
Compression and Information Leakage of

Plaintext

John Kelsey, Certicom
(kelsey.j@ix.netcom.com)

1 Introduction

Cryptosystems like AES and triple-DES are designed to encrypt a sequence of
input bytes (the plaintext) into a sequence of output bytes (the ciphertext) in
such a way that the output carries no information about that plaintext except its
length. In recent years, concerns have been raised about ”side-channel” attacks
on various cryptosystems–attacks that make use of some kind of leaked informa-
tion about the cryptographic operations (e.g., power consumption or timing) to
defeat them. In this paper, we describe a somewhat different kind of side-channel
provided by data compression algorithms, yielding information about their in-
puts by the size of their outputs. The existence of some information about a
compressor’s input in the size of its output is obvious; here, we discuss ways to
use this apparently very small leak of information in surprisingly powerful ways.
The compression side-channel differs from side-channels described in [Koc96]

[KSHW00] [KJY00] in two important ways:

1. It reveals information about plaintext, rather than key material.
2. It is a property of the algorithm, not the implementation. That is, any im-
plementation of the compression algorithm will be equally vulnerable.

1.1 Summary of Results

Our results are as follows:

1. Commonly-used lossless compression algorithms leak information about the
data being compressed, in the size of the compressor output. While this
would seem like a very small information leak, it can be exploited in sur-
prisingly powerful ways, by exploiting the ability of many compression algo-
rithms to adapt to the statistics of their previously-processed input data.

2. We consider the ”stateless compression side-channel,” based on the compres-
sion ratio of an unknown string without reference to the rest of the message’s
contents. We also consider the much more powerful ”stateful compression
side-channel,” based on the compression ratio of an unknown string, given
information about the rest of the message.

3. We describe a number of simple attacks based mainly on the stateless side-
channel.

4. We describe attacks to determine whether some string S appears often in a
set of messages, using the stateful side-channel.

265

5. We describe attacks to extract a secret string S that is repeated in many
compressed messages, under partial chosen plaintext assumptions, using the
stateful side-channel.

6. We consider countermeasures that can make both the stateless and the state-
ful side-channels substantially harder to exploit, and which may thus block
some of these attacks.

7. We discuss the implications of these results, in light of the widespread use of
compression with encryption, and the ”folk wisdom” suggesting that adding
compression to an encryption application will increase security.

1.2 Practical Impact of Results

Compression algorithms are widely used in real-world applications, and have a
large impact on those applications’ performance in terms of speed, bandwidth
requirements, and storage requirements. For example, PGP and GPG compress
using the Zip Deflate algorithm before encrypting, IPSec can use IPComp to
compress packets before encrypting them, and both the SSH and TLS protocols
support an option for on-the-fly compression.

Potential security implications of using compression algorithms are of prac-
tical importance to people designing systems that might use both compression
and encryption.

The side-channel attacks described in this paper can have a practical impact
on security in many situations. However, it is important to note that these
attacks have little security impact on, say, a bulk encryption application which
compresses data before encrypting. To a first-order approximation, the attacks in
this paper are described in decreasing order of practicality. The string-extraction
attacks are not likely to be practical against many systems, since they require
such a specialized kind of partial chosen-plaintext access. The string-detection
attacks have less stringent requirements, and so are likely to be useful against
more systems. The passive information leakage attacks are likely practical to
use against any system that uses compression and encryption together, and for
which some information about input size is available.

In a broader sense, the results in this paper point to the need to consider the
impact of any pre- or post-processing done along with encryption and authenti-
caton. For example, we have not considered timing channels from compression
algorithms in this paper, but such channels will clearly exist for some compres-
sion algorithms, and must also exist for many other kinds of processing done
on plaintext before it is sent, or ciphertext after it is received and decrypted.
Similarly, anything done to the decrypted ciphertext of a message before au-
thenticating the result is subject to reaction attacks: attacks in which changes in
the ciphertext can cause different error messages or other behavior on the part
of the receiver, depending on some secret information that the attacker seeks to
reveal. (For decompressors which must terminate decompression with an error
for some possible inputs, for example, there are serious dangers with respect to
reaction attacks, or even with buffer-overrun or other related attacks.)

266

1.3 Previous Work

Although existence of the stateless compression side channel is obvious, we have
seen very little reference to it in the literature. Nearly all published works dis-
cussing compression and encryption describe how compression improves the se-
curity of encryption.
One of the attendants of FSE2002 brought [BCL02] to our attention; in this

article, researchers had noticed that they could use the compression ratio of
a file to determine the language in which it was written in. This is the same
phenomenon on which is based one of our stateless side channels.

1.4 Guide to the Paper

The remainder of this paper is arranged as follows: First, we discuss commonly-
used compression methods, and how they interact with encryption. Next, we
describe the side-channel which we will use in our attacks. We then consider
several kinds of attack, making use of this side channel. We conclude with a
discussion of various complications to the attacks, and possible defenses against
them.

2 Lossless Compression Methods and the Compression

Side-Channels

The goal of any compression algorithm (note: in this paper, we consider only
lossless compression algorithms) is to reduce the redundancy of some block of
data, so that an input that required R bits to encode can be written as an out-
put with fewer than R bits. All lossless compression algorithms work by taking
advantage of the fact that not all messages of R bits are equally likely to be
sent. These compression algorithms make a trade-off: they effectively encode the
higher probability messages with fewer bits, while encoding the lower proba-
bility messages with more bits. The compression algorithms in widespread use
today typically use two assumptions to remove redundancy: They assume that
characters and strings that have appeared recently in the input are likely to
recur, and that some values (strings, lengths, and characters) are more likely to
occur than others. Using these two assumptions, these algorithms are effective
at compressing a wide variety of commonly-used data formats.
Many compression algorithms (and specifically, the main one we will con-

sider here) make use of a “sliding window” of recently-seen text. Strings that
appear in the window are encoded by reference to their position in the window.
Other compression algorithms keep recently-seen strings in an easily-searched
data structure; strings that appear in that structure are encoded in an efficient
way.
Essentially all compression algorithms make use of ways to efficiently encode

symbols (characters, strings, lengths, dictionary entries) of unequal frequency,
so that commonly-occurring symbols are encoded using fewer bits than rarely-
occurring symbols.

267

For the purposes of this paper, it is necessary to understand three things
about these compression functions:

1. At any given point in the process of compressing a message, there are gener-
ally many different input strings of the same length which will compress to
different lengths. This inherently leaks information about these input strings.

2. The most generally useful compression algorithms encode the next few bytes
of input in different ways (and to different lengths), depending on recently-
seen inputs.

3. While a single “pass” of a compression algorithm over a string can leak only
a small amount of data about that string, multiple “passes” with different
data appearing before that string can leak a great deal of data about that
string.

This summary necessarily omits a lot of detail about how compression al-
gorithms work. For a more complete introduction to the techniques used in
compression algorithms, see [Sal97a] or [CCF01a].

2.1 Interactions with Encryption

Essentially all real-world ciphers output data with no detectable redundancy.
This means that ciphertext won’t compress, and so if a system is to benefit from
compression, it must compress the information before it is encrypted.
The “folk wisdom” in the cryptographic community is that adding compres-

sion to a system that does encryption adds to the security of the system, e.g.,
makes it less likely that an attacker might learn anything about the data be-
ing encrypted. This belief is generally based on concerns about unicity distance,
keysearch difficulty, or ability of known- or chosen-plaintext attacks. We believe
that this folk wisdom, though often repeated in a variety of sources, is not gener-
ally true; adding compression to a competently designed encryption system has
little real impact on its security. We base this on three observations:

Unicity distance is irrelevant. The unicity distance of an encryption system
is the number of bits of ciphertext an attacker must see before he has enough
information that it is even theoretically possible to determine the key. Com-
pression algorithms, decreasing the redundancy of plaintexts, clearly increase
unicity distance. However, this is irrelevant for practical encryption systems,
where a single 128-bit key can be expected to encrypt millions of bytes of
plaintext.

Keysearch difficulty is only slightly increased. Since most export restric-
tions on key lengths have gone away, we can expect this to become less and
less relevant over time, as existing fielded algorithms with 40- and 56-bit
key lengths are replaced with triple-DES or AES. At any rate, for systems
with keys short enough for brute force searching, adding general-purpose
compression algorithms to the system seems like a singularly unhelpful way
to fix the problem. Standard compression algorithms usually include fixed
headers, and tend to be pretty predictable in their first few bytes of output.

268

It seems unlikely that adding such a compression algorithm, even with fixed
headers removed, increases the difficulty of keysearch by more than a factor
of 10 to 100. Switching to a stronger cipher is a far cheaper solution that
actually solves the problem.

Standard algorithms not that helpful. Compression with some additional
features to support security (such as a randomized initial state) can make
known-plaintext attacks against block ciphers much harder. However, off-
the-shelf compression algorithms provide little help against known-plaintext
attacks (since an attacker who knows the compression algorithm and the
plaintext knows the compressor output). And while chosen-plaintext attacks
can be made much harder by specially designed compression algorithms,
they are also made much harder, at far lower cost, by the use of standard
chaining modes.

In summary, compression algorithms add very little security to well-designed
encryption systems. Such systems use keys long enough to resist keysearch at-
tack and chaining modes that resist chosen-plaintext attack. The real reason for
using compression algorithms isn’t to increase security, but rather to save on
bandwidth and storage. As we will disucuss below, this real advantage needs
to be balanced against a (mostly academic) risk of attacks on the system, such
as those described below, based on information leakage from the compression
algorithm.

3 The Compression Side-Channel and our Attack Model

In this section, we describe the compression side channel in some detail. We also
consider some situations in which this side channel might leak important data.
Any lossless compression algorithm must compress different messages by dif-

ferent amounts, and indeed must expand some possible messages. The compres-
sion side channel we consider in this paper is simply the different amount by
which different messages are compressed. When an unknown string S is com-
pressed, and an attacker sees the input and output sizes, he has almost certainly
learned only a very small amount about S. For almost any S, there will be a
large set of alternative messages of the same length, which would also have had
the same size of compressor output. Even so, some small amount of information
is leaked by even this minimal side-channel. For example, an attacker informed
that a file of 1MB had compressed to 1KB has learned that the original file must
have been extremely redundant.
Fortunately (for cryptanalysts, at least), compression algorithms such as

LZW and Zip Deflate adapt to the data they are fed. (The same is true of many
other compression algorithms, such as adaptive markov coding and Burrows-
Wheeler coding, and even adaptive Huffman coding of symbols.) As a message
is processed, the state of the compressor is altered in a predictable way, so that
strings of symbols that have appeared earlier in the message will be encoded more
efficiently than strings of symbols that have not yet appeared in the message.
This allows an enormously more powerful side-channel when the unknown string

269

S is compressed with many known or chosen prefix strings, P0, P1, ..., Pn−1. Each
prefix can put the compressor into a different state, allowing new information
to be extracted from the compressor output size in each case. Similarly, if a
known or chosen set of suffixes, Q0, Q1, ..., Qn−1 is appended to the unknown
string S before compression, the compressor output sizes that result will each
carry a slightly different piece of information about S, because those suffixes
with many strings in common with S will compress better than other suffixes,
with fewer strings in common with S. This can allow an attacker to reconstruct
all of S with reasonably high probability, even when the compressor output sizes
for different prefixes or suffixes differ only by a few bytes. In this situation, it is
quite possible for an attacker to rule out all incorrect values of S given enough
input and output sizes for various prefixes, along with knowledge or control over
the prefix values. Further, an attacker can build information about S gradually,
refining a partial guess when the results of each successive compressor output
are seen.
A related idea can be used against a system that compresses and encrypts,

but does not strongly authenticate its messages. The effect of altering a few bytes
of plaintext (through a ciphertext alteration) will be very much dependent on
the state of the decompressor both before and after the altered plaintext bytes
are processed. The kind of control exerted over the compressor state is different,
but the impact is similar. However, we do not consider this class of attack in
this paper.

3.1 Assumptions and Models

We will make the following assumptions in the remainder of this paper:

1. Each message is processed by first compressing it, then encrypting it.
2. The attacker can learn the precise compressor output length from the ci-
phertext.

3. The attacker somehow knows the precise input length, or (in some cases) at
least the approximate input length.

In the sections that follow, we will consider three basic classes of attacks:
First, we will consider purely passive attacks, where the attacker simply observes
the ciphertext length and compression ratio, and learns information that should
have been concealed by the encryption mechanism. Second, we will consider
a kind of limited chosen-plaintext attack, in which the attacker attempts to
determine whether and approximately how often some string appears in a set
of messages. Third, we will consider a much more demanding kind of chosen-
plaintext attack, in which the attacker must make large numbers of chosen or
adaptive-chosen plaintext queries, in hopes of extracting a whole secret string.

4 Data Information Leakage

In this section, we consider purely passive attacks; ways that an attacker can
learn some information he should not be able to learn, by merely observing

270

the ciphertexts and corresponding compression ratio. One general property of
these attacks is that they are quite hard to avoid, without simply eliminating
compression from the system. However, it is also worth noting that most of these
attacks are not particularly devastating under most circumstances.

4.1 Highly Redundant Data

Consider a large file full of binary zeros or some other very repetitive contents.
Encrypting this under a block cipher in ECB-mode would reveal a lot of re-
dundancy; this is one reason why well-designed encryption systems use block
ciphers in one of the chaining modes. Using CBC- or CFB-mode, the encrypted
file would reveal nothing about the redundancy of the plaintext file.
Compressing before encryption changes this behavior. Now, a highly-redundant

file will compress extremely well. The very small ciphertext will be sufficient,
given knowledge of the original input size, to inform an attacker that the plain-
text was highly redundant.
We note that this information leak is not likely to be very important for most

systems. However:

1. Chaining modes prevent this kind of information leakage, and this is, in fact,
one very good reason to use chaining modes with block ciphers.

2. In some situations, leaking the fact that highly-redundant data is being
transmitted may leak some very important information. (An example might
be a compressed, encrypted video feed from a surveilance camera–an attacker
could watch the bandwidth consumed by the feed, and determine whether
the motion of his assistant trying to get past the camera had been detected.)

4.2 Leaking File or Data Types

Different data formats compress at different ratios. A large file containing ASCII-
encoded English text will compress at a very different ratio from a large file
containing a Windows executable file. Given knowledge only of the compression
ratio, an attacker can thus infer something about the kind of data being trans-
mitted. This is not so trivial, and may be relevant in some special circumstances.
This may be resisted by encoding the data to be transmitted in some other

format, at the cost of losing some of the advantage of compression.

4.3 Compression Ratio as a Checksum

Consider a situation where an attacker knows that one of two different known
messages of equal length is to be sent. (For example, the two message might
be something like ”DEWEY DEFEATS TRUMAN!” or ”TRUMAN DEFEATS
DEWEY!”.) If these two messages have different compression ratios, the attacker
can determine precisely which message was sent. (For this example, Python’s
ZLIB compresses ”TRUMANDEFEATS DEWEY!” slightly better than ”DEWEY
DEFEATS TRUMAN!”)

271

More generally, if the attacker can enumerate the set of possible input mes-
sages, and he knows the compression algorithm, he can use the length of the
input, plus the compression ratio, as a kind of checksum. This is a very straight-
forward instance of the side-channel; an attacker is able, by observing compres-
sion ratios, to rule out a subset of possible plaintexts.

4.4 Looped Input Streams

Sometimes, an input stream may be “looped,” so that after R bytes, the message
begins repeating. This is the sort of pattern that encryption should mask, and
without compression, using a standard chaining mode will mask it. However, if
the compression ratio is visible to an attacker, he will often be able to determine
whether or not the message is looping, and may sometimes be able to determine
its approximate period.
There are two ways the information can leak. First, if the period of the looping

is shorter than the “sliding window” of an LZ77-type compression algorithm, the
compression ratio will suddenly become very good. Second, if the period is longer
than the sliding window, the compression ratios will start precisely repeating.
(Using an LZW-type scheme will leave the compression ratios improving each
time through the repeated data, until the dictionary fills up.)

5 String Presence Detection Attacks

The most widely used lossless compression algorithms adapt to the patterns in
their input, so that when those patterns are repeated, those repetitions can be
encoded very efficiently. This allows a whole class of attacks to learn whether
some string S is present within a sequence of compressed and encrypted mes-
sages, based on using either known input data (some instances where S is known
to have appeared in messages) or chosen input (where S may be appended to
some messages before they’re compressed and encrypted).
All the attacks in this section require knowledge or control of some part of

a set of messages, and generally also some knowledge of the kind of data being
sent. They also all require knowledge of either inputs or compressor outputs, or
in some cases, compression ratios.

5.1 Detecting a Document or Long String with Partial Chosen

Plaintext

The attacker wants to determine whether some long string S appears often in a
set of messages M0,M1, ...,MN−1.
The simplest attack is as follows:

1. The attacker gets the compressed, encrypted versions of all of the Mi. From
this he learns their compressed output lengths.

272

2. The attacker requests the compressed, encrypted versions of M ′

i = Mi, S,
for all Mi. That is, he requests the compressed and encrypted results of
appending S to each message.

3. The attacker determines the length of S after compression with the scheme
in use.

4. The attacker observes M ′

i − Mi. If these values average substantially less
than the expected length of S after compression, it is very likely that S is
present in many of these messages.

5.2 Partial Known Input Attack

A much more demanding and complicated attack may be possible, given only
the leakage of some information from each of a set of messages. The attacker can
look for correlations between the appearance of substrings of S in the known part
of each message, and the compressed length of the message; based on this, he can
attempt to determine whether S appears often in those messages. This attack
is complicated by the fact that the appearance of substrings of S in the known
part of the message may be correlated with the presence of S in the message.
(Whether it is correlated or not requires more knowledge about how the messages
are being generated, and the specific substrings involved. For example, if S is
“global thermonuclear war”, the appearance of the substring “thermonuclear”
is almost certainly correlated with the appearance of S later in the message.)
A more useful version of an attack like this might be a case where several files

are being combined into an archive and compressed, and the attacker knows one
of the files. Assuming the other files aren’t chosen in some way that correlates
their contents with the contents of the known file, the attacker can safely run
the attack.

6 String Extraction Attacks

In this section, we consider ways an attacker might use the compression side
channel to extract some secret string from the compressor inputs. This kind
of attack requires rather special conditions, and so is much less practical than
the other attacks considered above. However, in some special situations, these
attacks could be made to work. More importantly, these attacks demonstrate a
separate path for attacking systems, despite the use of very strong encryption.
The general setting of these attacks is as follows: The system being attacked

has some secret string, S, which is of interest to the attacker. The attacker is
permitted to build a number of requested plaintexts, each using S, without ever
knowing S. For example, the attacker may choose a set of N prefixes, P0,1,...,N−1,
and request N messages, where the ith message is Pi||S.

6.1 An Adaptive Chosen Input Attack

Our first attack is an adaptive chosen input attack. We make a guess about the
contents of the first few characters of the secret string, and make a set of queries

273

based on this guess. The output lengths of the results of these queries should be
smaller for correct guesses than for incorrect guesses.
We construct our queries in the form

Query = prefix + guess + filler + prefix + S

where

Query is the string which the target of the attack is convinced to compress and
encrypt.

prefix is a string that is known not to occur in S.
filler is another string known not to occur in S, and with little in common with

prefix.
S is the string to be recovered by the attacker.

The idea behind this attack is simple: Suppose the prefix is 8 characters
long, and the guess is another 4 characters long. A correct guess guarantees that
the query string contains a repeated 12-character substring; a good compression
algorithm (and particularly, a compression scheme based on a sliding window,
like Zip Deflate) will encode this more efficiently than queries with incorrect
guesses, which will contain a string with slightly less redundancy. When we have
a good guess, this attack can be iterated to guess another four digits, and so on,
until all of S has been guessed.

Experimental Results We implemented this attack using the Python Zlib
package, which provides access to the widely-used Zip Deflate compression al-
gorithm. The search string was a 16-digit PIN, and the guesses were four (and
later five) digits each. Our results were mixed: it was possible to find the correct
PIN using this attack, but we often would have to manually make the decision to
backtrack after a guess. There were several interesting complications that arose
in implementing the attack:

1. The compression algorithm is a variant of a sliding-window scheme, in which
it is not always guaranteed that the longest match in the window will be
used to encode a string. More importantly, this is a two-pass algorithm; the
encoding of strings within the sliding window is affected by later strings as
well as earlier ones, and this can change the output length enough to change
which next four digits appear to be the best match to S[Whi02].

2. Some guesses themselves compress very well. For example, the guess “0000”
compresses quite well the first time it occurs.

3. The actual “signal” between two close guesses (e.g., “1234” and “1235”) is
very close, and is often swamped by the “noise” described above.

4. To make the attack work reasonably well, it is necessary to make each piece
of the string guessed pretty long. For our implementation, five digits worked
reasonably well.

5. Some backtracking is usually necessary, and the attack doesn’t always yield
a correct solution.

274

6. It turns out to also be helpful to add some padding at the end of the string,
to keep the processing of the digits uniform.

All of these problems appear to be pretty easy to solve given more queries
and more work. However, we dealt with them more directly by developing a
different attack—one that requires only chosen-plaintext access, not adaptive
chosen plaintext access.

6.2 A Chosen Input Attack

The adaptive chosen input attack seems so restrictive that it is hard to see how
it might be extended to a simple chosen or known plaintext attack. However,
we can use a related, but different approach, which gives us a straightforward
chosen input attack.

The attack works in two phases:

1. Generate a list of all possible subsequences of the string S, and use the
compression side-channel to put them in approximate order of likelihood of
appearing in S.

2. Piece together the subsequences that fit end-to-end, and use this to recon-
struct a set of likely candidate values for S.

The subsequences can be tested in the simplest sense by making queries of
the form

Query = Guess + S

However, to avoid interaction between the guess and the first characters of
S, it is useful to include some filler between them.

Experimental Results We were able to implement this attack, with about a
70% success rate for pseudorandomly-generated strings S of 16 digits each, using
the Python Zlib. The attack generates a list of the 20 top candidates for S, and
we counted it as a success if any of those 20 candidates was S.

There were several tricks we discovered in implementing this attack:

1. In building the queries, it was helpful to generate padding strings before
the guessed subsequence, between the guess and the string S, and after the
string.

2. It was very helpful to generate several different padding strings, of different
lengths, and to sum the lengths of the compressed strings resulting from
several queries of the same guess. This tended to average out some of the
“noise” of the compression algorithm.

3. There are pathological strings that cause the attack to fail. For example,
the string “0000000123000000” will tend to end up with guesses that piece
together instances of “00000”.

275

7 Caveats and Countermeasures

The attacks described above make a number of simplifying assumptions. In this
section, we will discuss some of those assumptions, and the implications for our
attacks when the assumptions turn out to be false. We will also consider some
possible countermeasures.

7.1 Obscuring the Compressor Input Size

The precise size of the input may be obscured in some cases. Naturally, some
kind of information about relative compression ratios is necessary for the attack
to work. However, approximate input information will often be good enough, as
when the compression ratio is being used as the side channel. An approximate
input size will lead to an approximate compression ratio, but for any reasonably
large input, the difference between the approximate and exact compression ratios
will be too small to make any difference for the attack.
One natural way for an attacker to learn approximate input size is for the

process generating the input to the compressor to have either some known con-
stant rate of generating input, or to have its operations be visible (e.g., because
it must wait for the next input, which may be observed, before generating the
next output).

7.2 Obscuring the Compressor Output Size

Some encryption modes may automatically pad the compresor output to the
next full block for the block cipher being used. Others may append random
padding to resist this or other attacks. For example, some standard ways of
doing CBC-mode encryption include padding to the next full cipher block, and
making the last byte of the padding represent the total number of bytes of
padding used. This gives the attacker a function of the compressor output size,
d(len+1)/blocksizee×blocksize. These may slightly increase the amount of work
done during our attacks, but don’t really block any of the attacks.
A more elaborate countermeasure is possible. A system designer may decide

to reduce the possible leakage through the compressor to one bit per message,
as follows:

1. Decide on a compression ratio that is acceptable for nearly all messages, and
is also attainable for nearly all messages.

2. Send the uncompressed version of any messages that don’t attain the desired
compression ratio.

3. Pad out the compressor output of messages that get at least the desired com-
pression ratio, so that the message effectively gets the desired compression
ratio.

This is an effective countermeasure against some of our attacks (for example,
it makes it quite hard to determine which file type that compresses reasonably

276

well has been sent), but it does so at the cost of losing some compression per-
formance. Against our chosen-input attacks, this adds a moderate amount of
difficulty, but doesn’t provide a complete defense.

7.3 Obscuring the Compressor Internal State

It is possible to obscure the internal state of the compressor, in a number of
simple ways, including initializing the compressor in a random state, or inserting
occasional random blocks of text during the compression operation. In either
case, this can cause problems with some of our attacks, because of the lack of
precise information about the state of the compressor when an unknown string is
being processed. General compression ratios are unlikely to be affected strongly
by such countermeasures, however, so the general side channel remains open.

7.4 Preprocessing the Text

The text may be preprocessed in such a way that compression is affected in a
somewhat unpredictable way. For example, it is easy to design a very weak stream
cipher, which generates a keystream with extremely low Hamming weight. Ap-
plying this kind of stream cipher to the input before compression would degrade
the compression slightly, in a way not known ahead of time by any attacker.
By allowing the Hamming weight of the keystream to be tunable, we could get
tunable degradation to the compression.

8 Conclusions

In this paper, we have described a side-channel in widely-used lossless compres-
sion algorithms, which permit an attacker to learn some information about the
compressor input, based only on the size of the compressor output and whatever
additional information about other parts of the input may be available.
We have discussed only a small subset of the available compression algo-

rithms, and only one possible side channel (compression ratio). Some interesting
directions for future research include:

1. Timing side-channels for compression algorithms.
2. Attacking other lossless compression algorithms, such as adaptive Huffman
encoding, adaptive Markov coders, and Burrows-Wheeler block sorting (with
move-to-front and Huffman or Shannon-Fano coding) with this side channel.
Adaptive Huffman and Markov coders can be attacked using techniques very
similar to the ones described above. Burrows-Wheeler block sorting appears
to require rather different techniques, though the same side channels clearly
exist and can be exploited.

3. Attacking lossy compression algorithms for image, sound, and other data
with this side channel.

277

4. Attacking lossy image compression by trying to use disclosed parts of a
compressed image to learn undisclosed parts of the same image, as might be
useful for redacted scanned documents.

5. Reaction attacks against decompressors, such as might be useful when a sys-
tem cryptographically authenticates plaintext, then compresses and encrypts
it. This might lead either to software faults (a change in ciphertext leading
to a buffer overrun, for example) or to more general leakage of information
about the encryption algorithm or plaintext.

9 Acknowledgements

The author wishes to thank Paul Crowley, Niels Ferguson, Andrew Fernandes,
Pieter Kasselman, Yoshi Kohno, Ulrich Kuehn, Susan Langford, Rene Struik,
Ashok Vadekar, David Wagner, Doug Whiting, and the many other people who
made helpful comments after seeing these results presented at Certicom, at the
Crypto 2001 Rump Session, and at FSE2002. The author also wishes to thank
the anonymous referees for several useful suggestions that improved the paper.

References

[BCL02] Benedetto, Caglioti, and Loreto, Physical Review Letters, 28 January 2002.
[CCF01a] Usenet group comp.compression FAQ file, available at

http://www.faqs.org/faqs/compression-faq/, 2001.
[KJY00] Kocher, Jaffe, Jun, “Differential power analysis: Leaking secrets,” in Ad-

vances in Cryptology – CRYPTO’99, Springer-Verlag, 1999
[Koc96] Kocher, “Timing Attack on Implementations of Diffie-Hellman, RSA, DSS

and other systems,” in Advances in Cryptology - CRYPTO ’96, Springer-
Verlag, 1996.

[KSHW00] Kelsey, Schneier, Wagner, Hall, “Side Channel Cryptanalysis of Product
Ciphers,” in Advances in Cryptology–ESORICS 96, Springer-Verlag, 1996.

[Sal97a] David Salomon, Data Compression: The Complete Reference, Springer-
Verlag, 1997.

[Whi02] Doug Whiting, personal communication, 2002.

