
Key-Insulated Public Key Cryptosystems

Yevgeniy Dodis1, Jonathan Katz2, Shouhuai Xu3, and Moti Yung4

1 Department of Computer Science, New York University. dodis@cs.nyu.edu
2 Department of Computer Science, Columbia University. jkatz@cs.columbia.edu

3 Department of Information and Software Engineering, George Mason University.
sxu1@gmu.edu

4 CertCo, Inc. moti@cs.columbia.edu

Abstract. Cryptographic computations (decryption, signature generation, etc.)
are often performed on a relatively insecure device (e.g., a mobile device or an
Internet-connected host) which cannot be trusted to maintain secrecy of the pri-
vate key. We propose and investigate the notion of key-insulated security whose
goal is to minimize the damage caused by secret-key exposures. In our model,
the secret key(s) stored on the insecure device are refreshed at discrete time pe-
riods via interaction with a physically-secure — but computationally-limited —
device which stores a “master key”. All cryptographic computations are still done
on the insecure device, and the public key remains unchanged. In a (t,N)-key-
insulated scheme, an adversary who compromises the insecure device and obtains
secret keys for up to t periods of his choice is unable to violate the security of the
cryptosystem for any of the remaining N − t periods. Furthermore, the scheme
remains secure (for all time periods) against an adversary who compromises only
the physically-secure device.

We focus primarily on key-insulated public-key encryption. We construct a (t,N)-
key-insulated encryption scheme based on any (standard) public-key encryption
scheme, and give a more ef£cient construction based on the DDH assumption.
The latter construction is then extended to achieve chosen-ciphertext security.

1 Introduction
Motivation. Exposure of secret keys is perhaps the most devastating attack on a cryp-
tosystem since it typically means that security is entirely lost. This problem is probably
the greatest threat to cryptography in the real world: in practice, it is typically easier for
an adversary to obtain a secret key from a naive user than to break the computational
assumption on which the system is based. The threat is increasing nowadays with users
carrying mobile devices which allow remote access from public or foreign domains.

Two classes of methods exist to deal with this problem. The £rst tries to prevent
key exposure altogether. While this is an important goal, it is not always practical.
For example, when using portable devices to perform cryptographic operations (e.g.,
decrypting transmissions using a mobile phone) one must expect that the device itself
may be physically compromised in some way (e.g., lost or stolen) and thus key exposure
is inevitable. Furthermore, complete prevention of key exposure — even for non-mobile
devices — will usually require some degree of physical security which can be expensive
and inconvenient. The second approach assumes that key exposure will inevitably occur
and seeks instead to minimize the damage which results when keys are obtained by an
adversary. Secret sharing [35], threshold cryptography [13, 12], proactive cryptography

[32], exposure-resilient cryptography [9] and forward-secure signatures [3, 5] may all
be viewed as different means of taking this approach.

The most successful solution will involve a combination of the above approaches.
Physical security may be ensured for a single device and thus we may assume that data
stored on this device will remain secret. On the other hand, this device may be compu-
tationally limited or else not suitable for a particular application and thus we are again
faced with the problem that some keys will need to be stored on insecure devices which
are likely to be compromised during the lifetime of the system. Therefore, techniques
to minimize the damage caused by such compromises must also be implemented.

Our Model. We focus here on a notion we term key-insulated security. Our model is the
following (the discussion here focuses on public-key encryption, yet the term applies
equally-well to the case of digital signatures). The user begins by registering a single
public key PK. A “master” secret key SK∗ is stored on a device which is physically
secure and hence resistant to compromise. All decryption, however, is done on an in-
secure device for which key exposure is expected to be a problem. The lifetime of the
protocol is divided into distinct periods 1, . . . , N (for simplicity, one may think of these
time periods as being of equal length; e.g., one day). At the beginning of each period,
the user interacts with the secure device to derive a temporary secret key which will be
used to decrypt messages sent during that period; we denote by SKi the temporary key
for period i. On the other hand, the public key PK used to encrypt messages does not
change at each period; instead, ciphertexts are now labeled with the time period during
which they were encrypted. Thus, encrypting M in period i results in ciphertext 〈i, C〉.

The insecure device, which does all actual decryption, is vulnerable to repeated
key exposures; speci£cally, we assume that up to t < N periods can be compromised
(where t is a parameter). Our goal is to minimize the effect such compromises will
have. Of course, when a key SKi is exposed, an adversary will be able to decrypt
messages sent during time period i. Our notion of security (informally) is that this is
all an adversary can do. In particular, the adversary will be unable to determine any
information about messages sent during all time periods other than those in which a
compromise occurred. This is the strongest level of security one can expect in such a
model. We call a scheme satisfying the above notion (t,N)-key-insulated.

If the physically-secure device is completely trusted, we may have this device gen-
erate (PK,SK∗) itself, keep SK∗, and publish PK. When a user requests a key for
period i, the device may compute SKi and send it to the user. More involved methods
are needed when the physically-secure device is not trusted by the user. In this, more
dif£cult case (which we consider here), the user may generate (PK,SK) himself, pub-
lish PK, and then derive keys SK∗, SK0. The user then sends SK∗ to the device and
stores SK0 himself. When the user requests a key for period i, the device sends “par-
tial” key SK ′

i to the user, who may then compute the “actual” key SKi using SKi−1

and SK ′
i. In this way, the user’s security is guaranteed during all time periods with re-

spect to the device itself, provided that the knowledge of SK∗ alone is not suf£cient to
derive any of the actual keys SKi. We note that this strong security guarantee is essen-
tial when a single device serves many different users, offering them protection against
key exposure. In this scenario, users may trust this device to update their keys, but may
not want the device to be able to read their encrypted traf£c. Thus, there is no reason

this device should have complete (or any!) knowledge of their “actual” keys. Finally
we note that assuring that the devices are synchronized to the same period (so that only
one secret key per period is given by the physically secure device) and that they handle
proper authenticated interaction is taken care of by an underlying protocol (which is
outside our model).

Other Applications. Besides the obvious application to minimizing the risk of key ex-
posures across multiple time periods, key-insulated security may also be used to protect
against key exposures across multiple locations, or users. For example, a company may
establish a single public key and distribute (different) secret keys to its various em-
ployees; each employee is differentiated by his “non-cryptographic ID” i (e.g., a social
security number or last name), and can use his own secret key SKi to perform the
desired cryptographic operation. This approach could dramatically save on the public
key size, and has the property that the system remains secure (for example, encrypted
messages remain hidden) for all employees whose keys are not exposed.

A key-insulated scheme may also be used for purposes of delegation [22]; here, a
user (who has previously established a public key) delegates his rights in some speci£ed,
limited way to a second party. In this way, even if up to t of the delegated parties’ keys
are lost, the remaining keys — and, in particular, the user’s secret key —- are secure.

Finally, we mention the application of key escrow by legal authorities. For example,
consider the situation in which the FBI wants to read email sent to a particular user on
a certain date. If a key-insulated scheme (updated daily) is used, the appropriate key for
up to t desired days can be given to the FBI without fear that this will enable the FBI to
read email sent on other days. A similar application (with weaker security guarantees)
was considered by [2].

Our Contributions. We introduce the notion of key-insulated security and construct ef-
£cient schemes secure under this notion. Although our de£nition may be applied to a
variety of cryptographic primitives, we focus here on public-key encryption. In Section
3, we give a generic construction of a (t,N)-key-insulated encryption scheme based
on any (standard) public-key encryption scheme. Section 4 gives a more ef£cient con-
struction which is secure under the DDH assumption. Both of these schemes achieve
semantic security; however, we show in Section 5 how the second scheme can be im-
proved to achieve chosen-ciphertext security. In a companion paper [15], we consider
key-insulated security of signature schemes.

Related Work. Arriving at the right de£nitions and models for the notion we put forth
here has been somewhat elusive. For example, Girault [21] considers a notion sim-
ilar to key-insulated security of signature schemes. However, [21] does not present
any formal de£nitions, nor does it present schemes which are provably secure. Re-
cently and concurrently with our work, other attempts at formalizing key-insulated
public-key encryption have been made [36, 30]. However, these works consider only
a non-adaptive adversary who chooses which time periods to expose at the outset of
the protocol, whereas we consider the more natural and realistic case of an adaptive
adversary who may choose which time periods to expose at any point during protocol
execution. Furthermore, the solution of [36] for achieving chosen-ciphertext security
is proven secure in the random oracle model; our construction of Section 5 is proven
secure against chosen-ciphertext attacks in the standard model ([30] does not address

chosen-ciphertext security at all). Finally, our de£nition of security is stronger than
that considered in [36, 30]. Neither work considers the case of an untrusted, physically-
secure device. Additionally, [30] require only that an adversary cannot fully determine
an un-exposed key SKi; we make the much stronger requirement that an adversary
cannot break the underlying cryptographic scheme for any (set of) un-exposed periods.

Our notion of security complements the notion of forward security for digital sig-
natures.1 In this model [3, 5], an adversary who compromises the system during a par-
ticular time period obtains all the secret information which exists at that point in time.
Clearly, in such a setting one cannot hope to prevent the adversary from signing mes-
sages associated with future time periods (since the adversary has all relevant infor-
mation), even though no explicit key exposures happen during those periods. Forward-
secure signatures, however, prevent the adversary from signing messages associated
with prior time periods. Many improved constructions of forward-secure signatures
have subsequently appeared [1, 28, 25, 31].

Our model uses a stronger assumption in that we allow for (a limited amount of)
physically-secure storage which is used exclusively for key updates and is not used for
the actual cryptographic computations. As a consequence, we are able to obtain a much
stronger level of security in that the adversary is unable to sign/decrypt messages at any
non-compromised time period, both in the future and in the past.

An identity-based encryption scheme may be converted to an (N − 1, N)-key-
insulated encryption scheme by viewing the period number as an “identity” and having
the physically-secure device implement the trusted third party. In fact, our notion of
(t,N)-key-insulated encryption with a fully trusted device can be viewed as a relax-
ation of identity-based encryption, where we do not insist on t = N − 1. Only recently
Boneh and Franklin [7] have proposed a practical, identity-based encryption scheme;
they also mention the above connection. It should be noted, however, that the security
of their scheme is proven in the random oracle model under a very speci£c, number-
theoretic assumption. By focusing on key-insulated security for t¿ N , as we do here,
schemes based on alternate assumptions and/or with improved ef£ciency and function-
ality may be designed.

2 De£nitions

2.1 The Model

We now provide a formal model for key-insulated security, focusing on the case of
public-key encryption (other key-insulated primitives can be de£ned similarly; e.g., sig-
nature schemes are treated in [15]). Our de£nition of a key-updating encryption scheme
parallels the de£nition of a key-evolving signature scheme which appears in [5], with
one key difference: in a key-updating scheme there is some data (in particular, SK∗)
which is never erased since it is stored on a physically-secure device. However, since
the physically-secure device may not be fully trusted, new security concerns arise.

De£nition 1. A key-updating (public-key) encryption scheme is a 5-tuple of poly-time
algorithms (G,U∗,U , E ,D) such that:

1 Although forward-security also applies to public-key encryption, forward-secure encryption
schemes are not yet known. The related notion of “perfect forward secrecy” [14], where the
parties exchange ephemeral keys on a per-session basis, is incomparable to our notion here.

– G, the key generation algorithm, is a probabilistic algorithm which takes as input a
security parameter 1k and the total number of time periods N . It returns a public
key PK, a master key SK∗, and an initial key SK0.

– U∗, the device key-update algorithm, is a deterministic algorithm which takes as
input an index i for a time period (throughout, we assume 1 ≤ i ≤ N) and the
master key SK∗. It returns the partial secret key SK ′

i for time period i.
– U , the user key-update algorithm, is a deterministic algorithm which takes as input

an index i, secret key SKi−1, and a partial secret key SK ′
i. It returns secret key

SKi for time period i (and erases SKi−1, SK ′
i).

– E , the encryption algorithm, is a probabilistic algorithm which takes as input a
public-key PK, a time period i, and a message M . It returns a ciphertext 〈i, C〉.

– D, the decryption algorithm, is a deterministic algorithm which takes as input a
secret key SKi and a ciphertext 〈i, C〉. It returns a message M or the special
symbol ⊥.

We require that for all messages M , DSKi
(EPK(i,M)) = M .

A key-updating encryption scheme is used as one might expect. A user begins by
generating (PK,SK∗, SK0) ← G(1

k, N), registering PK in a central location (just
as he would for a standard public-key scheme), storing SK∗ on a physically-secure
device, and storing SK0 himself. At the beginning of time period i, the user requests
SK ′

i = U∗(i, SK∗) from the secure device. Using SK ′
i and SKi−1, the user may

compute SKi = U(i, SKi−1, SK ′
i). This key may be used to decrypt messages sent

during time period i without further access to the device. After computation of SKi,
the user must erase SK ′

i and SKi−1. Note that encryption is always performed with
respect to a £xed public key PK which need not be changed. Also note that the case
when the device is fully trusted corresponds to SK0 =⊥ and SKi = SK ′

i.

Random-Access Key Updates. All the schemes we construct will have a useful property
we call random-access key updates. For any current period j and any desired period i,
it is possible to update the secret key from SKj to SKi in “one shot”. Namely, we can
generalize the key updating algorithms U∗ and U to take a pair of periods i and j such
that U∗((i, j), SK∗) outputs the partial key SK ′

ij and U((i, j), SKj , SK ′
ij) outputs

SKi. Our de£nition above implicitly £xes j = i − 1. We remark that random-access
key updates are impossible to achieve in the forward-security model.

2.2 Security

The are three types of exposures we protect against: (1) ordinary key exposure, which
models (repeated) compromise of the insecure storage (i.e., leakage of SKi); (2) key-
update exposure, which models (repeated) compromise of the insecure device during
the key-updating step (i.e., leakage of SKi−1 and SK ′

i); and (3) master key exposure,
which models compromise of the physically-secure device (i.e., leakage of SK∗; this
includes the case when the device itself is untrusted).

To formally model key exposure attacks, we give the adversary access to two (pos-
sibly three) types of oracles. The £rst is a key exposure oracle ExpSK∗,SK0

(·) which,
on input i, returns the temporary secret key SKi (note that SKi is uniquely de£ned
by SK∗ and SK0). The second is a left-or-right encryption oracle [4], LRPK,b(·, ·, ·),

where b = b1 . . . bN ∈ {0, 1}
N , de£ned as: LRPK,b(i,M0,M1)

def
= EPK(i,Mbi

).
This models encryption requests by the adversary for time periods and message pairs
of his choice. We allow the adversary to interleave encryption requests and key ex-
posure requests, and in particular the key exposure requests of the adversary may be
made adaptively and in any order. Finally, we may also allow the adversary access to
a decryption oracle D∗SK∗,SK0

(·) that, on input 〈i, C〉, computes DSKi
(〈i, C〉). This

models a chosen-ciphertext attack by the adversary.
The vector b for the left-or-right oracle will be chosen randomly, and the adversary

succeeds by guessing the value of bi for any un-exposed time period i. Informally,
a scheme is secure if any probabilistic polynomial time (PPT) adversary has success
negligibly close to 1/2. More formally:

De£nition 2. Let Π = (G,U ∗,U , E ,D) be a key-updating encryption scheme. For ad-
versary A, de£ne the following:

SuccA,Π(k)
def
= Pr

[

(PK,SK∗, SK0)← G(1
k, N); b← {0, 1}N ;

(i, b′)← ALRP K,b(·,·,·),ExpSK∗,SK0
(·),O(·)(PK) : b′ = bi

]

,

where i was never submitted to ExpSK∗,SK0
(·), and O(·) =⊥ for a plaintext-only at-

tack and O(·) = D∗SK∗,SK0
(·) for a chosen-ciphertext attack (in the latter case the

adversary is not allowed to query D∗(〈i, C〉) if 〈i, C〉 was returned by LR(i, ·, ·)). Π
is (t,N)-key-insulated if, for any PPT A who submits at most t requests to the key-
exposure oracle, |SuccA,Π(k)− 1/2| is negligible.

As mentioned above, we may also consider attacks in which an adversary breaks
in to the user’s storage while a key update is taking place (i.e., the exposure occurs
between two periods i− 1 and i); we call this a key-update exposure at period i. In this
case, the adversary receives SKi−1, SK ′

i, and (can compute) SKi. Informally, we say
a scheme has secure key updates if a key-update exposure at period i is equivalent to
key exposures at periods i− 1 and i and no more. More formally:

De£nition 3. Key-updating encryption scheme Π has secure key updates if the view
of any adversary A making a key-update exposure request at period i can be perfectly
simulated by an adversary A′ who makes key exposure requests at periods i− 1 and i.

This property is desirable in real-world implementations of a key-updating encryption
scheme since an adversary who gains access to the user’s storage is likely to have access
for several consecutive time periods (i.e., until the user detects or re-boots), including
the key updating steps.

We also consider attacks which compromise the physically-secure device (this in-
cludes attacks in which this device is untrusted). Here, our de£nition requires that the
encryption scheme be secure against an adversary which is given SK∗ as input. Note
that we do not require security against an adversary who compromises both the user’s
storage and the secure device — in our model this is impossible since, given SK ∗ and
SKi, an adversary can compute SKj (at least for j > i) by himself.

De£nition 4. Let Π be a key-updating scheme which is (t,N)-key-insulated. For any
adversary B, de£ne the following:

SuccB,Π(k)
def
= Pr

[

(PK,SK∗, SK0)← G(1
k, N); b← {0, 1}N ;

(i, b′)← BLRP K,b(·,·,·),O(·)(PK,SK∗) : b′ = bi

]

,

where O(·) =⊥ for a plaintext-only attack and O(·) = D∗SK∗,SK0
(·) for a chosen-

ciphertext attack (in the latter case the adversary is not allowed to query D∗(〈i, C〉) if
〈i, C〉 was returned by LR(i, ·, ·)). Π is strongly (t,N)-key-insulated if, for any PPT B,
|SuccB,Π(k)− 1/2| is negligible.

3 Generic Semantically-Secure Construction

Let (G,E,D) be any semantically secure encryption scheme. Rather than giving a
separate (by now, standard) de£nition, we may view it simply as a (0, 1)-key-insulated
scheme. Namely, only one secret key SK is present, and any PPT adversary, given
PK and the left-or-right-oracle LRPK,b, cannot predict b with success non-negligibly
different from 1/2. Hence, our construction below can be viewed as an ampli£cation of
a (0, 1)-key-insulated scheme into a general (t,N)-key-insulated scheme.

We will assume below that t, logN = O(poly(k)), where k is our security parame-
ter. Thus, we allow exponentially-many periods, and can tolerate exposure of any poly-
nomial number of keys. We assume that E operates on messages of length ` = `(k), and
construct a (t,N)-key-insulated scheme operating on messages of length L = L(k).

Auxiliary De£nitions. We need two auxiliary de£nitions: that of an all-or-nothing trans-
form [34, 8] (AONT) and a cover-free family [18, 16]. Informally, an AONT splits the
message M into n secret shares x1, . . . , xn (and possibly one public share z), and has
the property that (1) the message M can be ef£ciently recovered from all the shares
x1, . . . , xn, z, but (2) missing even a single share xj gives “no information” about M .
As such, it is a generalization of (n−1, n)-secret sharing. We formalize this, modifying
the conventional de£nitions [8, 9] to a form more compatible with our prior notation.

De£nition 5. An ef£cient randomized transformation T is called an (L, `, n)-AONT if:

(1) on input M ∈ {0, 1}L, T outputs (X, z)
def
= (x1, . . . , xn, z), where xj ∈ {0, 1}

`;
(2) there exists an ef£cient inverse function I such that I(X, z) = M ; (3) T satis£es
the indistinguishability property described below.
Let X−j = (x1, . . . , xj−1, xj+1, . . . , xn) and T−j(M) = (X−j , z), where (X, z) ←

T (M). De£ne the left-or-right oracle LRb(j,M0,M1)
def
= T−j(Mb), where b ∈ {0, 1}.

For any PPT A, we let SuccA,T (k)
def
= Pr[b ← {0, 1}; b′ ← ALRb(·,·,·)(1k) : b′ = b].

We require that |SuccA,T (k)− 1/2| is negligible.

A family of subsets S1 . . . SN over some universe U is said to be t-cover-free if no t
subsets Si1 , . . . , Sit contain a (different) subset Si0 ; in other words, for all {i0, . . . , it}
with i0 6∈ {i1, . . . , it}, we have Si0 6⊆ ∪

t
j=1Sij . A family is said to be (t, α)-cover-

free, where 0 < α < 1, if, for all {i0, . . . , it} with i0 6∈ {i1, . . . , it}, we have
|Si0\ ∪

t
j=1 Sij | ≥ α|Si0 |. Such families are well known and have been used several

times in cryptographic applications [10, 29, 20]. In what follows, we £x α = 1/2 for
simplicity, and will use the following (essentially optimal) result, non-constructively
proven by [18] and subsequently made ef£cient by [29, 24].

Theorem 1 ([18, 29, 24]). For any N and t, one can ef£ciently construct a (t, 1
2)-cover-

free collection of N subsets S1, . . . , SN of U = {1, . . . , u}, with |Si| = n for all i,
satisfying: u = Θ(t2 logN) and n = Θ(t logN).

Since we assumed that t, logN = O(poly(k)), we have u, n = O(poly(k)) as well.

Construction. For simplicity, we £rst describe the scheme which is not strongly se-
cure (see De£nition 4), and then show a modi£cation making it strongly secure. Let

S1, . . . , SN ⊂ [u]
def
= {1 . . . u} be the (t, 1

2)-cover-free family of n-element sets, as
given by Theorem 1. Also, let T be a secure (L, `, n)-AONT. Our (t,N)-key-insulated
scheme will have a set of u independent encryption/decryption keys (skr, pkr) for our
basic encryption E, of which only the subset Si will be used at time period i. Specif-
ically, the public key of the scheme will be PK = {pk1, . . . , pku}, the secret key
at time i will be SKi = {skr : r ∈ Si}, and the master key (for now) will be
SK∗ = {sk1, . . . , sku}. We de£ne the encryption of M ∈ {0, 1}L at time period i as:

EPK(i,M) = 〈 i, (Epkr1
(x1), . . . , Epkrn

(xn), z) 〉,

where (x1, . . . , xn, z)← T (M) and Si = {r1, . . . , rn}. To decrypt 〈i, (y1, . . . , yn, z)〉
using SKi = {skr : r ∈ Si}, the user £rst recovers the xj’s from the yj’s using
D, and then recovers the message M = I(x1, . . . , xn, z). Key updates are trivial: the
device sends the new key SKi and the user erases the old key SKi−1. Obviously, the
scheme supports secure key updates as well as random-access key updates.

Security. We informally argue the (t,N)-key-insulated security of this scheme (omit-
ting the formal proof due to space limitations). The de£nition of the AONT implies that
the system is secure at time period i provided the adversary misses at least one key skr,
where r ∈ Si. Indeed, semantic security of E implies that the adversary completely
misses the shares encrypted with skr in this case, and hence has no information about
the message M . On the other hand, if the adversary learn any t keys SKi1 , . . . , SKit ,
he learns the auxiliary keys {skr : r ∈ Si1 ∪ Si2 . . . ∪ Sit}. Hence, the necessary and
suf£cient condition for (t,N)-key-insulated security is exactly the t-cover freeness of
the Si’s! The parameter α = 1

2 is used to improve the exact security of our reduction.

Theorem 2. The generic scheme Π described above is (t,N)-key-insulated with se-
cure key updates, provided (G,E,D) is semantically-secure, T is a secure (L, `, n)-
AONT, and the family S1, . . . , SN is (t, 1

2)-cover-free. Speci£cally, breaking the secu-
rity of Π with advantage ε implies the same for either (G,E,D) or T with advantage
at least Ω(ε/t).

Strong Key-Insulated Security. The above scheme is not strongly (t,N)-key-insulated
since the device stores all the secret keys (sk1, . . . , sku). However, we can easily £x
this problem. The user generates one extra key pair (sk0, pk0). It publishes pk0 together
with the other public keys, but keeps sk0 for itself (never erasing it). Assuming now that
T produces n + 1 secret shares x0, . . . , xn rather than n, we just encrypt the £rst share
x0 with pk0 (and the others, as before, with the corresponding keys in Si). Formally,
let S′i = Si ∪ {0}, the master key is still SK∗ = {sk1, . . . , sku}, but now PK =
{pk0, pk1, . . . , pku} and the i-th secret key is SKi = {skr : r ∈ S′i}. Strong key-
insulated security of this scheme follows a similar argument as in Theorem 2.

Ef£ciency. The main parameters of the scheme are: (1) the size of PK and SK∗ are
both u = O(t2 logN); and (2) the user’s storage and the number of local encryptions
per global encryption are both n = O(t logN). In particular, the surprising aspect
of our construction is that it supports an exponential number of periods N and the
main parameters depend mainly on t, the number of exposures we allow. Since t is
usually quite small (say, t = O(1) and certainly t ¿ N), we obtain good parameters
considering the generality of the scheme. (In Section 4 we use a speci£c encryption
scheme and achieve |PK|, |SK∗| = O(t) and |SKi| = O(1).)

Additionally, the choice of a secure (L, `, n)-AONT de£nes the tradeoff between the
number of encrypted bits L compared to the total encryption size, which is (βn`+ |z|),
where β is the expansion of E, and |z| is the size of the public share. In particular,
if L = `, we can use any traditional (n − 1, n)-secret sharing scheme (e.g., Shamir’s
scheme [35], or even XOR-sharing: pick random xj’s subject to M =

⊕

xj). This way
we have no public part, but the ciphertext increases by a factor of βn as compared to
the plaintext. Computationally-secure AONT’s allow for better tradeoffs. For example,
using either the computational secret sharing scheme of [27], or the AONT construc-
tions of [9], we can achieve |z| = L, while ` can be as small as the security parameter
k (in particular, ` ¿ L). Thus, we get additive increase βn`, which is essentially in-
dependent of L. Finally, in the random oracle model, we could use the construction
of [8] achieving |z| = 0, L = `(n− 1), so the ciphertext size is β`n ≈ βL. Finally, in
practice one would use the above scheme to encrypt a random key K (which is much
shorter than M) for a symmetric-key encryption scheme, and concatenate to this the
symmetric-key encryption of M using K.

Adaptive vs. Non-adaptive adversaries. Theorem 2 holds for an adaptive adversary
who makes key exposure requests based on all information collected so far. We notice,
however, that both the security and the ef£ciency of our construction could be somewhat
improved for non-adaptive adversaries, who choose the key-exposure periods i1, . . . , it
at the outset of the protocol (which is the model of [36, 30, 2]). For example, it is easy to
see that we no longer lose the factor t in the security of our reduction in Theorem 2. As
for the ef£ciency, instead of using an AONT (which is essentially an (n − 1, n)-secret
sharing scheme), we can now use any (n/2, n)-“ramp” secret sharing scheme [6]. This
means that n shares reconstruct the secret, but any n/2 shares yield no information
about the secret. Indeed, since our family is (t, 1

2)-cover-free, any non-exposed period
will have the adversary miss more than half of the relevant secret keys. For non-adaptive
adversaries, we know at the outset which secret keys are non-exposed, and can use a
simple hybrid argument over these keys to prove the security of the modi£ed scheme.
For example, we can use the “ramp” generalization of Shamir’s secret sharing scheme2

proposed by Franklin and Yung [19], and achieve L = `n/2 instead of L = ` resulting
from regular Shamir’s (n− 1, n)-scheme.

2 Here the message length L = `n/2, and the `-bit parts m1, . . . ,mn/2 of M are viewed as
the n/2 lower order coef£cients of an otherwise random polynomial of degree (n − 1) over
GF [2`]. This polynomial is then evaluated at n points of GF [2`] to give the £nal n shares.

4 Semantic Security Based on DDH

In this section, we present an ef£cient strongly (t,N)-key-insulated scheme, whose
semantic security can be proved under the DDH assumption.

We £rst describe the basic encryption scheme we build upon. The key generation
algorithm Gen(1k) selects a random prime q with |q| = k such that p = 2q + 1 is
prime. This de£nes a unique subgroup G ⊂ Z∗p of size q in which the DDH assumption
is assumed to hold; namely, it is hard to disinguish a random tuple (g, h, u, v) of four
independent elements in G from a random tuple satisfying logg u = logh v. Given
group G, key generation proceeds by selecting random elements g, h ∈ G and random
x, y ∈ Zq . The public key consists of g, h, and the Pedersen commitment [33] to x and
y: z = gxhy . The secret key contains both x and y. To encrypt M ∈ G, choose random
r ∈ Zq and compute (gr, hr, zrM). To decrypt (u, v, w), compute M = w/uxvy. This
scheme is very similar to El Gamal encryption [17], except it uses two generators. It
has been recently used by [26] in a different context.

Our Scheme. Our (t,N)-key-insulated scheme builds on the above basic encryption
scheme and is presented in Figure 1. The key difference is that, after choosing G, g, h,

as above, we select two random polynomials fx(τ)
def
=

∑t
j=0 x∗jτ

j and fy(τ)
def
=

∑t
j=0 y∗j τ

j over Zq of degree t. The public key consists of g, h and Pedersen com-
mitments {z∗0 , . . . , z

∗
t } to the coef£cients of the two polynomials (see Figure 1). The

user stores the constant terms of the two polynomials (i.e., x∗0 and y∗0) and the remaining
coef£cients are stored by the physically-secure device. To encrypt during period i, £rst

zi is computed from the public key as zi
def
= Πt

j=0(z
∗
j)
ij . Then (similar to the basic

scheme), encryption of message M is done by choosing r ∈ Zq at random and com-
puting (gr, hr, zriM). Using our notation from above, it is clear that zi = gfx(i)hfy(i).
Thus, as long as the user has secret key SKi = (fx(i), fy(i)) during period i, decryp-
tion during that period may be done just as in the basic scheme. As for key evolution,
the user begins with SK0 = (x∗0, y

∗
0) = (fx(0), fy(0)). At the start of any period i,

the device transmits partial key SK ′
i = (x′i, y

′
i) to the user. Note that (cf. Figure 1)

x′i = fx(i) − fx(i − 1) and y′i = fy(i) − fy(i − 1). Thus, since the user already has
SKi−1, the user may easily compute SKi from these values. At this point, the user
erases SKi−1, and uses SKi to decrypt for the remainder of the time period.

Theorem 3. Under the DDH assumption, the encryption scheme of Figure 1 is strongly
(t,N)-key-insulated under plaintext-only attacks. Furthermore, it has secure key up-
dates and supports random-access key updates.

Proof. Showing secure key updates is trivial, since an adversary who exposes keys
SKi−1 and SKi can compute the value SK ′

i by itself (and thereby perfectly simulate
a key-update exposure at period i). Similarly, random-access key updates can be done
using partial keys SK ′

ij = (x′ij , y
′
ij), where x′ij = fx(i)− fx(j), y′ij = fy(i)− fy(j).

The user can then compute xi = xj + x′ij and yi = yj + y′ij .
We now show that the scheme satis£es De£nition 2. By a standard hybrid argument

[4], it is suf£cient to consider an adversary A who asks a single query to its left-or-
right oracle (for some time period i of A’s choice) and must guess the value bi. So
we assume A makes only a single query to the LR oracle during period i for which

G(1k): (g, h, q)← Gen(1k); x∗0, y
∗
0 , . . . , x

∗
t , y

∗
t ← Zq

z∗0 := gx
∗
0hy

∗
0 , . . . , z∗t := gx

∗
t hy

∗
t ; PK := (g, h, z∗0 , . . . , z

∗
t)

SK∗ := (x∗1, y
∗
1 , . . . , x

∗
t , y

∗
t); SK0 := (x∗0, y

∗
0)

return PK,SK∗, SK0

U∗(i, SK∗ = (x∗1, y
∗
1 , . . . , x

∗
t , y

∗
t)):

x′i :=
∑t

j=1 x
∗
j

(

ij − (i− 1)j
)

y′i :=
∑t

j=1 y
∗
j

(

ij − (i− 1)j
)

return SK′i = (x′i, y
′
i)

U(i, SKi−1 = (xi−1, yi−1), SK
′
i = (x′i, y

′
i)):

xi := xi−1 + x′i
yi := yi−1 + y′i
return SKi = (xi, yi)

E(g,h,z∗
0
,...,z∗y)(i,M):

zi := Πt
j=0(z

∗
j)
ij

r ← Zq
C := (gr, hr, zriM)
return 〈i, C〉

D(xi,yi)(〈i, C = (u, v, w)〉):
M := w/uxivyi

return M

Fig. 1. Semantically-secure key-updating encryption scheme based on DDH.

it did not make a key exposure request. In the original experiment (cf. Figure 1), the
output of LRPK,b(i,M0,M1) is de£ned as follows: choose r ∈ Zq at random and out-
put (gr, hr, zriMbi

). Given a tuple (g, h, u, v) which is either a DDH tuple or a random
tuple, modify the original experiment as follows: the output of LRPK,b(i,M0,M1) will
be (u, v, uxivyiMb). Note that if (g, h, u, v) is a DDH tuple, then this is a perfect sim-
ulation of the original experiment. On the other hand, if (g, h, u, v) is a random tuple
then, under the DDH assumption, the success of any PPT adversary in this modi£ed ex-
periment cannot differ by more than a negligible amount from its success in the original
experiment. It is important to note that, in running the experiment, we can answer all
of A’s key exposure requests correctly since all secret keys are known. Thus, in con-
trast to [36, 30], we may handle an adaptive adversary who chooses when to make key
exposure requests based on all information seen during the experiment.

Assume now that (g, h, u, v) is a random tuple and logg h 6= logu v (this will occur
with all but negligible probability). We claim that the adversary’s view in the modi£ed
experiment is independent of b. Indeed, the adversary knows only t values of fx(·) and
fy(·) (at points other than i), and since both fx(·) and fy(·) are random polynomials
of degree t, the values xi, yi (= fx(i), fy(i)) are information-theoretically uniformly
distributed, subject only to:

logg zi = xi + yi logg h. (1)

Consider the output of the encryption oracle (u, v, uxivyiMb). Since:

logu(u
xivyi) = xi + yi logu v, (2)

and (1) and (2) are linearly independent, the conditional distribution of uxivyi (condi-
tioned on bi and the adversary’s view) is uniform. Thus, the adversary’s view is indepen-
dent of bi (and hence b). This implies that the success probability of A in this modi£ed
experiment is 1/2, and hence the success probability of A in the original experiment is
at most negligibly different from 1/2.

We now consider security against the physically-secure device; in this case, there
are no key exposure requests but the adversary learns SK∗. Again, it is suf£cient to

consider an adversary who asks a single query to its left-or-right oracle (for time period
i of its choice) and must guess the value bi. Since SK∗ only contains the t highest-
order coef£cients of t-degree polynomials, the pair (xi, yi) is information-theoretically
uniformly distributed (for all i) subject to xi+yi logg h = logg zi. An argument similar
to that given previously shows that the success probability of the adversary is at most
negligibly better than 1/2, and hence the scheme satis£es De£nition 4.

5 Chosen-Ciphertext Security Based on DDH

We may modify the scheme given in the previous section so as to be resistant to chosen-
ciphertext attacks. In doing so, we build upon the chosen-ciphertext-secure (standard)
public-key encryption scheme of Cramer and Shoup [11].

G(1k): (g, h, q)← Gen(1k); H ← UOWH(1k)
for i = 0 to t and n = 0 to 2:

x∗i,n, y
∗
i,n ← Zq

for i = 0 to t:
z∗i := gx

∗
i,0hy

∗
i,0 ; c∗i := gx

∗
i,1hy

∗
i,1 ; d∗i := gx

∗
i,2hy

∗
i,2

PK := (g, h,H, {z∗i , c
∗
i , d

∗
i }0≤i≤t)

SK∗ := ({x∗i,n, y
∗
i,n}2≤i≤t, 0≤n≤2); SK0 := ({x∗i,n, y

∗
i,n}0≤i≤1, 0≤n≤2)

return PK,SK∗, SK0

U∗(i, SK∗):
for n = 0 to 2:

x′i,n :=
∑t

j=2 x
∗
j,n

(

ij − (i− 1)j
)

y′i,n :=
∑t

j=2 y
∗
j,n

(

ij − (i− 1)j
)

return SK′i = ({x′i,n, y
′
i,n}0≤n≤2)

U(i, SKi−1, SK
′
i):

for n = 0 to 2:
xi,n = xi−1,n + x′i,n + x1,n

yi,n = yi−1,n + y′i,n + y1,n
return SKi = ({xi,n, yi,n, x1,n, y1,n}0≤n≤2)

EPK(i,M):

zi := Πt
j=0(z

∗
j)
ij ; ci := Πt

j=0(c
∗
j)
ij

di := Πt
j=0(d

∗
j)
ij

r ← Zq
C := (gr, hr, zriM, (cid

α
i)r),

where α
def
= H(gr, hr, zriM)

return 〈i, C〉

DSKi(〈i, C = (u, v, w, e)〉):
α := H(u, v, w)
if uxi,1+xi,2αvyi,1+yi,2α 6= e

return ⊥
else M := w/uxi,0vyi,0

return M

Fig. 2. Chosen-ciphertext-secure key-updating encryption scheme based on DDH.

We brie¤y review the “basic” Cramer-Shoup scheme (in part to conform to the no-
tation used in Figure 2). Given generators g, h of group G (as described in the previous
section), secret keys {xn, yn}0≤n≤2 are chosen randomly from Zq . Then, public-key
components z = gx0hy0 , c = gx1hy1 , and d = gx2hy2 are computed. In addition, a
function H is randomly chosen from a family of universal one-way hash functions. The
public key is (g, h, z, c, d,H).

To encrypt a message M ∈ G, a random element r ∈ Zq is chosen and the cipher-
text is: (gr, hr, zrM, (cdα)r), where α = H(gr, hr, zrM). To decrypt a ciphertext
(u, v, w, e), we £rst check whether ux1+x2αvy1+y2α = e. If not, we output ⊥. Other-
wise, we output M = w/ux0vy0 .

In our extended scheme (cf. Figure 2), we choose six random, degree-t polynomials

(over Zq) fx0
, fy0 , fx1

, fy1 , fx2
, fy2 , where fxn

(τ)
def
=

∑t
j=0 x∗j,nτ

j and fyn
(τ)

def
=

∑t
j=0 y∗j,nτ

j for 0 ≤ n ≤ 2. The public key consists of g, h,H , and Pedersen com-
mitments to the coef£cients of these polynomials. The user stores the constant term
and the coef£cient of the linear term for each of these polynomials, and the remaining
coef£cients are stored by the physically-secure device.

To encrypt during period i, a user £rst computes zi, ci, and di by evaluating the poly-
nomials “in the exponent” (see Figure 2). Then, just as in the basic scheme, encryption
of M is performed by choosing random r ∈ Zq and computing (gr, hr, zriM, (cid

α
i)r),

where α
def
= H(gr, hr, zriM). Notice that zi = gfx0

(i)hfy0
(i), ci = gfx1

(i)hfy1
(i),

and di = gfx2
(i)hfy2

(i). Thus, the user can decrypt (just as in the basic scheme) as
long as he has fxn

(i), fyn
(i) for 0 ≤ n ≤ 2. In fact, the secret key SKi includes

these values; in addition, the secret key at all times includes the linear coef£cients
x∗1,0, y

∗
1,0, . . . , x

∗
1,2, y

∗
1,2. These values are used to help update SKi.

Theorem 4. Under the DDH assumption, the encryption scheme of Figure 2 is strongly
(t− 2, N)-key-insulated under chosen-ciphertext attacks. Furthermore, the scheme has
secure key updates and supports random-access key updates.

Proof. That the scheme has secure key updates is trivial, since SK ′
i may be computed

from SKi−1 and SKi. Random-access key updates are done analogously to the scheme
of the previous section. We now show the key-insulated security of the scheme (cf.
De£nition 2). A standard hybrid argument [4] shows that it is suf£cient to consider an
adversary A who makes only a single request to its left-or-right oracle (for time period
i of the adversary’s choice) and must guess the value bi. We stress that polynomially-
many calls to the decryption oracle are allowed.

Assume A makes a single query to the LR oracle during period i for which it did
not make a key exposure request. In the original experiment (cf. Figure 2), the output of
LRPK,b(i,M0,M1) is as follows: choose r ← Zq and output (gr, hr, zriMbi

, (cid
α
i)r),

where α is as above. As in the proof of Theorem 3, we now modify the experiment.
Given a tuple (g, h, u, v) which is either a DDH tuple or a random tuple, we de£ne the
output of LRPK,b(i,M0,M1) to be (u, v, w̃ = uxi,0vyi,0Mbi

, ẽ = uxi,1+xi,2αvyi,1+yi,2α),

where α
def
= H(u, v, w̃). Note that if (g, h, u, v) is a DDH tuple, then this results in a

perfect simulation of the original experiment. On the other hand, if (g, h, u, v) is a ran-
dom tuple, then, under the DDH assumption, the success of any PPT adversary cannot
differ by a non-negligible amount from its success in the original experiment. As in the
proof of Theorem 3, note that, in running the experiment, we can answer all of A’s key
exposure queries. Thus, the proof handles an adaptive adversary whose key exposure
requests may be made based on all information seen up to that point.

Assume now that (g, h, u, v) is a random tuple and logg h 6= logu v (this happens
with all but negligible probability). We show that, with all but negligible probability, the
adversary’s view in the modi£ed experiment is independent of b. The proof parallels
[11, Lemma 2]. Say a ciphertext 〈i, (u′, v′, w′, e′)〉 is invalid if logg u

′ 6= logh v′. Then:

Claim. If the decryption oracle outputs ⊥ for all invalid ciphertexts during the adver-
sary’s attack, then the value of bi (and hence b) is independent of the adversary’s view.

The adversary knows at most t − 2 values of fx0
(·) and fy0(·) (at points other than i)

and additionally knows the values x∗1,0 and y∗1,0 (the linear terms of these polynomials).
Since fx0

(·) and fy0(·) are random polynomials of degree t, the values xi,0, yi,0 (=
fx0

(i), fy0(i)) are uniformly distributed subject to:

logg zi = xi,0 + yi,0 logg h. (3)

Furthermore, when the decryption oracle decrypts valid ciphertexts 〈i, (u′, v′, w′, e′)〉,
the adversary only obtains linearly-dependent relations r′ logg zi = r′xi,0+r′yi,0 logg h

(where r′
def
= logg u

′). Similarly, decryptions of valid ciphertexts at other time periods
do not further constrain xi,0, yi,0. Now consider the third component uxi,0vyi,0Mbi

of
the encryption oracle (the only one which depends on bi). Since:

logu(u
xi,0vyi,0) = xi,0 + yi,0 logu v, (4)

and (3) and (4) are linearly independent, the conditional distribution of uxi,0vyi,0 (con-
ditioned on bi and the adversary’s view) is uniform. Thus, the adversary’s view is inde-
pendent of bi. The following claim now completes the proof of key-insulated security:

Claim. With all but negligible probability, the decryption oracle will output ⊥ for all
invalid ciphertexts.

Consider a ciphertext 〈j, (u′, v′, w′, e′)〉, where j represents a period during which a
key exposure request was not made. We show that, with all but negligible probability,
this ciphertext is rejected if it is invalid. There are two cases to consider: (1) j = i
(recall that i is the period during which the call to the LR oracle is made) and (2) j 6= i.

When j = i, the proof of the claim follows the proof of [11, Claim 2] exactly. The
adversary knows at most t−2 values of fx1

(·), fy1(·), fx2
(·), and fy2(·) (at points other

than i) and additionally knows the linear coef£cients of these polynomials. Since these
are all random polynomials of degree t, the values (xi,1, yi,1, xi,2, yi,2) are uniformly
distributed subject to:

logg ci = xi,1 + yi,1 logg h (5)

logg di = xi,2 + yi,2 logg h (6)

logu ẽ = xi,1 + αxi,2 + (logu v) yi,1 + (logu v)α yi,2, (7)

where (7) comes from the output of the encryption oracle. If the submitted ciphertext
〈i, (u′, v′, w′, e′)〉 is invalid and (u′, v′, w′, e′) 6= (u, v, w̃, ẽ), there are three possibili-
ties:

Case 1. (u′, v′, w′) = (u, v, w̃). In this case, v′ 6= ṽ ensures that the decryption oracle
will reject.

Case 2. (u′, v′, w′) 6= (u, v, w̃) but H(u′, v′, w′) = H(u, v, w̃). This violates the secu-
rity of the universal one-way hash family and hence cannot occur with non-negligible
probability. See [11].

Case 3. H(u′, v′, w′) 6= H(u, v, w̃). The decryption oracle will reject unless:

logu′ e
′ = xi,1 + α′xi,2 + (logu′ v

′) yi,1 + (logu′ v
′)α′ yi,2. (8)

But (5)–(8) are all linearly independent, from which it follows that the decryption or-
acle rejects except with probability 1/q. (As in [11], each rejection further constrains

the values (xi,1, yi,1, xi,2, yi,2); however, the kth query will be rejected except with
probability at most 1/(q − k + 1).)

When j 6= i, the values (xi,1, yi,1, xi,2, yi,2, xj,1, yj,1, xj,2, yj,2) are uniformly dis-
tributed subject only to (5)–(7) and:

logg cj = xj,1 + yj,1 logg h (9)

logg dj = xj,2 + yj,2 logg h. (10)

Here, we make crucial use of the fact that the adversary has made at most t − 2 key
exposure requests — had the adversary learned t − 1 points on the polynomials, this
(along with knowledge of the linear coef£cients) would yield additional linear relations
(e.g., between xi,1 and xj,1), and the proof of security would not go through.

If the ciphertext 〈j, (u′, v′, w′, e′)〉 submitted by the adversary is invalid, the de-
cryption oracle will reject unless:

logu′ e
′ = xj,1 + α′xj,2 + (logu′ v

′) yj,1 + (logu′ v
′)α′ yj,2. (11)

Clearly, however, (5)–(7) and (9)–(11) are all linearly independent, from which it fol-
lows that the decryption oracle rejects except with probability 1/q. This completes the
proof of (t− 2, N)-key-insulated security.

The key to the proof above (informally) is that the adversary learns only t−1 “pieces
of information” about the polynomials fx1

(·), fy1(·), fx2
(·), and fy2(·) (i.e., their values

at t − 2 points and their linear coef£cients). Hence, before any calls to the decryption
oracle have been made, the pair (xi,1, xj,1) (for example) is uniformly distributed. The
proof of strong key-insulated security follows exactly the same arguments given above
once we notice that SK∗ gives only t−1 “pieces of information” as well (i.e., the t−1
leading coef£cients). We omit further details.

We note that a trivial modi£cation to the scheme achieves (t− 1, N)-key-insulated
security with minimal added complexity: choose random elements {x̃1,n, ỹ1,n}0≤n≤2,
then set x̂1,n = x1,n + x̃1,n and ŷ1,n = y1,n + ỹ1,n for 0 ≤ n ≤ 2. Now, include
{x̃1,n, ỹ1,n}0≤n≤2 with SK∗ and store {x̂1,n, ŷ1,n}0≤n≤2 as part of SK0 (and have
these values be part of SKi at all time periods). Key updates are done in the obvious
way. Note that SK∗ only stores t−1 “pieces of information” about the random, degree-t
polynomials; furthermore, t−1 key exposures only reveal t−1 “pieces of information”
as well. Thus, a proof of security follows the proof of the above theorem.

Acknowledgment: Shouhuai Xu was partially supported by an NSF grant to the Labo-
ratory for Information Security Technology at George Mason University.

References

1. M. Abdalla and L. Reyzin. A New Forward-Secure Digital Signature Scheme. Asiacrypt’00.
2. M. Abe and M. Kanda. A Key Escrow Scheme with Time-Limited Monitoring for One-Way

Communication. ACISP ’00.
3. R. Anderson. Invited lecture. ACM CCCS ’97.
4. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A Concrete Security Treatment of Sym-

metric Encryption: Analysis of the DES Modes of Operation. FOCS ’97.
5. M. Bellare and S.K. Miner. A Forward-Secure Digital Signature Scheme. Crypto ’99.

6. G. Blakley and C. Meadows. Security of Ramp Schemes. Crypto ’84.
7. D. Boneh and M. Franklin. Identity-Based Encryption from the Weil Pairing. Crypto ’01.
8. V. Boyko. On the Security Properties of the OAEP as an All-or-Nothing Transform. Crypto

’99.
9. R. Canetti, Y. Dodis, S. Halevi, E. Kushilevitz, and A. Sahai. Exposure-Resilient Functions

and All-Or-Nothing-Transforms. Eurocrypt ’00.
10. B. Chor, A. Fiat, and M. Naor. Tracing Traitors. Crypto ’94.
11. R. Cramer and V. Shoup. A Practical Public-Key Cryptosystem Provably Secure against

Adaptive Chosen-Ciphertext Attacks. Crypto ’98.
12. A. De Santis, Y. Desmedt, Y. Frankel, and M. Yung. How to Share a Function Securely.

STOC 94.
13. Y. Desmedt and Y. Frankel. Threshold cryptosystems. Crypto’89.
14. W. Dif£e, P. van Oorschot and M. Wiener. Authentication and Authenticated Key Ex-

changes. Designs, Codes and Cryptography, 2:107–125, 1992.
15. Y. Dodis, J. Katz, S. Xu and M. Yung. Key-Insulated Signature Schemes. Manuscript, 2002.
16. A. Dyachkov and V. Rykov. A Survey of Superimposed Code Theory. In Problems of

Control and Information Theory, vol. 12, no. 4, 1983.
17. T. El Gamal. A Public-Key Cryptosystem and a Signature Scheme Based on the Discrete

Logarithm. IEEE Transactions of Information Theory, 31(4): 469–472, 1985.
18. P. Erdos, P. Frankl, and Z. Furedi. Families of Finite Sets in which no Set is Covered by the

Union of r Others. In Israel J. Math., 51(1-2): 79–89, 1985.
19. M. Franklin, M. Yung. Communication Complexity of Secure Computation. STOC ’92.
20. E. Gafni, J. Staddon, and Y. L. Yin. Ef£cient Methods for Integrating Traceability and

Broadcast Encryption. Crypto ’99.
21. M. Girault. Relaxing Tamper-Resistance Requirements for Smart Cards Using (Auto)-

Proxy Signatures. CARDIS ’98.
22. O. Goldreich, B. P£tzmann, and R.L. Rivest. Self-Delegation with Controlled Propagation

— or — What if You Lose Your Laptop? Crypto ’98.
23. S. Goldwasser, S. Micali, and R.L. Rivest. A Digital Signature Scheme Secure Against

Adaptive Chosen-Message Attacks. SIAM J. Computing 17(2): 281–308 (1988).
24. P. Indyk. Personal communication.
25. G. Itkis and L. Reyzin. Forward-Secure Signatures with Optimal Signing and Verifying.

Crypto ’01.
26. S. Jarecki and A. Lysyanskaya. Concurrent and Erasure-Free Models in Adaptively-Secure

Threshold Cryptography. Eurocrypt ’00.
27. H. Krawczyk. Secret Sharing Made Short. Crypto ’93.
28. H. Krawczyk. Simple Forward-Secure Signatures From any Signature Scheme. ACM CCCS

’00.
29. R. Kumar, S. Rajagopalan, and A. Sahai. Coding Constructions for Blacklisting Problems

without Computational Assumptions. Crypto ’99.
30. C.-F. Lu and S.W. Shieh. Secure Key-Evolving Protocols for Discrete Logarithm Schemes.

RSA 2002, to appear.
31. T. Malkin, D. Micciancio, and S. Miner. Ef£cient Generic Forward-Secure Signatures With

an Unbounded Number of Time Periods. These proceedings.
32. R. Ostrovsky and M. Yung. How to Withstand Mobile Virus Attacks. PODC ’91.
33. T. Pedersen. Non-Interactive and Information-Theoretic Secure Veri£able Secret Sharing.

Crypto ’91.
34. R. Rivest. All-or-Nothing Encryption and the Package Transform. FSE ’97.
35. A. Shamir. How to share a secret. Comm. ACM, 22(11):612–613, 1979.
36. W.-G. Tzeng and Z.-J. Tzeng. Robust Key-Evolving Public-Key Encryption Schemes.

Available at http://eprint.iacr.org.

