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Abstract. We analyze the security of the SC2000 block cipher against
both differential and linear attacks. SC2000 is a six-and-a-half-round
block cipher, which has a unique structure that includes both the Feis-
tel and Substitution-Permutation Network (SPN) structures. Taking the
structure of SC2000 into account, we investigate one- and two-round
iterative differential and linear characteristics. We present two-round it-
erative differential characteristics with probability 2−58 and two-round
iterative linear characteristics with probability 2−56. These characteris-
tics, which we obtained through a search, allowed us to attack four-and-
a-half-round SC2000 in the 128-bit user-key case. Our differential attack
needs 2103 pairs of chosen plaintexts and 220 memory accesses and our
linear attack needs 2115.17 known plaintexts and 242.32 memory accesses,
or 2104.32 known plaintexts and 283.32 memory accesses.

Keywords: symmetric block cipher, SC2000, differential attack, linear attack,
characteristic, probability

1 Introduction

Differential cryptanalysis was initially introduced by Murphy [10] in an attack
on FEAL-4 and was later improved by Biham and Shamir [1, 2] to attack DES.
Linear cryptanalysis was first proposed by Matsui and Yamagishi [6] in an at-
tack on FEAL and was extended by Matsui [7] to attack DES. Both methods
are well known and often provide very effective means for attacking block ci-
phers. One of the many steps in establishing a cipher’s security is to evaluate
its strength against these attacks. The respective degrees of security of a cipher
against differential attacks and linear attacks can be estimated from the max-
imum differential probability and the maximum linear probability. A cipher is
considered to be secure against attacks of both types if both probabilities are
low enough to make the respective forms of attack impractical.
SC2000 is a block cipher which was submitted to the NESSIE [11] and CRYP-

TREC [3] projects by Shimoyama et al. [13]. In the Self-Evaluation Report, one
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of the submitted documents, the security against differential and linear crypt-
analysis was evaluated by estimating the number of active S-boxes in differential
and linear characteristics. The strength of the SC2000 cipher has been evaluated
in other published work on attacking SC2000 [3–5, 12, 17].
This paper is based on the work of Yanami and Shimoyama [17] at the 2nd

NESSIE workshop, which is a report by the authors on investigation they carried
out with both differential and linear attacks on a reduced-round SC2000. We use
the same differential characteristics as was used in the above work in the work
we describe here. This has a slightly higher probability than the characteristics
that have been found by Raddum and Knudsen [12]. The linear cryptanalysis
by Yanami and Shimoyama [17] contained some incorrect calculations. We have
corrected these and re-examined the linear characteristics. Moreover, in this
paper we use a better method of deducing the subkey bits. This new technique
reduces the time complexity of the attacks by several orders of magnitude.
In this paper we investigate the one- and two-round iterative differential/linear

characteristics of SC2000. By iterating the differential/linear characteristic ob-
tained by our search, we construct a longer characteristic and utilize it to attack
four-and-a-half-round SC2000.
The paper is organized as follows. We briefly describe the encryption algo-

rithm for SC2000 in Section 2. In Section 3, we illustrate our search method
and show our search results. We present our differential and linear attacks on
four-and-a-half-round SC2000 in Sections 4 and 5, respectively. We summarize
our paper in Section 6.

2 Description of SC2000

SC2000 is a block cipher which was submitted to the NESSIE [11] and CRYP-
TREC [3] projects by Shimoyama et al. [13]. SC2000 has a 128-bit block size
and supports 128-/192-/256-bit user keys, and in these ways is the same as the
AES.
Before proceeding further, we need to make two remarks: Firstly, we mainly

take up the case of 128-bit user keys. Secondly, we omit the description of the
SC2000 key schedule as it has no relevance to the attacks presented in this paper.
The key schedule generates sixty-four 32-bit subkeys from a 128-bit user key.

2.1 The Encryption Algorithm

Three functions are applied in the SC2000 encryption algorithm: the I, R and
B functions. Each function has 128-bit input and output. The R functions used
are of two types, which only differ in terms of a single constant (0x55555555 or
0x33333333). When we need to distinguish between the two types, we use R5

and R3 to indicate the respective constants.
The encryption function may be written as:

I-B-I-R5×R5-I-B-I-R3×R3-I-B-I-R5×R5-
I-B-I-R3×R3-I-B-I-R5×R5-I-B-I-R3×R3-I-B-I,
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where × stands for the exchange of the left and right 64 bits. We define -I-B-
I-R×R- as the round in SC2000. The round is iterated six times by the cipher
and the final set of operations, -I-B-I, is then applied to obtain symmetry for
encryption and decryption. For the sake of simplicity, we refer to the last part
-I-B-I as half a round. SC2000 involves six and a half rounds with a 128-bit
user key, and seven and a half rounds with a 192-/256-bit user key.

2.2 The I Function

The I function XORs a 128-bit input with four 32-bit subkeys. The I function
divides the input into four 32-bit words, and then applies an XOR to each of
these words and a corresponding 32-bit subkey. These subkeys are only used in
the I function.

2.3 The R Function

The R function has a conventional Feistel structure, except for the swapping of
the left and right 64 bits in its last part (Fig. 1). The F function is applied to
the right 64 bits of the input, and the output of the function is XORed with the
left 64 bits. The result of the XOR becomes the left half of the output of the R
function. The right half of the output of the R function is the same as the right
half of the input.
The input and output of the F function in the R function are both 64 bits;

the function consists of three subfunctions, the S, M and L functions (Fig. 2).
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The F function divides its input into two 32-bit variables and each variable is
successively dealt with by the S and M functions. The two outputs become the
input value for the L function, the output of which becomes the output of the
F function. Note that the F function is bijective. We describe the S, M and L
functions below.

The S function is a 32-bit input/output nonlinear function. The 32-bit input is
divided into groups, in order, 6, 5, 5, 5, 5 and 6 bits. These groups of bits
enter corresponding S-boxes; each of the two 6-bit groups enters S6, while
each of the four 5-bit groups enters S5. The output of the S function is the
concatenation of the outputs of the S-boxes. We refer to Shimoyama et al.
[13] for the values in the S5 and S6 tables.

The M function is a 32-bit input/output linear function. The output b for an
input a is the product of a and a matrix M ,

b = a·M,

where M is a square matrix of order 32 with entries that are elements of
GF (2), the Galois field of order two, and a and b are row vectors with entries
from GF (2). We refer to Shimoyama et al. [13] for the entries of the matrix
M .

The L function has two 32-bit variables as its input and output. We use (a, b) to
denote the input and (c, d) to denote the corresponding output. The variables
c and d are obtained by applying the following formulae:

c = (a ∧mask)⊕ b; d = (b ∧mask)⊕ a,

wheremask is the constant we earlier mentioned, 0x55555555 or 0x33333333,
mask is the bitwise-NOT of the mask, and the symbol ∧ represents the
bitwise-AND operation.

2.4 The B Function

The B function has an SPN structure with 128-bit input/output which contains
the thirty-two 4-bit input/output S-boxes. This structure is similar to the one
that is used in the Serpent block cipher. We can use a bitslice approach to
implement the B function. We represent the input to the B function as (a, b, c, d),
where each variable has 32 bits; the i-th bit of a is ai, and equivalent notation
applies to b, c and d. For i = 0, 1, . . . , 31, the i-th bit is taken from each of
the variables a, b, c and d, and the resulting four bits (ai, bi, ci, di) are replaced
by (ei, fi, gi, hi) according to the S4 table, where the notation is analogous to
that for (a, b, c, d) above, and (e, f, g, h) denotes the four 32-bit words which
compose the output of the B function. We refer to Shimoyama et al. [13] for the
values in the S4 table. Note that if the B functions in SC2000 are all replaced
by the swapping of the left and right 64 bits, the resulting structure becomes
the classical Feistel structure.
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3 The Differential and Linear Characteristics of SC2000

In investigating the differential/linear characteristics of a block cipher, it is very
hard to compute the probability of every characteristic by applying an exhaustive
search to the cipher itself. Roughly speaking, the following strategy is often used
to construct a long characteristic that has a high probability. 1) Examine few-
round iterative characteristics, i.e., characteristics of the same input and output
differences/masks appearing at intervals of a few rounds. 2) Iterate the one
with the highest differential/linear probability which was found by the search to
make a characteristic for larger numbers of rounds. We will follow this strategy
in examining the differential/linear characteristics.
In the SC2000 encryption algorithm, the I functions are merely used for

XORing data with subkeys, so we can eliminate them from our examination of
differential/linear relationships. Removing these functions leaves the following
sequence:

B-R5×R5-B-R3×R3-B-R5×R5-B-R3×R3-B-R5×R5-B-R3×R3-B.

It can be seen that -B-R×R- is a period. It is repeated six times until the final
B function is added to preserve symmetry of the encryption and decryption
procedures. Taking the period into consideration, we investigate the one- and
two-round differential/linear characteristics with certain patterns of differences
and masks.

3.1 Differential Characteristics

We explain our efficient way of searching for an iterative differential characteristic
that has a high probability. We start by reviewing the nonlinear functions of
SC2000. They are all realized by the S-boxes, S4, S5 and S6. There are thirty-
two S4 boxes in the B function and eight S5 boxes and four S6 boxes in the R
function. The S function is made up of four S5 boxes and two S6 boxes; there
are two S functions in the R function. In the differential distribution tables for
the S-boxes, we see that given a pair of nonzero input and output differences,
the differential probability for S4 is either 2

−2 or 2−3, while for S5 it is 2
−4 and

for S6 it is either 2
−4 or 2−5. These facts suggest that the number of nonzero

differences for the S5 and S6 boxes in the S function will have a stronger effect
on the overall differential probability of characteristics than the number for the
S4 boxes in the B function.
Taking this into consideration, we decide to investigate those differential

characteristics that have a nonzero difference in a single one of the four S func-
tions in a -B-R×R- cycle, which enables us to efficiently find those differential
characteristics that have high probabilities.

One-Round Characteristics. We investigate those one-round iterative char-
acteristics that have a nonzero difference in a single one of the four S functions
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Fig. 3. Patterns of differences

in a -B-R×R- cycle. We illustrate the differential patterns of the characteristics
we need to investigate in Fig. 3.

We call the respective types of differential pattern D1, D2, D3 and D4, according
to the position of the S function that has a nonzero difference.

We have investigated differential characteristics that have these patterns for
both -B-R5×R5- and -B-R3×R3-. We have found differential characteristics that
have a probability of 2−33 in both cycles. This is the highest probability for dif-
ferential characteristics of the four types mentioned above. These characteristics
are of type D3. We give an example of one such differential characteristic:
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-B-R×R-

B

{
( 0 0x00080008 0x08090088 0)

↓ B

(0x08090088 0 0 0)

}

2−15

R ( 0 0)
F
←− ( 0 0) 1

R ( 0 0x00080008)
F
←− (0x08090088 0) 2

−18.

Note that this characteristic has a probability of 2−33 regardless of the constant
in theR function, and that we can construct an n-round differential characteristic
with probability 2−33n by concatenating this characteristic n times.

Two-Round Characteristics. By distinguishing R5 from R3, we are also able
to treat -B-R5×R5-B-R3×R3- as a cycle. Turning our attention to this cycle, we
have investigated those two-round iterative characteristics which have a nonzero
difference in a single one of the four S functions in each -R×R- part. It would
appear that we are able to independently choose differential patterns from among
Di (i = 1, 2, 3, 4) for the former -B-R5×R5- and latter -B-R3×R3- sequence, but
some patterns cannot be concatenated. We can judge whether or not it is possible
to concatenate Di and Dj from the differential distribution table of S4 (see the
Appendix). Below we list the pairs that may be concatenated and thus need to
be investigated:

-B-R5×R5- -B-R3×R3-
∆A → (D1)→ ∆B → (D1)→ ∆A

∆A → (D2)→ ∆B → (D2)→ ∆A

∆A → (D3)→ ∆B → (D3)→ ∆A

∆A → (D4)→ ∆B → (D4)→ ∆A

-B-R5×R5- -B-R3×R3-
∆A → (D1)→ ∆B → (D2)→ ∆A

∆A → (D2)→ ∆B → (D1)→ ∆A

∆A → (D3)→ ∆B → (D4)→ ∆A

∆A → (D4)→ ∆B → (D3)→ ∆A .

Note that differences ∆A’s and ∆B’s in the above list should be adjusted as
required: When, for example, the former pattern is D1 and the latter is D2, we
think of ∆A as (0,∆X, 0, 0) and ∆B as (∆X, 0, 0, 0), adopting the respective
output differences of the preceding R functions. We have investigated character-
istics of the above types and found that the differential characteristics with the
highest probability have the pattern

∆A→ (D4)→ ∆B → (D3)→ ∆A

with probability 2−58. An example of such a characteristic is given below:

-B-R5×R5-B-R3×R3-

B

{
(0x01120000 0x01124400 0x01124400 0)

↓ B

( 0 0x01124400 0 0)

}

2−15

R5 ( 0 0)
F
←− ( 0 0) 1

R5 (0x01124400 0x00020000)
F
←− ( 0 0x01124400) 2

−16

B

{
(0x01124400 0x00020000 0 0x01124400)

↓ B

(0x01124400 0 0 0)

}

2−11

R3 ( 0 0)
F
←− ( 0 0) 1

R3 (0x01120000 0x01124400)
F
←− (0x01124400 0) 2

−16.
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The probability 2−58 of this characteristic is higher than 2−66, the probability
obtained for the two-round differential characteristic from the one-round itera-
tive characteristic with the highest probability that we found. We will later use
the former characteristic in our differential attack on a reduced-round SC2000.

3.2 Linear Characteristics

As with the differential probability, the linear distribution tables tell us that
the number of nonzero masks for the S5 and S6 boxes in the S function have
a stronger effect on the overall linear probability than the number for the S4

boxes in the B function; given a pair of nonzero input/output masks, the linear
probability for S4

† is either 2−2 or 2−4, while for S5 it is 2
−4 and for S6 it is

between 2−4 and 2−8.

We investigate the linear characteristics in the same way as the iterative dif-
ferential characteristics, i.e., we examine the linear characteristics with a nonzero
mask in a single one of the four S functions in a -B-R×R- cycle.

One-Round Characteristics. We investigate those one-round iterative char-
acteristics whose masks have a nonzero value in a single one of the four S func-
tions in a -B-R×R- cycle. We illustrate the mask patterns of the characteristics
we investigate in Fig. 4. We call the respective types of mask pattern L1, L2, L3

and L4, according to the position of the S function that has a nonzero mask.
We investigated characteristics of these types and found that the linear char-

acteristics with the highest probability have probabilities of 2−28.83 for
-B-R5×R5- and of 2

−28 for -B-R3×R3-. All of them are of type L2. Below, we
give examples of such linear characteristics for both -B-R5×R5- and -B-R3×R3-:

-B-R5×R5-

B

{
( 0 0 0x84380080 0x04100000)

↓ B

(0x84380080 0x04100000 0 0x84180000)

}

2−20

R5 (0x84380080 0x04100000)
F
←− ( 0 0x84180000) 2

−8.83

R5 ( 0 0)
F
←− ( 0 0) 1,

-B-R3×R3-

B

{
( 0 0 0x12020040 0x12020000)

↓ B

(0x12020040 0x12020000 0 0x12020040)

}

2−10

R3 (0x12020040 0x12020000)
F
←− ( 0 0x12020040) 2

−18

R3 ( 0 0)
F
←− ( 0 0) 1.

† In Yanami and Shimoyama [17], the authors used 2−2 or 2−3 for this probability,
which turned out to be wrong. We have re-examined linear characteristics with the
correct values.
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It is not possible for these characteristics to pass through the sequence when the
constant is changed into the other one. The highest probability for any linear
characteristics which do pass through both constants is 2−36.83. An example of
such a linear characteristic is:

-B-R×R-

B

{
( 0 0 0x11108008 0x11100000)

↓ B

(0x11108008 0x11100000 0 0x11108008)

}

2−14

R (0x11108008 0x11100000)
F
←− ( 0 0x11108008) 2

−22.83

R ( 0 0)
F
←− ( 0 0) 1.

We are able to construct an n-round linear characteristic with probability 2−36.83n

by concatenating the above characteristic n times.

Two-Round Characteristics. We can apply the same method as we used
for the differential case. We can use the linear distribution table of S4 to judge
whether or not Li and Lj can be concatenated (see the Appendix). Below, we
list those pairs that need to be investigated:

-B-R5×R5- -B-R3×R3-
ΓA → (L1)→ ΓB → (L1)→ ΓA

ΓA → (L2)→ ΓB → (L2)→ ΓA

ΓA → (L3)→ ΓB → (L3)→ ΓA

ΓA → (L4)→ ΓB → (L4)→ ΓA

-B-R5×R5- -B-R3×R3-
ΓA → (L1)→ ΓB → (L2)→ ΓA

ΓA → (L2)→ ΓB → (L1)→ ΓA

ΓA → (L3)→ ΓB → (L4)→ ΓA

ΓA → (L4)→ ΓB → (L3)→ ΓA .

The masks ΓA and ΓB should be considered as the masks output by the imme-
diately preceding R functions, respectively. We have investigated characteristics
of the above types and found that the linear characteristics with the highest
probability have the pattern

ΓA→ (L4)→ ΓB → (L4)→ ΓA.

The probability of these linear characteristics is 2−56. We list a example of such
a characteristic below:

-B-R5×R5-B-R3×R3-

B

{
(0x204000a2 0x20000022 0 0x20400022)

↓ B

( 0 0 0x204000a2 0x00400000)

}

2−12

R5 ( 0 0)
F
←− ( 0 0) 1

R5 (0x204000a2 0x00400000)
F
←− ( 0 0x20400022) 2

−16

B

{
(0x204000a2 0x00400000 0 0x20400022)

↓ B

( 0 0 0x204000a2 0x20000022)

}

2−12

R3 ( 0 0)
F
←− ( 0 0) 1

R3 (0x204000a2 0x20000022)
F
←− ( 0 0x20400022) 2

−16.
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The probability 2−56 of this characteristic is much higher than 2−73.66, the
probability of the two-round linear characteristic obtained from any one of the
one-round iterative characteristics with the highest probability which we had
previously found. We use this characteristic in our linear attack on a reduced-
round SC2000.

4 A Differential Attack on 4.5-Round SC2000

We now present our attack on a reduced-round SC2000 with 128-bit user key.
By using a differential or linear characteristic with the highest probability which
we had obtained in our search, we were able to attack the following four-and-a-
half-round SC2000:

I-B-I-R5×R5-I-B-I-R3×R3-I-B-I-R5×R5-I-B-I-R3×R3-I-B-I.

In this section, we illustrate how we use our differential attack to guess some
bits in subkeys. Our linear attack will be described in the next section.
Our differential attack utilizes the two-round iterative differential character-

istic with probability 2−58, which we mentioned in Section 3.1. By concatenating
the two-round differential characteristic we mentioned in Section 3.1 twice (and
removing one B function), we obtain a three-and-a-half-round differential char-
acteristic with probability 2−101. We apply the characteristic in the following
way:

Input-⊕
K1

- B
︸︷︷︸

(1)

-

101
︷ ︸︸ ︷

0

R -
16

R -
11

B -
0

R -
16

R -
15

B -
0

R -
16

R -
11

B -
0

R -
16

R - B︸︷︷︸
(2)

-⊕
K2

- Output,

where the numeral 15 above the B is read as “the differential probability for
the B function is 2−15.” We present a table of total differential probabilities
according to the number of functions in the Appendix.
By using this differential characteristic, we are able to deduce 40 bits in the

subkeys K1 and K2. These subkey bits correspond to the five active S-boxes of
the first B function and the five active S-boxes of the last B function. We used
the following algorithm to retrieve these 40 bits in the subkeys K1 and K2:

– We start by encrypting 284 structures, where each structure contains 220

plaintexts which have the same value in the 108 inactive bits in the first B
function, and with the 20 active bits varying across all possible values.

– In each structure we look for collisions in the 108 inactive output bits of the
last B function.

– When a collision is detected, we analyze the pair of plaintexts and cipher-
texts, and check for the subkey values where the pair satisfied the differential
characteristic. For each subkey which satisfies the characteristic, we incre-
ment the counter by 1.

– In the end, we go over all of the subkey counters and output the subkey that
corresponds to counter with the highest number.



45

As each structure induces 219 pairs, we have in total 2103 pairs which have
the same input difference as the input of the characteristic above after the B
function. We would expect the right subkey to be suggested about four times.
Since in each structure the chance that two of the 220 ciphertexts will agree
is about (220)2/2 · 2−108 = 2−69, we would also expect 2−69

· 284 = 215 false
hits varying over all the 240 possible subkeys, These false hits have few effects
on subkey-counting. Thus, we are assured with a very high probability that the
suggested subkey is the correct one.
The time complexity of this attack (aside from the 2104 encryptions) is the

time taken to hash the ciphertexts in each structure according to the 108 inactive
bits, plus the time taken to analyze the 215 suggested pairs. The first term may
be neglected as representing part of the encryption, and the analysis can be done
in about 220 memory accesses.

5 Linear Attacks on 4.5-Round SC2000

We now present our linear attack on a reduced-round SC2000 with 128-bit user
key. By using the linear characteristic with the highest probability which we had
obtained in our search, we are able to attack the following four-and-a-half-round
SC2000:

I-B-I-R5×R5-I-B-I-R3×R3-I-B-I-R5×R5-I-B-I-R3×R3-I-B-I.

We now illustrate how we use the linear attack to guess subkeys. We use
the two-round iterative linear characteristic with probability 2−56 from Section
3.2. By concatenating this characteristic twice, we obtain a four-round linear
characteristic with probability 2−112. We illustrate two types of attacks; in one,
the four-round linear characteristic is used; in the other, the three-and-a-half-
round characteristic obtained by eliminating the first B function from the four-
round one is used. We illustrate both attacks in due order.

5.1 Attack Using a Four-Round Characteristic

We use the following four-round linear characteristic with probability 2−112:

Input-

112
︷ ︸︸ ︷

12

B -
16

R -
0

R -
12

B -
16

R -
0

R -
12

B -
16

R -
0

R -
12

B -
16

R -
0

R - B︸︷︷︸
(1)

-⊕
K1

-Output,

where the numeral 12 above the B is read as “the linear probability of passage
through the B function is 2−12.” We present a table of total linear probabilities
according to the number of functions in the Appendix.
We are able to deduce 20 bits in the subkey K1, which consists of four 32-bit

subkeys. In the last B function (1), output mask is only related to the five S4

S-boxes. As there are only 20 ciphertext bits which interest us, we are able to



46

count the number of occurrences of each case, and do this analysis once for each
20-bit ciphertext value. The following algorithm is capable of extracting the 20
subkey bits:

– Initialize a 220 array of counters (corresponding to the 20 ciphertext bits
which are related to the characteristic).

– Encrypt 2112 · 9 = 2115.17 plaintexts.
– For each plaintext and its corresponding ciphertext add or subtract 1 (ac-
cording to the parity of the input subset) to/from the counter related to the
given 20 ciphertext bits.

– After counting all occurrences of the given 20 ciphertext bits, for each subkey
and for each 20 bit value, calculate the parity of the output subset.

– Rank the subkey candidates according to their respective biases from 1/2.

We expect the right subkey to be highly ranked, and on this basis guess that
the top-ranked candidate is the right subkey. The time complexity of the above
algorithm is at most 240 · 5 = 242.32 S4 calls. The success rate for the above
algorithm is at least 62.3%. We can use key ranking to improve the success rate
without affecting the complexity of the data. We conclude that our linear attack
requires 2115.17 known plaintexts and 242.32 S4 calls.

5.2 Attack Based on a 3.5-Round Characteristic

We use the following linear characteristic with probability 2−100:

Input-⊕
K1

- B
︸︷︷︸

(1)

-

100
︷ ︸︸ ︷

16

R -
0

R -
12

B -
16

R -
0

R -
12

B -
16

R -
0

R -
12

B -
16

R -
0

R - B︸︷︷︸
(2)

-⊕
K2

- Output.

We need to infer 20 bits in each of K1 and K2.
By making a small change to the above algorithm (taking the 40 plaintext

and ciphertext bits into consideration, and trying 40 subkey bits) we obtain the
result that, given 2104.32 known plaintexts, the attack requires 283.32 S4 calls.

6 Conclusions

We have studied the security of SC2000 against differential and linear crypt-
analysis. Taking the periodic structure of SC2000 into consideration, we have
investigated two-round iterative characteristics in which the differences or masks
have a nonzero value in only one of the four S functions in each -B-R×R- cycle,
and found iterative differential characteristics with probability 2−58 and iterative
linear characteristics with probability 2−56.
We respectively utilized the best differential and best linear characteristic we

found. We have presented both differential and linear attacks on the four-and-a-
half-round SC2000. Our differential attack needs 2104 pairs of chosen plaintexts
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and 220 memory accesses, and our linear attack requires 2115.17 known plaintexts
and 242.32 S4 calls, or 2

104.32 known plaintexts and 283.32 S4 calls. Either attack
is capable of deducing 40 bits in the subkeys used in the first and last I functions.
We stress that neither our differential nor our linear attack would work on

the full-round SC2000, which has six and a half rounds. The equivalent differen-
tial and linear characteristics needed to attack 6.5-round SC2000 has respective
probabilities of 2−159 and 2−156. We conclude that these figures show that these
attacks are not applicable to the full-round SC2000.
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Appendix

Differential distribution table of S4

∆Out
∆In0x00x10x20x30x40x50x60x70x80x90xa0xb0xc0xd0xe0xf

0x0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0x1 0 0 0 0 0 0 2 2 2 2 2 2 2 2 0 0
0x2 0 0 0 0 2 0 4 2 2 2 0 0 0 2 0 2
0x3 0 0 0 0 2 0 2 0 0 0 2 2 2 0 4 2
0x4 0 0 0 2 0 2 0 4 0 2 2 2 0 0 2 0
0x5 0 2 4 0 0 2 0 0 0 0 2 0 0 4 2 0
0x6 0 2 0 4 2 0 0 0 2 0 0 0 0 2 4 0
0x7 0 0 0 2 2 4 0 0 2 2 0 2 0 2 0 0
0x8 0 0 2 4 0 4 0 2 0 0 2 0 0 0 0 2
0x9 0 0 0 2 2 0 0 0 4 0 0 2 2 0 0 4
0xa 0 2 2 2 2 2 0 2 0 0 2 0 2 0 0 0
0xb 0 2 0 0 0 2 0 0 0 4 0 2 4 0 0 2
0xc 0 2 4 0 0 0 2 0 0 4 2 0 0 2 0 0
0xd 0 4 2 0 2 0 0 0 2 0 2 2 0 0 0 2
0xe 0 2 0 0 2 0 2 2 0 0 0 2 2 2 2 0
0xf 0 0 2 0 0 0 4 2 2 0 0 0 2 0 2 2

(Prob = {∆In → ∆Out} = x/16)

Linear distribution table of S4

ΓOut
ΓIn0x00x10x20x30x40x50x60x70x80x90xa0xb0xc0xd0xe0xf

0x0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0x1 0 0 0 0 2 2 -2 -2 4 0 0 4 2 -2 2 -2
0x2 0 0 0 0 -4 4 0 0 2 2 -2 -2 -2 -2 -2 -2
0x3 0 0 0 0 -2 -2 -2 -2 -2 2 -2 2 0 4 0 -4
0x4 0 2 2 -4 0 2 -2 0 0 2 -2 0 0 2 2 4
0x5 0 2 -2 0 2 4 0 2 -4 2 2 0 2 0 0 -2
0x6 0 -2 -2 -4 0 -2 -2 4 2 0 0 -2 2 0 0 -2
0x7 0 -2 2 0 2 0 0 -2 -2 0 -4 -2 4 -2 -2 0
0x8 0 -2 -2 0 0 2 -2 -4 0 -2 2 -4 0 2 2 0
0x9 0 2 -2 -4 2 0 4 -2 0 -2 -2 0 -2 0 0 -2
0xa 0 -2 -2 0 0 2 2 0 2 0 0 2 2 4 -4 2
0xb 0 2 -2 4 2 0 0 2 2 0 -4 -2 0 2 2 0
0xc 0 4 0 0 0 0 -4 0 0 -4 0 0 0 0 -4 0
0xd 0 0 -4 0 2 -2 -2 -2 0 4 0 0 -2 -2 -2 2
0xe 0 0 4 0 4 0 0 0 2 2 2 -2 -2 2 -2 -2
0xf 0 4 0 0 -2 -2 2 -2 2 2 2 -2 4 0 0 0

(Prob{In · ΓIn + Out · ΓOut = 0} − 1/2 = x/16)

Probability list obtained from our best differential characteristic
Number of functions 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Function name B R5 R5 B R3 R3 B R5 R5 B R3 R3 B R5 R5 B R3
Probability 15 0 16 11 0 16 15 0 16 11 0 16 15 0 16 11 0

Total probability 15 15 31 42 42 58 73 73 89 100 100 116 131 131 147 158 158

Probability list obtained from our best linear characteristic
Number of functions 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Function name B R5 R5 B R3 R3 B R5 R5 B R3 R3 B R5 R5 B R3
Probability 12 0 16 12 0 16 12 0 16 12 0 16 12 0 16 12 0

Total probability 12 12 28 40 40 56 68 68 84 96 96 112 124 124 140 152 152
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Fig. 4. Patterns of masks


