: the security of the cryptographic schemes that are used in prac-
tice is based on the intractability of very few families of independent computa-
tional problems. Moreover, rigorous and unconditional proofs of the intractabil-
ity of any of those computational problems are not known. This has repeatedly
raised concerns about public-key cryptography. It is therefore advisable to have
some well worked out and independent alternatives available. IQ-cryptography
provides such an alternative; IQ-schemes are secure (using standard definitions
and models of security) and efficient (in a practical sense).

The best known algorithm to solve these computational problems is, as al-
ready mentioned, the IQ-MPQS with the running time asymptotic L

[
1
2

]
. Tradi-

tional cryptographic schemes are based on the intractability of factoring integers
or finite field computations, and the best known algorithms to solve these com-
putational problems are variants of the number field sieve with the running time
asymptotic L

[
1
3

]
. Thus, it seems that there is a complexity theoretic gap between

IQ-related computational problems and factoring or finite field related problems.
Such a gap implies that, with increasing security level, the sizes of crypto-

graphic parameters (such as RSA moduli, finite field size, discriminants etc.)
and thus operands in a cryptographic operation (such as computing a signature)
grow faster for traditional schemes than for IQ schemes. In spite of the more
complex IQ-arithmetic it follows that IQ-cryptography eventually outperforms
traditional cryptography. It is clear, though, that IQ-cryptography is eventually
inferior to elliptic curve cryptography for the same reason. Yet, for the time
being, IQ cryptography can be, in principle at least, considered as an efficient
alternative.

However, the main motivation of IQ-cryptography is not its efficiency. We
finally mention that due to the fact that the orders of class groups are in gen-
eral not efficiently computable, IQ-cryptography has applications where elliptic
curves do not work, see e.g. [5].

1.3 Notation

We use the following common notation

Lx[ε, c] = exp
(
c(log x)ε(log log x)1−ε

)
,

while L[ε] is the abbreviation for Lx[ε, c] for some variable x and some positive
constant c.

2 Constructive Obstructions

In this section we present some obstructions one encounters if one wants to
design an IQ-NFS along the lines of the genuine NFS.

2.1 A Brief Review of the NFS Relation Generation

We begin with a brief review of the relevant details of the NFS relation generation
for DL computations in finite fields, see [7, 12–15] as well as [2] for all details. Let
p be a prime and let Fp be a finite field. Then let d be a suitably chosen (small)
integer, take m = bp1/dc, and for 0 6 i 6 d let ai be the digits of the base-m
expansion of p, i.e. let ai be non-zero integers such that p =

∑
06i6d aim

i. Then
let f(X) be the polynomial with coefficients ai of degree d. Suppose that f(X)
is irreducible over Z, and let α denote a root of f(X). Since

f(m) ≡ 0 (mod p) (1)

the map defined by φ(α) 7→ m, is a ring homomorphism from Z[α] to Fp. Formally
one is looking at Z[α]-integers of the form θ = a − bα, of which the norm is
N(a − bα) = F (a, b), where F (X, Y) is the homogenized bivariate polynomial
that corresponds to f(X). A Z[α]-integer θ is understood to be smooth if its
norm is smooth. The main task in the sieving stage is to find a set of coprime
integers a and b such that θ and φ(θ) are simultaneously smooth. That is, F (a, b)
and a−bm have to be smooth simultaneously. This is done by taking G(X, Y) =
F (X, Y)(X −mY) and sieving the bivariate polynomial G(X, Y).

Based on the bounds on X, Y and the coefficients of G, and assuming that
the values of G(X, Y) behave like random integers with respect to smoothness
probability, one gets that the running time is proportional to Lp

[
1
3 , c4 + o(1)

]
,

where c4 = (64/9)1/3; moreover, d =
⌊
(3 ln p/ ln ln p)1/3

⌋
.

In order to get the favorable running time for the NFS the following items
are crucial:

1. The degree d of f (and thus of G) tends uniformly to infinity as p tends to
infinity.

2. The size of the coefficients of G are of order p1/d.
3. There is an efficient way to select a polynomial and thus an extension of Q.
4. There is an efficiently computable homomorphism from Z[α] to Fp.
5. The sieving is done in the two domains Z[α] and Fp simultaneously.

We will outline below that it is unknown how to achieve any of these items in
the number field case.

2.2 A Brief Review of the IQ-MPQS Relation Generation

Before we proceed we shall briefly review the IQ-MPQS relation generation, see
[9, 10] for details. Let O∆ denotes the quadratic order of discriminant ∆. The
objective is to find a set R of relations Ri of the form

Ri :
∏

pj∈FB
p

ei,j

j ∼ O∆ . (2)

Here FB is the factor base, a set of primitive prime O∆-ideals of the form (p, b)
where p 6 B for some bound B. For each prime ideal pj = (pj , bj) of FB, let
bj > 0; the prime ideal p̄j = (pj ,−bj) will be represented by p−1

j .
In order to generate a relation, a FB-smooth O∆-ideal is constructed. Let a

be this ideal with the representation (a, b). The corresponding binary quadratic
form is A(X, Y) = aX2 + bXY + cY 2, where c = (b2 −∆)/4a. Now, if there are
coprime integers x and y such that ax2+bxy+cy2 = a′, then there exists another
binary quadratic form A′(X, Y) = a′X2 + b′XY + c′Y 2, which is equivalent
to A, and in fact, the corresponding O∆-ideal a′ = (a′, b′) is equivalent to a.
(The integer b′ can be efficiently computed from the integers a, b, c, x, and y.)
Therefore, aa′−1 ∼ O∆, and if a′ is FB-smooth, this constitutes a relation. The
prime ideal factorization of a′ can be obtained from the prime factorization of
a′, and from b′ and ∆.

In order to find x and y such that A(x, y) = a′ is smooth, we sieve the
quadratic polynomial A(X, Y); for simplicity, fix Y = 1. Then the sieving is
performed almost exactly as in the MPQS factoring algorithm. Likewise, the
selection of polynomials is exactly as in the MPQS factoring algorithm, including
the self initialization technique.

The sieving step of the IQ-MPQS is, in a remote sense, similar to its coun-
terpart in the NFS. In both algorithms polynomials are sieved. Yet, none of the
crucial properties above are satisfied. In particular, the degree of the sieving
polynomials is fixed, no matter how large ∆ is, the size of the coefficients of the
quadratic polynomials are of the order of |∆|1/2, and the sieving takes place only
in one domain.

2.3 Towards an IQ-NFS

In this section we try to build an IQ-NFS on top of the IQ-MPQS. We proceed
rather naively and follow along the lines of the genuine NFS.

Finding a Suitable Extension and a Homomorphism First we try to find
a suitable extension of O∆. In the genuine NFS there was a natural way to find
an irreducible polynomial over Z: we took p and from it computed an integer m
and coefficients of a polynomial f(x) such that f(m) ≡ 0 (mod p); in particular,
f(m) = p, see above. Now, p was the characteristic of the finite field, which is
a prime. However, in the number field case, the characteristic is always 0. So, it
remains to be seen what to put in the place of p in the number field case.

Now, recall that the procedure in the genuine NFS to find a polynomial is not
only natural because it is very simple and efficient. More important, we get the
necessary ring-homomorphism from Z[α] to Fp, and this homomorphism is very
efficient to compute. It is this very connection between the polynomial and the
homomorphism that makes, for instance, the difference between the generalized
number field sieve (with rather large polynomial coefficients) and the special
number field sieve (with very small polynomial coefficients). If the coefficients
in the GNFS could be chosen freely, then there would be no difference between
the GNFS and the SNFS. However, it is not known how to find a suitable
homomorphism for arbitrary polynomials, and therefore, the polynomial must
be chosen as described above.

The same is certainly true in the number field case, where we have the ad-
ditional problem of what to put in the place of p. We note, though, that in the
number field case we are interested in a group-homomorphism instead of a ring-
homomorphism. For instance, let K = Q(

√
∆) and let OK be the maximal order

of K; likewise, let L be an extension of K and let OL be the maximal order of
L.

What we are looking for is a group homomorphism ψ that maps OL to OK .
Since a (basic) IQ-NFS algorithm would search for pairs (A, a), where A is an
OL-ideal and a is an OK-ideal, ψ must satisfy the following properties:

1. if A is smooth (in a suitable sense), then ψ(A) is smooth;

2. ψ(A) ∼ a;
3. ψ is efficiently computable.

In the face of the fact that A and a must be found simultaneously (by sieving
a polynomial), property 2. in conjunction with property 3. appear to be the
hardest to satisfy. In fact, it is unknown how one could do that.

Finding a Polynomial with Small Coefficients Suppose for the moment
that we have surmounted the obstructions from the previous subsection. It is
tempting to ask what one would get out of the algorithm, i.e. what would be its
asymptotic expected running time. Following the design of the genuine NFS, we
proceed naively in the following way:

1. Choose a suitable integer d.
2. Choose an extension over K, i.e. choose a polynomial f(X) ∈ OK [X] such

that
f(X) = αdX

d + αd−1X
d−1 + · · ·+ α0 , (3)

where αi = ai +bi

√
∆. Let |ai|, |bi| 6 B, where B is a bound, e.g. B = |∆|1/d

(recall that we just proceed naively as in the genuine NFS).
3. For the sieving we need a polynomial over Z. In order to get such a poly-

nomial fZ(X) from f(X), rewrite f(X) = a(X) + b(X)
√

∆ and let f̄(X) =
a(X)−b(X)

√
∆ be the conjugate polynomial. Now let fZ(X) = f(X)f̄(X) =

a2(X) − b2(X)∆. Note that since we are dealing with imaginary quadratic
number fields, ∆ < 0 and thus fZ(X) = a2(X) + b2(X)|∆|. Now it becomes
apparent that fZ(X) has coefficients of the order of |∆|1+2/d, which turns
out to be too large in order to get the L

[
1
3

]
running time asymptotics, see

below.
4. Finally, let FZ(X, Y) be the homogenized form of fZ(X). (We presume that

a smooth value for FZ(X, Y) would in some way give rise to a smooth OL-
ideal.) Let A(X, Y) be the binary quadratic form that corresponds to an
OK-ideal a, take G(X, Y) = FZ(X, Y)A(X, Y) and sieve G(X, Y) for pairs
(x, y) such that G(x, y) is smooth. Since the coefficients of FZ are of size
O(|∆|B2) = O(|∆|1+2/d) and the coefficients of A are of size O(|∆|1/2), the
coefficients of G are of size O(|∆|3/2+2/d).

For the running time analysis we use the following principle from [2, Section 10]:
Let L(Z) = exp

(√
lnZ ln lnZ

)
. In a sequence of L(Z)

√
2+o(1) random integers

uniformly chosen from the interval [0, Z] S = L(Z)1/
√

2+o(1) of them will be
S-smooth, and this is the optimal choice for S in order to maximize the yield.

We apply this principle to the sequence of integers that we get from G(X, Y)
for X and Y ranging over certain intervals; here we assume that the inte-
gers G(X, Y) have the same properties as ordinary integers with respect to
smoothness-probability (this constitutes, as usual, the major heuristic leap in
the running time analysis).

We have Z = |G(X, Y)|, and since we sieve two-dimensionally, as in the
genuine NFS, we have |X|, |Y | 6 M where M = L(Z)1/

√
2+o(1). Now we are in

the position to perform a running time analysis as in [2], see also [4, Section
6.2.3].

– If d is fixed as |∆| → ∞, then we get an asymptotic running time proportional
to L|∆|

[
1
2 , 3 + 4

d + o(1)
]
.

– If d →∞ as |∆| → ∞, then we get an asymptotic running time proportional
to L|∆|

[
1
2 ,
√

3 + o(1)
]
.

This means that the IQ-NFS (designed as above) performs in any case much
worse than the IQ-MPQS. Now, fZ as chosen above may not be the optimal
polynomial for L. One could, for example, use lattice reduction methods to get
a polynomial fZ with smaller coefficients, see for example Algorithm POLRED
in [3, Algorithm 4.4.1]. However, the coefficients of such a polynomial will not
be arbitrary small, and even if fZ had coefficients of order O(|∆|1/2+2/d) (which
constitutes a substantial improvement), then the asymptotic running times got
merely down to L|∆|

[
1
2 , 2 + 4

d + o(1)
]

and L|∆|
[
1
2 ,
√

2 + o(1)
]
, which is still

worse than the IQ-MPQS. We will elaborate the effectiveness of polynomial
reduction algorithms applied to our problem in the full version of the paper.
Finally, changing the polynomial also changes the basis for element and ideal
representation in L, and thus, this changes the homomorphism; that might be a
major problem.

In order to get the typical NFS asymptotic L
[
1
3

]
, the coefficients of G(X, Y)

must have order of magnitude |∆|O(1/d). Since the coefficients of A(X, Y) usu-
ally have order of magnitude |∆|1/2 we must alter the design of the IQ-NFS.
Let FZ,1(X, Y) and FZ,2(X, Y) irreducible polynomials with the desired prop-
erties, let L1 and L2 be the corresponding extension fields, let G(X, Y) =
FZ,1(X, Y)FZ,2(X, Y), and let ψ1 and ψ2 be ideal-homomorphisms that map
OL1-ideals and OL2-ideals to OK-ideals. Now we require that if a smooth OL1-
ideal A1 and a smoothOL2-ideal A2 are found simultaneously by sieving G(X, Y),
then ψ1(A1) and ψ2(A2) are also smooth and ψ1(A1) ∼ ψ2(A2). Still, it remains
to be seen how FZ,1 and FZ,2 as well as ψ1(A1) and ψ2(A2) are to be chosen.

Summary The major stumbling blocks on the way towards an IQ-NFS are
firstly to find suitable extensions of imaginary quadratic number fields, which
provide suitable ideal-homomorphisms. It is unknown how to find such exten-
sions. Secondly, by the nature of sieving algorithms, the extensions are to be
represented as irreducible polynomials over Z. It is unknown how to find suitable
irreducible polynomials with sufficiently small coefficients. The first obstruction
says that it is not known how to design core elements of the IQ-NFS, and the
second obstruction says that even so it is still unknown how the IQ-NFS will be
of any use.

3 Relative Obstructions

In this section we will attempt to provide a connection between the aforemen-
tioned problems and those that arise in the case of elliptic curves and hyperel-
liptic curves. We begin by stating the following definition.

Definition 1. The Discrete Logarithm Problem in G is: given γ, γ′ ∈ G, find
the smallest n ∈ Z>0 such that γn = γ′ if such an integer exists.

If the group under consideration corresponds to the points on an elliptic
curve, we call this the Elliptic Curve Discrete Logarithm Problem, and abbre-
viate it by ECDLP. Analogously, if the groups corresponds to the Jacobian of
a hyperelliptic curve, we call this the Hyperelliptic Curve Discrete Logarithm
Problem and denote it by HCDLP. Since an elliptic curve is just a hyperelliptic
curve of genus one, we note that the ECDLP is just a particular instance of the
HCDLP.

The majority of this section will describe how to take an instance of the
ECDLP and convert it to an instance of an HCDLP for a curve of higher genus.
That is, we will prescribe a technique for constructing a cover of an elliptic curve
by a hyperelliptic curve of larger genus that forces an inclusion from the elliptic
curve into the Jacobian of the hyperelliptic curve. While this is apparently a well
known result, we include some details since they appear to be lacking from the
literature.

We conclude the section by discussing how the existence of this map relates to
the overall complexity of solving the ECDLP. We will also discuss how finding an
algorithm of lower subexponential complexity for the HCDLP seems intrinsically
linked to solving the analogous problem for imaginary quadratic number fields.

3.1 Jacobians of Hyperelliptic (and Elliptic) Curves

In the remaining sections, let K denote an arbitrary field. We will mostly be
interested in the case when K = Fq, but the majority of what follows applies
to arbitrary fields. For our purposes, it suffices to define a hyperelliptic curve of
genus g to be a curve given by an equation of the following form:

C : y2 + h(x)y = f(x)

where h, f ∈ K[x] are such that deg h 6 g and deg f = 2g + 1 or 2g + 2 with f
monic. Furthermore, no element in K×K may simultaneously satisfy

y2 + hy − f = 0 , 2y + h = 0 , h′y − f ′ = 0 .

These last criteria force the curve to have a smooth affine model, which simply
makes calculations more palatable (and the statement about the genus correct).
Every hyperelliptic curve inherently admits such a model, so this by no means
limits our discussion. Furthermore, if the characteristic of K is not 2, we will
always take h = 0 (this is possible by completing the square on the left hand

side). A hyperelliptic curve of genus one is an elliptic curve. The function field
of C is defined to be

K(C) ∼= K(x)[y]/(y2 + hy − f) .

Each element of the function field can be thought of as a map from C to K∪{∞}
(otherwise denoted as P1

K
).

We now give a brief overview of the Jacobian of a hyperelliptic curve. For
more complete details, see the appendix in [11]. A divisor on C is a formal sum
of points D =

∑
mP P where mP = 0 for all but finitely many points of C.

The degree of a divisor is deg D =
∑

mP . The set of all divisors on C forms a
group and is denoted Div(C). The subset of all divisors of degree zero is a proper
subgroup and is denoted Div0(C).

We wish to consider the quotient of Div0(C) by the following subgroup. For
any function γ ∈ K(C), we may associate a divisor to γ by (γ) =

∑
mP P where

mp = ordP (γ) is the order of the zero or pole of γ at P . Such divisors are said
to be principal divisors. The set of all principal divisors is denoted by P(C).
P(C) is a subgroup of Div0(C) because every principal divisor has degree zero,
although this is by no means obvious from the above definitions.

The group that we are interested in is called the Picard group of C (in fact,
we are interested in the degree zero part of the Picard group, but we will abuse
the language slightly). The group is defined to be

Pic0(C) ∼= Div0(C)/P(C) .

Pic0(C) contains all of the arithmetic information about the Jacobian of C that
we need. If we have a tower of fields, K ⊆ L ⊆ K, then GL = Gal(K,K) has
a natural action on Pic0(C) induced by its action on P(C) and Div0(C) (which
conveniently agree). The fixed group under this action is denoted by Pic0

L(C).
Obviously, we will be most interested in the case when L = K.

While the above construction of Pic0(C) is mathematically rigorous, it is
somewhat lacking from a computational perspective. We will not cover the details
of how to perform arithmetic, but instead refer the reader to the appendix in
[11] again. The second computational problem that arises is how to represent
elements in this group. For each element in Pic0(C), it is possible to associate to
it a unique divisor in Div0(C). These unique divisors are called reduced divisors.
The arithmetic and presentation in Pic0(C) are performed using these reduced
divisors.

3.2 Including Elliptic Curves into Jacobians of Hyperelliptic Curves

We begin with a definition to facilitate in constructing the desired cover of our
elliptic curve. Let p denote the characteristic of the field K. For an integer n, we
will write n = n1 · pnp where n1 is an integer that satisfies gcd(n1, p) = 1, and
np > 0 (in characteristic zero, one takes n1 = n, np = 0). Let pp(x) denote the
Artin-Schreier character, i.e. pp(x) = xp − x. Define the polynomial

Cn(x) = pp(x)◦np ◦ xn1 .

Theorem 1. Let E be an elliptic curve given by

E : y2 + hy = f , deg f = 3 , deg h 6 1 .

If in characteristic 2, h(0) 6= 0 or in characteristic different from 2, f(0) 6= 0,
then there exists a hyperelliptic curve Cn of genus

⌊
n + n−1

2

⌋
given by

Cn : y2 + h(Cn(x))y = f(Cn(x)) ,

such that Cn is an n-to-1 cover of E.

The restrictions on h(0) and f(0) ensure that the resulting model for Cn

is smooth. The smoothness of this model is a consequence of combining the
definition of smoothness given above and noting that the polynomial given by
Cn(x)− α for any 0 6= α ∈ K has no repeated roots. The genus follows trivially
from the definition given above for a hyperelliptic curve.

Considering an elliptic curve over K, it is possible to transform it into a
curve of this form by using the substitution x 7→ x+α for some α ∈ K satisfying
h(α) 6= 0 in characteristic 2, or f(α) 6= 0 otherwise. The only elliptic curve for
which finding such an α is not possible is the curve

E : y3 = x(x− 1)(x− 2)

defined over F3. By extending the ground field, the above substitution could
then be used. However, this curve is of no interest for the problem we wish to
solve, so the above theorem applies to all cryptographically interesting elliptic
curves.

The map from Cn to E is given as follows.

Ψn : Cn → E

(α, β) 7→ (Cn(α), β) ,

and the point(s) at infinity on Cn map to the unique point at infinity on
E. This is clearly a well-defined algebraic map of curves, and for most points,
there are precisely n distinct pre-images under Ψ since Cn(x)− α has degree n.
Therefore, Cn is an n-to-1 cover of E via Ψn.

Given any two curves and a map between them, there is an induced map on
the Jacobians of the two curves. We can use the map Ψn defined above to do
precisely this. We proceed by constructing a map between the respective divisor
class groups

Ψ∗n : Div0(E) → Div0(Cn) .

We define the map as follows. Let P = (α, β) be a finite point on E, and let αi

denote the n roots of Cn(x)−α (each with appropriate multiplicity). If n is odd,
then

Ψ∗n : P − P∞ →
(

n∑

i=1

(αi, β)

)
− nP∞

where P∞ represents the unique point at infinity on the two respective curves.
If n is even,

Ψ∗n : P − P∞ →
(

n∑

i=1

(αi, β)

)
− n

2
(P∞1 + P∞2)

where P∞ is the unique point at infinity on E, and P∞1 and P∞2 are the two
points at infinity on Cn. Since Ψ∗n includes P(E) into P(C), it induces a map on
the Picard groups, called the conorm map:

ConCn/E : Pic0(E) → Pic0(Cn) .

It is precisely this map that we will use to translate an ECDLP into an HCDLP
for a curve of higher genus.

Theorem 2. If E and Cn are as specified in theorem 1, then the induced map

ConCn/E : Pic0
L(E) → Pic0

L(Cn)

is injective for all n and any K ⊆ L ⊆ K.

By first proving the result over the algebraic closure, K, the theorem follows
for all intermediary subfields by restriction. In our case, we are really only inter-
ested in the case of L = K. For the case when n is odd, it is simple enough to
show that the image under Ψ∗n of a divisor on E of the form P − P∞, where P
is any finite point, is a non-trivial reduced divisor in Div0(Cn). This is sufficient
to conclude that the map in injective. If n is even, one proves the injectivity of
the map by constructing a secondary hyperelliptic curve which is isomorphic to
Cn, but has only one point at infinity.

Since this map is injective, it is clear that given an ECDLP for E, we can
translate it into an HCDLP for Cn. This map is effective and quite easy to
compute using Cn. If n is odd and we are using the standard representations for
divisors on Cn, the map is given by

(α, β) 7→ div(Cn(x)− α, β) .

3.3 Relating the Complexity of the ECDLP and HCDLP

Although Cn can be used to convert an ECDLP into an HCDLP, this does
not necessarily help us solve the problem more efficiently. In fact, with the cur-
rent algorithms for solving instances of HCDLP’s, this amounts to taking a
hard problem and making it harder. However, in this section, we consider the
ramifications of the development of an algorithm to solve the HCDLP that is
considerably more efficient than the algorithms that currently exist.

We start by noting that for a hyperelliptic curve of genus g over Fq, the size
of Pic0

Fq
(C) is roughly qg.

Theorem 3. If there exists an algorithm to solve the HCDLP with running
time Lqg [α, β + o(1)] with α < 1/2 for g ≈ log q, as q →∞, then there exists an
algorithm to solve the ECDLP in time Lq[α′, β′ + o(1)] with α′ < 1 and β′ > 0
as q →∞.

Proof. Given an elliptic curve E over Fq, set n =
⌈

2
3 log q

⌉
. By using ConCn/E

and Cn which has genus g > log q, we can solve the HCDLP in Pic0(Cn) in time
Lqg [α, β + o(1)]. Letting γ be such that g = γ log q, then we have

(β+o(1))(log qg)α(log log qg)1−α = (β+o(1))(log q)2αγα(log γ+2 log log q)1−α .

Ignoring the coefficients for a moment, we may rewrite the right hand side as

(log q)2α+ε(log log q)1−(2α+ε) (log γ + 2 log log q)1−α

(log log q)1−(2α+ε)(log q)ε

for any ε > 0. As q → ∞, the fractional term tends to 0 (since γ → 1), and
hence we have that

(log qg)α(log log qg)1−α À (log q)2α+ε(log log q)1−(2α+ε) .

Therefore, an upperbound for the running time is given by Lq[2α+ε, β′], for any
positive fixed ε > 0, and any β′ > 0 (although clearly both affect the constants
involved in the big O-notation). If α < 1/2, we can clearly choose ε > 0 such
that 2α + ε < 1, which proves the desired result.

Theorem 4. If there exists an algorithm to solve the HCDLP in time Lqg [α, β+
o(1)] with α = 1/2 for g ≈ (log q)δ and δ < 1, as q → ∞, then there exists an
algorithm to solve the ECDLP in time Lq[α′, β′ + o(1)] with α′ < 1 and β′ > 0
as q →∞.

Proof. We proceed as above, but this time we choose n =
⌈

3
2 (log q)δ

⌉
. As before,

we map to Pic0(Cn), where we can solve the HCDLP in time Lqg [α, β + o(1)].
Letting γ be such that g = γ(log q)δ, then after substituting for g we note

(β + o(1)) (log qg)α(log log qg)1−α = (β + o(1)) (log q)(1+δ)αγα (log γ + (1 + δ) log log q)1−α
.

Again ignoring the coefficients,

(log q)(1+δ)α+ε(log log q)1−((1+δ)α+ε) (log γ + (1 + δ) log log q)1−α

(log log q)1−((1+δ)α+ε)(log q)ε

for any ε > 0. We now note that as q →∞, the fractional term tends to 0. Hence
we have that

(log qg)α(log log qg)1−α À (log q)(1+δ)α+ε(log log q)1−((1+δ)α+ε) .

This implies the running time is bounded above by Lq[(1+ δ)α+ ε, β′+ o(1)] for
any ε > 0 and β′ > 0. This time we note that if δ < 1, and since α = 1/2, we
can choose ε so that (1 + δ)α + ε < 1.

It should not be construed that either of these two results imply the existence
of a subexponential algorithm for the ECDLP. Examining them more deeply,
they in fact suggest that our current index calculus approaches for solving the
HCDLP are incapable of yielding algorithms with a running time in the range
required for either theorem. To derive this conclusion we note that while the
current algorithms for solving an instance of an HCDLP on a curve of genus g
over Fq utilize factor bases which are subexponential in terms of qg, they are
exponential in terms of q. Hence, using such algorithms to solve an instance of
the ECDLP by embedding it in the Jacobian of a hyperelliptic curve can not
result in a subexponential algorithm. This does not exclude the possibility of
such techniques being effective in constructing an exponential algorithm which
has a better run-time than Pollard-rho.

Using the same techniques as above, we can make the following somewhat
perverse observation.

Theorem 5. If there exists a subexponential algorithm for hyperelliptic curves
of genus 2, then there exists a subexponential algorithm for elliptic curves.

The proof follows as above using n = 2 (in fact, the previous theorem is
also true with 2 replaced by any other fixed genus that may be written in the
form bn + n−1

2 c). It is important to note that the resulting algorithm would
have worse overall complexity and the size of the elliptic curve for which the
asymptotics would assert themselves is undoubtedly very large, but it would
still be subexponential. The conundrum that arises from this observation is that
the converse statement is not necessarily true.

3.4 The Analogue between HCDLP and IQDLP

While solving the HCDLP and IQDLP problems appear to be linked only super-
ficially since they are both discrete logarithm problems, the connection between
them runs much deeper. If we consider the original algorithm developed by [1]
to solve the HCDLP in high genus hyperelliptic curves, it has the same funda-
mental structure as the IQ-MPQS. That is, they both find relations by searching
for elements with smooth norms in certain quadratic extensions. If we restrict
our attention to the case of imaginary hyperelliptic curves (when the degree of
f is odd), then we have the following diagram can be used to demonstrate the
connection.

K∆

2

BB
BB

BB
BB

K(C)

2

GG
GG

GG
GG

G

O∆

2

K[C]

2Q

BB
BB

BB
BB

B K(x)

GG
GG

GG
GG

G

Z K[x]

In particular, solving the HCDLP in Pic0
K(C) is equivalent to solving the same

problem in the ideal class group of K[C]. Fundamentally, both the HCDLP and
class group computations in imaginary quadratic orders are equivalent to solving
the discrete logarithm problem in ideal class groups of a quadratic extension.
Indeed, if we consider the algorithm presented in [6], it can be considered to
solve the problem in both situations. Although there are some subtle differences
that arise in the analysis of the complexity, they do not serve to effect the the
exponent α which has the greatest impact on the asymptotic run-time.

The problem that prevents the development of a suitable IQ-NFS is the same
problem that prevents the development of a better algorithm to solve HCDLP’s.
Namely, how does one find an extension of a quadratic extension which yields
suitable ideal-homomorphisms. Considering the strong analogy between the two
situations, it seems plausible that finding a solution in one of the two settings
could easily be extended to the other.

4 Conclusion

We have presented some indication that the techniques of the number fields sieve
may not be applicable to computations in imaginary quadratic number fields in
a profitable way. In particular, it is unknown how to design fundamental core
elements of an IQ-NFS algorithm, and even if this were known, it would not
be clear whether or how such an algorithm could be useful (i.e. profitable).
Moreover, we gave an outline how the existence of an IQ-NFS with the running
time asymptotics L

[
1
3

]
could conceivably be used to develop an algorithm to

solve elliptic curve related computational problems with subexponential running
time. It is worthwhile to point out that the analogy between these two settings
is not restricted to algorithms of index-calculus type. It follows for example that
if there is no subexponential algorithm to solve the ECDLP, then it is likely that
L|∆|

[
1
2 , c + o(1)

]
is the best achievable running time for the IQDLP.

As pointed out in the introduction, due to the somewhat speculative nature
of this article, it is to be understood as a starting point for further research.
For example, it would be interesting to establish rigorously the computational

equivalence of the discrete logarithm problems for number field and function
field class groups.

References

1. Adleman, L. M., DeMarrais, J., and Huang, M.-D. A subexponential algo-
rithm for discrete logarithms over hyperelliptic curves of large genus over GF(q).
Theoretical Computer Science 226, 1–2 (1999), 7–18.

2. Buhler, J. P., Lenstra, Jr., H. W., and Pomerance, C. Factoring integers
with the number field sieve. In The development of the number field sieve, A. K.
Lenstra and H. W. Lenstra, Eds., no. 1554 in LNM. Springer–Verlag, 1993, pp. 50–
94.

3. Cohen, H. A Course in Computational Algebraic Number Theory, vol. 138 of
GTM. Springer–Verlag, 1995.

4. Crandall, R., and Pomerance, C. Prime Numbers: A Computational Perspec-
tive. Springer–Verlag, 2000.

5. Damg̊ard, I., and Fujisaki, E. A statistically-hiding integer commitment scheme
based on groups with hidden order. In Advances in Cryptology – ASIACRYPT 2002
(2002), Y. Zheng, Ed., vol. 2501 of LNCS, Springer-Verlag, pp. 125–142.

6. Enge, A., and Gaudry, P. A. A general framework for subexponential discrete
logarithm algorithms. Acta Arithmetica 102, 1 (2002), 83–103.

7. Gordon, D. M. Discrete logarithms in gf(p) using the number field sieve. SIAM
Journal of Discrete Mathematics 6, 1 (1993), 124–138.

8. Hamdy, S. IQ cryptography: A secure and efficient alternative. Journal of Cryp-
tology (2003). Submitted.

9. Jacobson, Jr., M. J. Applying sieving to the computation of quadratic class
groups. Mathematics of Computation 68, 226 (1999), 859–867.

10. Jacobson, Jr., M. J. Subexponential Class Group Computation in Quadratic
Orders. PhD thesis, Technische Universität Darmstadt, Fachbereich Informatik,
Darmstadt, Germany, 1999.

11. Koblitz, N. Algebraic Aspects of Cryptography, vol. 3 of Algorithms and Compu-
tation in Mathematics. Springer–Verlag, 1998.

12. Schirokauer, O. Discrete logarithms and local units. Philosophical Transactions
of the Royal Society of London, Series A. 345, 1676 (1993), 409–423.

13. Schirokauer, O. Using number fields to compute logarithms in finite fields.
Mathematics of Computation 69, 231 (2000), 1267–1283.

14. Schirokauer, O., Weber, D., and Denny, T. Discrete logarithms: The effec-
tiveness of the index calculus method. In Algorithmic Number Theory, ANTS-II
(1996), H. Cohen, Ed., vol. 1122 of LNCS, Springer-Verlag, pp. 337–361.

15. Weber, D. Computing discrete logarithms with the general number field sieve. In
Algorithmic Number Theory, ANTS-II (1996), H. Cohen, Ed., vol. 1122 of LNCS,
Springer-Verlag, pp. 391–403.

