
A New Keystream Generator MUGI

Dai Watanabe1, Soichi Furuya1, Hirotaka Yoshida1,
Kazuo Takaragi1, and Bart Preneel2

1 Systems Development Laboratory, Hitachi, Ltd.,
292 Yoshida-cho, Totsuka-ku, Yokohama, 244-0817, Japan

{daidai, soichi, takara}@sdl.hitachi.co.jp
2 Katholieke Universiteit Leuven, Dept. Electrical Engineering-ESAT,

Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium
Bart.Preneel@esat.kuleuven.ac.be

Abstract. We present a new keystream generator (KSG) MUGI, which
is a variant of Panama proposed at FSE ’98. MUGI has a 128-bit secret
key and a 128-bit initial vector as parameters and generates a 64-bit
string per round. The design is particularly suited for efficient hardware
implementations, but the software performance of MUGI is excellent
as well. A speed optimized implementation in hardware achieves about
3 Gbps with 26 Kgates, which is several times faster than AES. On the
other hand the security was evaluated according to re-synchronization
attack, related-key attack, and linear correlation of an output sequence.
Our analysis confirms that MUGI is a secure KSG.

Keywords. Keystream generator, Block cipher, Panama, Re-synchro-
nization attack, Related-key attack.

1 Introduction

This paper presents a new keystream generator MUGI that is designed for use
as a stream cipher. MUGI has a 256-bit input (consisting of a 128-bit secret key
and a 128-bit public parameter IV) and outputs a 64-bit random data block for
each round.
Several approaches are known in the literature to the design of KSGs. One

particularly popular approach is based on Linear Feedback Shift Registers (LF-
SRs). They are suitable for very compact hardware implementations and provide
good randomness. However, due to their linearity and predictability, they cannot
be used in their pure forms. Several techniques have been developed to improve
their security, such as the combination generator, non-linear filtering, and clock
control. A substantial amount of research has been spent on the security of these
schemes. But LFSRs are not suited for efficient software implementations.
On the other hand software-oriented stream ciphers seem to be designed in an

ad hoc way, and we do not seem to have the appropriate tools to evaluate them.
The most important criterion is to verify deviations from randomness. Examples
in this class include (Alleged) RC4 [Sc96] (security analysis in [FS01]), SEAL 3.0



182

[RC98] (security analysis in [Fl01]), LEVIATHAN [McF00] (security analysis in
[CL01]), and LILI-128 [CGMPS00] (security analysis in [MFI01]).
In this paper we focus on Panama, designed by J. Daemen and C. Clapp

[DC98]. Panama is based on generic design principles, comparable to those of
block ciphers. Panama can be used both as a KSG and as a hash function.
However, recently Rijmen et al. [RRPV01] have exposed security weaknesses
in the security of Panama as a hash function. But these weaknesses have no
impact at all on the security of Panama as a KSG.
MUGI is a variant of Panama which is only suitable as a KSG. The de-

sign goal is to make MUGI suitable for many platforms. As a result, MUGI
achieves a performance that is equal to or even better than AES [DR99], es-
pecially the hardware performance is excellent. MUGI can be implemented in
hardware with 18 Kgates. In terms of security, we evaluate the security against
re-synchronization attacks [DGV94] and related-key attacks. Furthermore we
calculate the linear correlation of the output sequence. As the result, we con-
clude that MUGI is a reliable and efficient cryptographic primitive that can be
used to provide encryption and message authentication.
This article is organized as follows: in Sect. 2 we describe the generalization of

a Panama-like structure and discuss the security of this type of KSG. The speci-
fication of MUGI is given in Sect. 3. In Sect. 4 we present some results about the
security of MUGI. In Sect. 5 we discuss the implementation of MUGI both in soft-
ware and hardware. In Appendix, we give test vectors of MUGI. You can find the
perfect version of this paper at http://www.sdl.hitachi.co.jp/crypto/mugi/
index-e.html.

2 Design Policy

2.1 Panama-like keystream generator

The principal part of a KSG is a set (S, Υ, f) which consists of an internal state
S, its update function Υ , and the output filter f which abstracts the output
sequence from the internal state S. We call the set (S, Υ ) the internal-state
machine. In addition we call a single application of the state update function a
round. S(t) refers to the internal state at round t.
For Panama, the internal state is divided into two parts, state a and buffer

b. The update function of Panama depends in a different way on different parts
of the internal state. Note that each update function uses another internal state
as a parameter. We denote the update functions of state a and buffer b with ρ
and λ, respectively.
The noteworthy characteristic of Panama’s ρ-function is its use of an SPN

structure. Such a KSG design must be motivated by the following simple ques-
tion: how can a secure cryptographic function be constructed from insecure cryp-
tographic components? For block ciphers (or pseudorandom permutations) there
is a de facto standard construction, which uses a Feistel network or an SPN as
a component (called a round function) and iterates it for mixing. Panama is an



183

answer for a KSG. It uses a core mixing function ρ similar to the round function
of a block cipher and a large buffer instead of fixed extended keys and iterations
of a round function.
On the other hand the function λ is a simple linear transformation. The

output filter f drops about half of the bits of state a for each round. We call
a KSG which satisfies such characteristics Panama-like keystream generator
(PKSG). This can be formalized in the definition of a PKSG as follows.

Definition 1 Consider an internal-state machine consisting of two internal
states, namely the state a, the buffer b, and their update functions ρ, λ. The
keystream generator which consists of an internal-state machine ((a, b), (ρ, λ))
and an output filter f is called a Panama-like keystream generator if it
satisfies the following conditions:

(1) ρ includes an SPN transformation that uses parts of buffer b as a parameter.

a(t+1) = ρ(a(t), b(t)).

(2) λ is a linear transformation that uses a part of state a as a parameter.

b(t+1) = λ(b(t), a(t)).

(3) f outputs a part of state a, which is typically no more than 1/2 of the bits
of a.

The first condition characterizes a PKSG, but the other conditions are also
necessary. For example, not updating the buffer or outputting all of the state
significantly decrease the security [FWT00].

2.2 Selection of components

MUGI is a KSG and has a PKSG structure. In order to select the components
for MUGI, we want to build on other strong cryptographic primitives in the
literature. As a result we use some components of AES [DR99], which are well
evaluated. For example the substitution table S-box and the linear transforma-
tion are the same as for AES. Although currently the design of a PKSG is not
as straight forward as that of block ciphers, this selection should make MUGI
more secure.

2.3 The difference between Panama and MUGI

The MUGI design aims to achieve the following two points:

1. Efficiency in hardware implementations. Particularly a gate-efficient imple-
mentation must be possible.

2. To make evaluation easier than Panama.

To achieve these properties, the basic data size is decreased from 256-bit to
64-bit. And an 8-bit substitution table is adopted to improve the security of
ρ. In addition, an extended Feistel network is adopted in ρ instead of a simple
SPN-structure, in order to simplify the evaluation.



184

3 Specification of MUGI

In this section we give a description of MUGI. MUGI is a KSG with a 128-
bit secret key K (a secret parameter) and a 128-bit initial vector I (a public
parameter). It generates a 64-bit length random bit string Out[t] for each round.
As we mention in Sect. 2.1 any KSG can be described as the combination of

an internal-state machine and an output filter.
First we describe the internal state of MUGI in Sect. 3.2 and the update

function in Sect. 3.3. Then we discuss the initialization in Sect. 3.4 and the
random number generation in Sect. 3.5.

3.1 Input

The basic data size of MUGI is 64 bits, called a unit in this paper. MUGI has
two inputs as a parameter. One is a 128-bit secret key K and the other one is
a 128-bit initial vector I. The left and right units of K are denoted by K0 and
K1, respectively. I0 and I1 are used in a similar way.

3.2 Internal State

MUGI has two internal states, state a and buffer b. The state a consists of 3
units denoted by a0, a1, a2 from left to right. On the other hand, the buffer b
consists of 16 units. Each of them is denoted by b0, . . . , b15 in the same manner
as state a.

3.3 Update Function

The update function of PKSG consists of ρ and λ, the update functions of state
a and buffer b, each of which uses the other internal state as a parameter. In
other words the update function Υ of the complete internal state is described as
follows:

(a(t+1), b(t+1)) = Υ (a(t), b(t)) = (ρ(a(t), b(t)), λ(a(t), b(t))).

In the following we explain ρ and λ of MUGI.

Core mixing function ρ. ρ is the update function of state a. It is a kind of
target-heavy Feistel structure [SK96] with two identical F-functions (Fig. 1), it
uses buffer b as a parameter. The function ρ can be described as follows:

a
(t+1)
0 = a

(t)
1

a
(t+1)
1 = a

(t)
2 ⊕ F(a(t)

1 , b
(t)
4 )⊕ C1

a
(t+1)
2 = a

(t)
0 ⊕ F(a(t)

1 , b
(t)
10 <<< 17)⊕ C2

C1, C2 in the equations above are constants.



185

a0
(t) a1

(t) a2
(t)

a0
(t+1) a1

(t+1) a2
(t+1)

C1 C2

17<<< F
F

b4
(t)

b10
(t)

64 64 6464

64

6464

Fig. 1. ρ-function of MUGI

F-function The F-function consists of a key addition (the data addition from
the buffer), a non-linear transformation using the S-box, a linear transformation
using the MDS matrix M and a byte shuffling (Fig. 2). The S-box and the MDS
matrix are the same as for AES.

S

M

S S S S S S S

8 8 8 8 8 8 8 8

M

F-function

Buffer

Fig. 2. F-function of MUGI

Buffer update function λ. The function λ is the update function of buffer b,
it uses a part of state a as a parameter. λ is the linear transformation of b and
can be described as follows:

b
(t+1)
j = b

(t)
j−1 (j 6= 0, 4, 10)

b
(t+1)
0 = b

(t)
15 ⊕ a

(t)
0

b
(t+1)
4 = b

(t)
3 ⊕ b

(t)
7

b
(t+1)
10 = b

(t)
9 ⊕ (b(t)13 <<< 32)



186

3.4 Initialization

The initialization of MUGI is divided into three steps. The first step initializes
the buffer b with a secret key K. The second initializes state a with an initial
vector I. Finally the whole internal state is mixed.
In the first step the secret key K is extended to 192 bits and it is put into

state a as follows:

a
(t0)
0 = K0,

a
(t0)
1 = K1,

a
(t0)
2 = (K0 <<< 7)⊕ (K1 >>> 7)⊕ C0,

Here time t0 denotes the start of the initialization. The value C0 in the above
equation is a constant (see Sect. 3.6). Then follow, a mixing step with only a ρ

iteration and the left side unit of each a(t), a
(t)
0 is put into the buffer b as follows:

b15−i = (ρ
i+1(a(t0), 0))0

In the above equations ρi denotes the i-th iteration of ρ and ρ(a, 0) means that
the data stored into buffer b is not used for this step.
In the second step the mixed state a(K) := ρ16(a(t0), 0) and the initial vector

I are required. I is added to state a as follows:

a(K, I)0 = a(K)0 ⊕ I0,
a(K, I)1 = a(K)1 ⊕ I1,
a(K, I)2 = a(K)2 ⊕ (I0 <<< 7)⊕ (I1 >>> 7)⊕ C0,

Then state a is mixed again with 16 rounds of the iteration ρ. So the mixed state
a can be represented as ρ16(a(K, I), 0).
The last step consists of 16 rounds of the whole update function Υ , so a(1),

the initialized state with K, I, can be written as follows:

a(1) = Υ 16(ρ16(a(K, I), 0), b(K)),

where b(K) denotes the buffer b initialized by the secret key K.

3.5 Random number generation

After the initialization, MUGI generates 64-bit random numbers and transforms
the internal state in every iteration. Denote the output of round t as Out[t], then
the output is given as follows:

Out[t] = a
(t)
2

In other words MUGI outputs 64 bits of the right side of state a at the beginning
of the round process.
The processes from the initialization to the random number generation are

summarized in Table 1.



187

Table 1. Schedule of MUGI

Round t Process Input Output

−49 Inputting Key K –
−48, . . . ,−33 Mixing (by ρ) – –

Initialization −32 Inputting IV I –
−31, . . . ,−16 Mixing (by ρ) – –
−15, . . . , 0 Mixing (by Υ ) – –

Generating 1, . . . Mixing and – Out[t]
bit strings Outputting

3.6 Constants

The MUGI algorithm uses three constants: C0 in the initialization, and C1, C2

in ρ. They have the following values:

C0 = 0x6A09E667F3BCC908,
C1 = 0xBB67AE8584CAA73B,
C2 = 0x3C6EF372FE94F82B.

These are hexadecimal values of
√
2,
√
3, and

√
5 multiplied by 264. These con-

stants aim to prevent the invariance of byte-wise equality, and are chosen to
ensure that there is no trap-door.

4 Security

The security of KSG is reduced to the relationship between input and output
bits (or relationship between output bits). All attacks to KSG that improve over
exhaustive key search and over exhaustive search over the internal state use some
of these relationships and guess the internal state. We consider the possibility
that the attacker can observe any kind of relationship, i.e. the condition that the
attacker can observe some deviation between input and output bits (or between
only output bits) is identified with the success of the attack, even if the attacker
cannot get any information about the internal state. This identification comes
from the philosophy that the output sequence of the secure KSG should be
unpredictable. The relationship mentioned above is divided into three cases as
follows:

Randomness. An attacker fixes a secret key and an initial vector, and then he
observes the relation in the output sequence.

Re-synchronization attack. An attacker fixes a secret key, and then he ob-
serves the relation between initial vectors and output sequences.

Related-key. An attacker fixes an initial vector, and then he observes the re-
lation between keys and output sequences. The related-key attack includes
observing the relation between keys and initial vectors.



188

On the other hand exhaustive key searching require 2127 computations on average
to find correct key. So we say an attack is efficient when it costs less than 2127

encryptions on average to find the correct key.

4.1 Randomness of an output sequence

The linearity should be one of the most important characteristics in the known
evaluation methods. Here ‘linearity’ does not imply linear complexity, but max-
imum probability of linear combinations of output bits. We note that searching
this linear combination is analogous to search for the best approximation for
a block cipher, and apply the evaluation method used in linear cryptanalysis
[Ma94]. More specifically, this corresponds to counting active S-boxes in linear
approximations for evaluating the linearity of a MUGI output sequence. At the
same time applying this technique to PKSGs is more difficult than applying it
to block ciphers because the buffer is updated dinamically. Therefore, we give
up constructing actual linear approximations and calculate the lower bound of
the number of active S-boxes required for any linear approximation.
We denoted the number of active S-boxes of a linear approximation with AS.

The maximum linear probability of the MUGI S-box is 2−6, so it can be assumed
that the linear characteristic of the output sequence of MUGI is sufficiently small
if there is no linear approximation withAS < 22. Applying this method to MUGI
results in the following theorem:

Theorem 1 For all linear approximations of MUGI, AS ≥ 22.

Here, we present the proof of this theorem. Constructing a linear approximation
which consists of output units can be separated into two steps as follows:

1. Construct a linear approximation of ρ.
2. Search a path including the buffer.

We illustrate each step below.

The linear approximation of ρ. Before starting the evaluation, we give an
equivalent transformation of ρ for easier analysis. Figure 3 shows the digest of
the transformation. In Fig. 3 the left side F-function is denoted by G; we use this
notation just for convinience. First, F can be moved to the left side in the next
round. Next, the mask corresponding to an output unit can assume all values, so
we separate this part into two masks, an output mask and an input mask. This
transformation is not ‘equivalent’ in the common sense, but it is equivalent in the
sense that mask patterns are not changed by the transformation. After that, we
remove unnecessary branches. The right side of Fig. 3 shows the transformed ρ.
Hereafter, “ρ” represents the transformed ρ. Note that the number of branches
drops off to two, and the output masks of the F- and G-functions come directly
from the ‘input’ and ‘output’ masks, which the attacker can choose.



189

F

G

F

G

F
F

G

F

G

Fig. 3. Equivalent transformation of ρ

Figure 4 shows some important paths of ρ. Only the five paths shown there
assure that the number of active S-boxes is greater than five. The branch num-
ber of the matrix M is defined by minx6=0(wH(x) + wH(Mx)), where wH(x)
denotes the byte-wise Hamming weight of x [Da95]. The branch number of the
linear transformation is an important characteristic for the diffusion properties
of a block cipher. But for PKSGs, the branch number of the matrix M does
not guarantee a lower bound on the number of active S-boxes for a linear ap-
proximation, even if it includes several active F-functions. This property is quite
different from that of block ciphers.

Linear path trail of MUGI. Next, we search for a path including the buffer
that gives a linear approximation consisting of only output bits. For PKSGs,
the attacker can observe any number of rounds. So it is possible to construct
the linear approximation with the outputs of any rounds. Furthermore, some
linear approximations may skip intermediate ρ-functions, it implies that there is
a possibility that to observe more rounds increases the deviation. This feature
makes it difficult to search all paths.
Before the starting discussion we define some notation. We denote the first

and last round of the path as ts and te. The mask that is applied to the data
XOR-ed from state a to buffer b is denoted as Γ (D)(t). In addition we denote an
active F-function as 1, and a zero approximated F-function as 0. For example,
when an F-function is active and a G-function is not active in round t, we denote
this as Γ (a)(t) = (1, 0).
First, we pay special attention to the first round and the last round of the

path. The value of the input mask for all units of the buffer and their state is
zero in the first round, and only the mask for an output unit Out[ts] is active.
Only two paths, Type 1 and 3 in Figure 4, satisfy this condition. The last round
is the same as the first round, so the possible paths in round te are only those
shown as Type 1 and 2.
Next we consider the influence of the buffer to ρ. The Γ (D)(t) is 0 from round

ts to ts + 4 because all input masks for the first round are 0. In addition, the
input mask from the buffer to the G-function must be active, so Γ (D)(ts+5) is



190

G

F

G

F

G

F

Type 1: AC >= 10

G

F

0

G

F

0

0

0

0

00

0

0

0

0

0 0

0

0

0

0 0

0

0

0

G

F

Type 2: AC >= 5

0

0

G

F

Type 3: AC >= 5

0

Type 4: AC >= 5 Type 5: AC >= 5

Fig. 4. Linear approximation of ρ

active. In a similar manner, Γ (D)(t) is 0 at round te − 5 ≤ t ≤ te and is active
at round te − 6.

The path search (or the calculation of the lower bound for AS) is divided into
several cases according to the mask before or after the round ts and te. But we
show the proof only for the case that both masks at round ts and te are of Type
1. Other cases can be proved in similar manner. In this case AS ≥ 20 because
both the first round and the last round are Type 1. In addition, Γ (D)(te−6) is
active.

If there is a round i (1 ≤ i ≤ 4) such that (Γ (a)(ts+i), Γ (a)(ts+i+1)) =
((0, 0), (1, 1)), the path includes more active F-functions of Type 1 or 3, so
AS ≥ 25 is derived. Hence we consider only the case that Γ (a)(ts+i) = 0 for
all rounds i from 1 to 4. Similarly the mask condition before the last round
must be Γ (a)(te−i) = 0 for all rounds i from 1 to 6. Under this condition,
Γ (a)(ts+5) 6= (0, 0). Additionally, Γ (D)(ts+6) and Γ (D)(te−6) are active and
Γ (D)(te−7) is equal to 0. So the number of rounds te − ts must be greater
than 14. These results and the fact that Γ (D)(te−6) is active demonstrate that
Γ (a)(te−6) 6= (0, 0) or Γ (a)(te−7) 6= (0, 0). Therefore AS ≥ 22 is shown in this
case.



191

4.2 Re-synchronization attack and related-key attack

The re-synchronization attack [DGV94] should be the most effective attack
against PKSGs, hence we try to apply it to MUGI. Before starting the dis-
cussion we give a brief explanation of this type of attack. A re-synchronization
attack can be used against keystream generators, which have not only a secret
key, but also a public parameter. It is an effective attack if the initialization of the
algorithm is too simple. Under the assumption that the secret key is fixed, the
attacker first searches for some relationship between the public parameters and
the corresponding outputs. If some relationship has a high probability, one can
guess information about the secret key from it. For example, linear cryptanalysis
on the counter mode of a block cipher is a kind of re-synchronization attack. Esti-
mating the security against related-key attack is the same as re-synchronization,
by interchanging initial vectors with secret keys.
We chose differential and linear characteristics, and Square attack [DKR97]

variants for evaluating the relationship between inputs and outputs of MUGI.
The attacks against block ciphers using these characteristics are well known as
differential cryptanalysis [BS93] and linear cryptanalysis [Ma94]. The design of
a PKSG, especially its ρ function, is quite similar to a block cipher design. This
suggests that the above two statistical properties are well suited for evaluating
the relationship between the initial vector I and a corresponding internal state.

Maximum differential and linear characteristics of iterations of ρ. Now
we ignore the XOR to the buffer and output generation, i.e., we consider only
the iteration of ρ and evaluate its differential and linear characteristics. We can
apply these evaluation methods in the same way as they are applied to block
ciphers.
Table 2 shows the minimum number of active F-functions in all units of state

a for each attack.

Table 2. Number of active F-functions in the differential and linear paths of ρ

Number of rounds · · · 11 12 13 14 15 16 17 18 19 20 21 22 23

Differential · · · 10 12 12 12 14 16 16 16 18 20 20 20 22

Linear · · · 10 12 12 13 14 16 16 17 18 20 20 21 22

Resistance against a re-synchronization attack: Table 2 shows the relationship
between the initial vector I and corresponding state a(t) transformed by t iter-
ations of ρ. It implies that more than 23 iterations of ρ have no differential and
linear characteristics with a probability higher than 2−128.
In the initialization of MUGI, 16 rounds transformed only by ρ are applied

after setting the initial vector I. Afterwards, 16 rounds transformed by Υ are



192

applied. However, the buffer b influences the differential and linear characteristics
of state a only after round −9, i.e., 22 rounds after setting I. Therefore, we
conclude that to observe the deviation due to these characteristics is difficult
after round t > 0.

On the other hand Table 2 suggests that there are some correlation between
initial vector I and some units of corresponding buffer b at round 0. However, the
differential characteristic consists of an output sequence and the buffer has more
than two buffer-units. The correlation between one of them and I is too small
to observe. Therefore, no attacker can exploit that correlation. The conditions
for linear cryptanalysis are similar.

Related-key attacks: To observe the correlation between keys and the correspond-
ing outputs is more difficult than the correlation between initial vectors and the
corresponding outputs because of the first mixing step. So no security flaw can
be found by using differential and linear cryptanalysis.

Square-attack variants. Because of the highly byte-oriented structure, some
of the Square attack [DKR97] variants can be considered. The Square attack is
currently the most successful attack against block ciphers with an SPN-structure,
e.g., Rijndael, the AES. We examine the applicability of the attack and inves-
tigate the possible relations. Consequently we conclude that no variants of the
Square attack can reduce the security of MUGI PKSG.

The Square attack against a block cipher is a chosen-plaintext attack where
an attacker chooses a number of related plaintext blocks each of which is typically
different only in a byte or a word. We call these chosen plaintext set Λ-set
if the word has all values, and we say that the word is saturated. Because of
the saturation at the input of a non-linear function, the attacker can expect
to control the intermediate values to some extent. From the ciphertext side,
the attacker partially decrypts the intermediate value which is still controlled
because of the saturated plaintext blocks. If the attacker guesses the key for the
partial decryption, then the attacker can distinguish the correct and incorrect
round keys.

In a stream cipher, an attacker must try to select different value of either key
or initial vector values to mount this attack. Therefore the possible applications
of the Square attack must be either a related-key cryptanalysis or a chosen
initial vector attack.

Related-key attacks: At first, we define the model of the attack. We assume that
the attacker does not know the key value. To obtain the saturation property, the
attacker can run a number of key initializations, the keys of which differ only in
a part of the key value; in this discussion we will concentrate on key-dependent
runs where the keys differ in one word. The attacker cannot observe anything
until the pseudorandom number sequence comes out. We check if the attacker
may find any properties at the output sequences amongst a number of runs.



193

The saturated key set will inject the saturation property during the buffer
initialization. At first, we investigate how buffers are initialized with the proper-
ties. For simplicity, we ignore the key padding rule so that we give the attacker
the maximum flexibility for setting the initial state values. Let Λ denote the
property of an intermediate word such that in each run the concerning word has
a different value, i.e., the word is saturated. Let O denote the property that for
all runs the value is constant. Also we introduce the weakest property “balanced”
denoted by Φ that means that the XOR-summation over all runs is zero. If the
word is neither of them, namely uncontrollable, then we use the notation ∗. If
the word triple (A,B,C) has the properties of Λ, O, and Φ for the word A, B,

C, then we write (A,B,C)
p→ (Λ,O,Φ), or A

p→ Λ,B
p→ O, and C

p→ Φ.
Obviously the most effective word in which to inject the saturation is the word

that affects other words the last. We analyze the case of (a0, a1, a2)
p→ (Λ,O,O).

Remember the output of the t-th round is denoted by (a
(t)
0 , a

(t)
1 , a

(t)
2 ). We simply

trace the property and show the results in Table 3. Hence, the initial values of

Table 3. The word properties in each intermediate values

Intermediate value Word property

(a
(0)
0 , a

(0)
1 , a

(0)
2 ) (Λ,O,O)

(a
(1)
0 , a

(1)
1 , a

(1)
2 ) (O,O,Λ)

(a
(2)
0 , a

(2)
1 , a

(2)
2 ) (O,Λ,O)

(a
(3)
0 , a

(3)
1 , a

(3)
2 ) (Λ,Λ,Λ)

(a
(4)
0 , a

(4)
1 , a

(4)
2 ) (Λ,Φ, Φ)

(a
(5)
0 , a

(5)
1 , a

(5)
2 ) (Φ, ∗, ∗)

(a
(6+)
0 , a

(6+)
1 , a

(6+)
2 ) (∗, ∗, ∗)

the buffer bi have the following properties depending on the index i:

bi
p→















O : i = 15, 14,
Λ : i = 13, 12,
Φ : i = 11,
∗ : i = 10, 9, ..., 0

(1)

Note that this does not mean that the attacker is able to control the interme-
diate value up to b11. In fact, b11 can be expressed by other buffer values and
a single F -function evaluation (see the discussion above concerning non-linear
buffer relation). However, thanks to the subsequent randomization after initial
vector injection, this property must be destroyed before the output sequence is
generated. Therefore we believe the related-key attack based on the Square

attack does not pose any threat.

Re-synchronization attacks: This attack may be more practical than the above
related-key cryptanalysis. However, the initial vector does not inject any value



194

to the buffer until the 16-round mixing completes. Taking the number of control-
lable rounds shown above into account, 16-round mixing is sufficient to destroy
the saturation property due to initial vector.

5 Implementation

MUGI is designed to be suitable both in software and hardware implementa-
tions. In both cases, the implementation achieves a high performance and a low
implementation cost. Table 4 and 5 summarize the software and hardware per-
formance respectively. Table 4 shows that the performance in C is a little bit
faster than AES.

Table 4. Software performance

Processor Frequency OS Compiler Performance
(cycle/byte)

Alpha 21164 600MHz Digital UNIX V4.0B DEC cc 9.8

Intel Pentium III 500MHz Windows NT 4.0 Visual C++ 6.0 17.7

Table 5. Hardware performance (Hitachi 0.35 µm CMOS ASIC library)

Optimization Gate size Clock cycle Throughput Initialization
(K gate) (MHz) (Mbps) (ns)

speed opt. 26.1 45.7 2922 1095

gate cnt. opt. 18.0 42.3 676 4590
(3 layers pipelining) (≥ 19.0) (126.6) (2025) (1531)

The hardware implementation of MUGI achieves excellent performance, sev-
eral time faster than AES.

6 Conclusion

We have proposed a new keystream generator MUGI built on the idea of Panama.
MUGI is efficient in both hardware and software. Our security analysis indicates
that MUGI is resistant against related-key attacks and re-synchronization at-
tacks. But the security of MUGI should be evaluated more. We invite the reader
to explore the security of MUGI.

References

[BS93] E. Biham, A. Shamir, “Differential Cryptanalysis of the Data Encryption Stan-
dard,” Springer-Verlag, 1993



195

[CGMPS00] A. Clark, J. Golic, W. Millan, L. Penna, L. Simpson, “The LILI-
128 Keystream Generator,” NESSIE project submission, 2000, available at
http://www.cryptonessie.org.

[CL01] P. Crowley, S. Lucks, “Bias in the LEVIATHAN Stream Cipher,” Fast Software
Encryption, FSE 2001, Proceedings, pp. 223-230, 2001.

[Da95] J. Daemen, “Cipher and hash function design strategies based on linear and
differential cryptanalysis,” Doctoral Dissertation, March 1995, K. U. Leuven.

[DC98] J. Daemen, C. Clapp, “Fast Hashing and Stream Encryption with Panama,”
Fast Software Encryption, FSE’98, Springer-Verlag, LNCS 1372, pp.60-74, 1998.

[DGV94] J. Daemen, R. Govaerts, J. Vandewalle, “Resynchronization weaknesses in
synchronous stream ciphers,” Advances in Cryptology, Proceedings Eurocrypt’93,
Springer-Verlag, LNCS 765, pp. 159-169, 1994.

[DKR97] J. Daemen, L. Knudsen, V. Rijmen, “The Block Cipher Square,” Fast Soft-
ware Encryption, Springer-Verlag, LNCS 1267, pp. 149-165, 1997.

[DR99] J. Daemen, V. Rijmen, “AES Proposal: Rijndael,” AES algorithm submission,
September 3, 1999, available at http://www.nist.gov/aes/.

[Fl01] S. Fluhrer, “Cryptanalysis of the SEAL 3.0 Pseudorandom Function Family,”
Fast Software Encryption, FSE 2001, Proceedings, pp. 142-151, 2001.

[FS01] S. Fluhrer, M. Shamir, “Weaknesses in the Key Scheduling Algorithm of RC4,”
Selected in Areas in Cryptography, SAC 2001, Springer-Verlag, LNCS 2259, pp. 1-
24, 2001.

[FWT00] S. Furuya, D. Watanabe, K. Takaragi, “Self-Evaluation Report MULTI-S01,”
2000, available at http://www.sdl.hitachi.co.jp/crypto/s01/index.html

[JK97] T. Jacobsen and L. R. Knudsen, “The Interpolation Attack on Block Ciphers,”
Fast Software Encryption, FSE’97, Springer-Verlag, LNCS 1267, pp. 28-40, 1997.

[Ku94] L. R. Knudsen, “Truncated and Higher Order Differentials,” Fast Software

Encryption, FSE’94, Springer-Verlag, LNCS 1008, pp. 196-211, 1995.

[Ma94] M. Matsui, “Linear cryptanalysis method for DES cipher,” Advances in Cryp-

tology, Eurocrypt’93, Springer-Verlag, LNCS 765, pp. 159-169, 1994.

[McF00] D. McGrew, S. Fluhrer, “The stream cipher LEVIATHAN,” NESSIE project

submission, 2000, available at http://www.cryptonessie.org/.

[MFI01] M. Mihaljevic, M. Fossorier, H. Imai, “Fast Correlation Attack Algorithm
with List Decoding and an Application,” Fast Software Encryption, FSE 2001,
Proceedings, pp. 208-222, 2001.

[RC94] P. Rogaway, D. Coppersmith, “A Software-Optimized Encryption Algorithm,”
Fast Software Encryption, FSE’94, Springer-Verlag, LNCS 809, pp. 56-63, 1994.

[RC98] P. Rogaway, D. Coppersmith, “A Software-Optimized Encryption Algorithm,”
Journal fo Cryptography, Vol. 11, No. 4, pp. 273-287, 1998.

[RRPV01] V. Rijmen, B. Van Rompay, B. Preneel, J. Vandewalle, “Producing Colli-
sions for PANAMA,” Fast Software Encryption, FSE 2001, proceedings, pp. 39-53,
2001.

[Sc96] B. Schneier, Applied Cryptography, Second Edition, John Wiley & Sons, pp. 397-
398, 1996.

[SK96] B. Schneier, J. Kelsey, “Unbalanced Feistel Networks and Block Cipher De-
sign,” Fast Software Encryption, FSE’96, Springer-Verlag, LNCS 1039, pp. 121-
144, 1996.

[Spec] D. Watanabe, S. Furuya, H. Yoshida, K. Takaragi, MUGI

Pseudorandom number generator, Specification, 2001, available at
http://www.sdl.hitachi.co.jp/crypto/mugi/index-e.html.



196

[Eval] D. Watanabe, S. Furuya, H. Yoshida, K. Takaragi, MUGI Pseu-

dorandom number generator, Self Evaluation, 2001, available at
http://www.sdl.hitachi.co.jp/crypto/mugi/index-e.html.

A Test Vector

key[16] =
{0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0a 0x0b 0x0c 0x0d 0x0e 0x0f}
iv[16] =
{0xf0 0xe0 0xd0 0xc0 0xb0 0xa0 0x90 0x80 0x70 0x60 0x50 0x40 0x30 0x20 0x10 0x00}

after key input:
state a = 0001020304050607 08090a0b0c0d0e0f 7498f5f1e727d094
buffer b =
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000

after the first 16 rounds mixing:
state a = 7dea261cb61d4fea eafb528479bb687d eb8189612089ff0b
buffer b =
7dea261cb61d4fea bfe2485ac2696cc7 c905d08f50fa71db fd5755df9cc0ceb9
5cc4835080bc5321 dfbbb88c02c9c80a 591a6857e3112cee 20ead0479e63cdc3
2d13c00221057d8d b36b4d944f5d04cb 738177859f3210f6 c08ee4dcb2d08591
9c0c2097edb20067 09671cfbcfaa95fb 9724d9144c5d8926 08090a0b0c0d0e0f

after iv input:
state a = 8d0af6dc06bddf6a 9a9b02c4499b787d f100cffe031d365b
buffer b =
7dea261cb61d4fea bfe2485ac2696cc7 c905d08f50fa71db fd5755df9cc0ceb9
5cc4835080bc5321 dfbbb88c02c9c80a 591a6857e3112cee 20ead0479e63cdc3
2d13c00221057d8d b36b4d944f5d04cb 738177859f3210f6 c08ee4dcb2d08591
9c0c2097edb20067 09671cfbcfaa95fb 9724d9144c5d8926 08090a0b0c0d0e0f

after the second 16 rounds mixing:
state a = 4e466dffcb92db48 f5eb67b928359d8b 5d3c31a0af9cd78f
buffer b =
7dea261cb61d4fea bfe2485ac2696cc7 c905d08f50fa71db fd5755df9cc0ceb9
5cc4835080bc5321 dfbbb88c02c9c80a 591a6857e3112cee 20ead0479e63cdc3
2d13c00221057d8d b36b4d944f5d04cb 738177859f3210f6 c08ee4dcb2d08591
9c0c2097edb20067 09671cfbcfaa95fb 9724d9144c5d8926 08090a0b0c0d0e0f

after the whole initialization:
state a = 0ce5a4d1a0cbc0f7 316993816117e50f bc62430614b79b71
buffer b =
d25c6643a9dabd67 e893c5b5a5b2ff2b ce840df556562dc6 4210def4ccf1b145
5eda7c5b0dbf1554 d3e8a809b214218a d42bcb0bb4811480 76d9c281df20192d
3dc6c6bc876beb72 39d84df58f8840e2 cd7fe2794367de6c 680920245819a4f5
f5e9e609dd8e3cc3 9cf94157cf512603 871323e1d70caa2b 0b6bb4c0466c7aba

output =
bc62430614b79b71 71a66681c35542de 7aba5b4fb80e82d7 0b96982890b6e143
4930b5d033157f46 b96ed8499a282645 dbeb1ef16d329b15 34a9192c4ddcf34e
...


