
Optimal Security Proofs for PSS and other

Signature Schemes

Jean-Sébastien Coron

Gemplus Card International

34 rue Guynemer

Issy-les-Moulineaux, F-92447, France

coron@ens.fr

Abstract. The Probabilistic Signature Scheme (PSS) designed by Bel-
lare and Rogaway is a signature scheme provably secure against cho-
sen message attacks in the random oracle model, whose security can be
tightly related to the security of RSA. We derive a new security proof for
PSS in which a much shorter random salt is used to achieve the same se-
curity level, namely we show that log2 qsig bits suffice, where qsig is the
number of signature queries made by the attacker. When PSS is used
with message recovery, a better bandwidth is obtained because longer
messages can now be recovered. In this paper, we also introduce a new
technique for proving that the security proof of a signature scheme is
optimal. In particular, we show that the size of the random salt that we
have obtained for PSS is optimal: if less than log2 qsig bits are used, then
PSS is still provably secure but it cannot have a tight security proof.
Our technique applies to other signature schemes such as the Full Do-
main Hash scheme and Gennaro-Halevi-Rabin’s scheme, whose security
proofs are shown to be optimal.

Key-words: Probabilistic Signature Scheme, Provable Security.

1 Introduction

Since the invention of public-key cryptography in the seminal Diffie-Hellman
paper [9], significant research endeavors were devoted to the design of practical
and provably secure schemes. A proof of security is usually a computational re-
duction from solving a well established problem to breaking the cryptosystem.
Well established problems of cryptographic relevance include factoring large in-
tegers, computing discrete logarithms in prime order groups, or extracting roots
modulo a composite integer.

For digital signature schemes, the strongest security notion was defined by
Goldwasser, Micali and Rivest in [13], as existential unforgeability under an

adaptive chosen message attack. This notion captures the property that an at-
tacker cannot produce a valid signature, even after obtaining the signature of
(polynomially many) messages of his choice.



Goldwasser, Micali and Rivest proposed in [13] a signature scheme based on
signature trees that provably meets this definition. The efficiency of the scheme
was later improved by Dwork and Naor [10], and Cramer and Damg̊ard [7]. A
significant drawback of those signature schemes is that the signature of a message
depends on previously signed messages: the signer must thus store information
relative to the signatures he generates as time goes by. Gennaro, Halevi and
Rabin presented in [12] a new hash-and-sign scheme provably secure against
adaptive chosen message attacks which is both state-free and efficient. Its secu-
rity is based on the strong-RSA assumption. Cramer and Shoup presented in
[8] a signature scheme provably secure against adaptive chosen message attacks,
which is also state-free, efficient, and based on the strong-RSA assumption.

The random oracle model, introduced by Bellare and Rogaway in [1], is a
theoretical framework allowing to prove the security of hash-and-sign signature
schemes. In this model, the hash function is seen as an oracle that outputs
a random value for each new query. Bellare and Rogaway defined in [2] the
Full Domain Hash (FDH) signature scheme, which is provably secure in the
random oracle model assuming that inverting RSA is hard. [2] also introduced
the Probabilistic Signature Scheme (PSS), which offers better security guarantees
than FDH. Similarly, Pointcheval and Stern [19] proved the security of discrete-
log based signature schemes in the random oracle model (see also [16] for a
concrete treatment). However, security proofs in the random oracle are not real
proofs, since the random oracle is replaced by a well defined hash function in
practice; actually, Canetti, Goldreich and Halevi [4] showed that a security proof
in the random oracle model does not necessarily imply that a scheme is secure
in the real world.

For practical applications of provably secure schemes, the tightness of the
security reduction must be taken into account. A security reduction is tight when
breaking the signature scheme leads to solving the well established problem with
probability close to one. In this case, the signature scheme is almost as secure
as the well established problem. On the contrary, if the above probability is
too small, the guarantee on the signature scheme will be weak; in which case
larger security parameters must be used, thereby decreasing the efficiency of the
scheme.

The security reduction of [2] for Full Domain Hash bounds the probability
ε of breaking FDH in time t by (qhash + qsig) · ε

′ where ε′ is the probability of
inverting RSA in time t′ close to t and where qhash and qsig are the number
of hash queries and signature queries performed by the forger. This was later
improved in [5] to ε ' qsig ·ε

′, which is a significant improvement since in practice
qsig happens to be much smaller than qhash. However, FDH’s security reduction
is still not tight, and FDH is still not as secure as inverting RSA.

On the contrary, PSS is almost as secure as inverting RSA (ε ' ε′). Addi-
tionally, for PSS to have a tight security proof in [2], the random salt used to
generate the signature must be of length at least k0 ' 2 · log2 qhash + log2 1/ε

′,
where qhash is the number of hash queries requested by the attacker and ε

′ the
probability of inverting RSA within a given time bound. Taking qhash = 260



and ε′ = 2−60 as in [2], we obtain a random salt of size k0 = 180 bits. In this
paper, we show that PSS has actually a tight security proof for a random salt
as short as log2 qsig bits, where qsig is the number of signature queries made
by the attacker. For example, for an application in which at most one billion
signatures will be generated, k0 = 30 bits of random salt are actually sufficient
to guarantee the same level of security as RSA, and taking a longer salt does not
increase the security level. When PSS is used with message recovery, we obtain a
better bandwidth because a larger message can now be recovered when verifying
the signature.

Moreover, we show that this size is optimal: if less than log2 qsig bits of
random salt are used, PSS is still provably secure, but PSS cannot have exactly
the same security level as RSA. First, using a new technique, we derive an upper
bound for the security of FDH, which shows that the security proof in [5] with
ε ' qsig · ε

′ is optimal. In other words, it is not possible to further improve the
security proof of FDH in order to obtain a security level equivalent to RSA.
This answers the open question raised by Bellare and Rogaway in [2], about the
existence of a better security proof for FDH: as opposed to PSS, FDH cannot be
proven as secure as inverting RSA. The technique also applies to other signature
schemes such as Gennaro-Halevi-Rabin’s scheme [12] and Paillier’s signature
scheme [17]. To our knowledge, this is the first result concerning optimal security
proofs. Then, using the upper bound for the security of FDH, we show that our
size k0 for the random salt in PSS is optimal: if less than log2 qsig bits are used,
no security proof for PSS can be tight.

2 Definitions

In this section we briefly present some notations and definitions used throughout
the paper. We start by recalling the definition of a signature scheme.

Definition 1 (signature scheme). A signature scheme (Gen, Sign, Verify) is
defined as follows:

- The key generation algorithm Gen is a probabilistic algorithm which given

1k, outputs a pair of matching public and private keys, (pk, sk).
- The signing algorithm Sign takes the message M to be signed, the public

key pk and the private key sk, and returns a signature x = Signpk,sk(M). The
signing algorithm may be probabilistic.

- The verification algorithm Verify takes a message M , a candidate signa-

ture x′ and pk. It returns a bit Verifypk(M,x′), equal to one if the signature

is accepted, and zero otherwise. We require that if x ← Signpk,sk(M), then
Verifypk(M,x) = 1.

In the previously introduced existential unforgeability under an adaptive cho-
sen message attack scenario, the forger can dynamically obtain signatures of
messages of his choice and attempts to output a valid forgery. A valid forgery

is a message/signature pair (M,x) such that Verifypk(M,x) = 1 whereas the
signature of M was never requested by the forger.



A significant line of research for proving the security of signature schemes is
the previously introduced random oracle model, where resistance against adap-
tive chosen message attacks is defined as follows [1]:

Definition 2. A forger F is said to (t, qhash, qsig, ε)-break the signature scheme
(Gen, Sign, Verify) if after at most qhash(k) queries to the hash oracle, qsig(k)
signatures queries and t(k) processing time, it outputs a valid forgery with prob-

ability at least ε(k) for all k ∈ N.

and quite naturally:

Definition 3. A signature scheme (Gen, Sign, Verify) is (t, qsig, qhash, ε)-
secure if there is no forger who (t, qhash, qsig, ε)-breaks the scheme.

The RSA cryptosystem, invented by Rivest, Shamir and Adleman [20], is the
most widely used cryptosystem today:

Definition 4 (The RSA cryptosystem). The RSA cryptosystem is a family

of trapdoor permutations, specified by:

- The RSA generator RSA, which on input 1k, randomly selects two distinct
k/2-bit primes p and q and computes the modulus N = p · q. It randomly picks

an encryption exponent e ∈ Z∗φ(N) and computes the corresponding decryption

exponent d such that e · d = 1 mod φ(N). The generator returns (N, e, d).
- The encryption function f : Z∗N → Z∗N defined by f(x) = xe mod N .

- The decryption function f−1 : Z∗N → Z∗N defined by f−1(y) = yd mod N .

FDH was the first practical and provably secure signature scheme based on
RSA. It is defined as follows: the key generation algorithm, on input 1k, runs
RSA(1k) to obtain (N, e, d). It outputs (pk, sk), where the public key pk is (N, e)
and the private key sk is (N, d). The signing and verifying algorithms use a hash
function H : {0, 1}∗ → Z∗N which maps bit strings of arbitrary length to the set
of invertible integers modulo N .

SignFDHN,d(M) VerifyFDHN,e(M,x)
y ← H(M) y ← xe mod N
return yd mod N if y = H(M) then return 1 else return 0.

FDH is provably secure in the random oracle model, assuming that inverting
RSA is hard. An inverting algorithm I for RSA gets as input (N, e, y) and tries to
find yd mod N . Its success probability is the probability to output yd mod N
when (N, e, d) are obtained by running RSA(1k) and y is set to xe mod N for
some x chosen at random in Z∗N .

Definition 5. An inverting algorithm I is said to (t, ε)-break RSA if after at

most t(k) processing time its success probability is at least ε(k) for all k ∈ N.

Definition 6. RSA is said to be (t, ε)-secure if there is no inverter that (t, ε)-
breaks RSA.



2G

2G

G1

0 ω (ω)r*

H

M r

2G

G1

0 ω r*

H

M r

Μ∗

Fig. 1. PSS (left) and PSS-R (right)

The following theorem [5] proves the security of FDH in the random oracle
model.

Theorem 1. Assuming that RSA is (tI , εI)-secure, FDH is (tF , qhash, qsig,
εF )-secure, with:

tI = tF + (qhash + qsig + 1) · O(k
3) (1)

εI =
εF
qsig
·

(

1−
1

qsig + 1

)qsig+1

(2)

The technique described in [5] can be used to obtain an improved security
proof for Gennaro-Halevi-Rabin’s signature scheme [12] in the random oracle
model and for Paillier’s signature scheme [17]. From a forger which outputs a
forgery with probability εF , the reduction succeeds in solving the hard problem
with probability roughly εF /qsig, in approximately the same time bound.

The security reduction of FDH is not tight: the probability εF of breaking
FDH is smaller than roughly qsig · εI where εI is the probability of inverting
RSA, whereas the security reduction of PSS is tight: the probability of breaking
PSS is almost the same as the probability of inverting RSA (εF ' εI).

3 New Security Proof for PSS

Several standards include PSS [2], among these are IEEE P1363a [14], a revi-
sion of ISO/IEC 9796-2, and the upcoming PKCS#1 v2.1 [18]. The signature
scheme PSS is parameterized by the integers k, k0 and k1. The key generation is
identical to FDH. The signing and verifying algorithms use two hash functions
H : {0, 1}∗ → {0, 1}k1 and G : {0, 1}k1 → {0, 1}k−k1−1. Let G1 be the function
which on input ω ∈ {0, 1}k1 returns the first k0 bits of G(ω), whereas G2 is the
function returning the remaining k − k0 − k1 − 1 bits of G(ω). A random salt

r of k0 bits is concatenated to the message M before hashing it. The scheme is
illustrated in figure 1. In this section we obtain a better security proof for PSS,
in which a shorter random salt is used to generate the signature.



SignPSS(M) : VerifyPSS(M,x) :

r
R
← {0, 1}k0 y ← xe mod N

ω ← H(M‖r) Break up y as b‖ω‖r∗‖γ
r∗ ← G1(ω)⊕ r Let r ← r∗ ⊕G1(ω)
y ← 0‖ω‖r∗‖G2(ω) if H(M‖r) = ω and G2(ω) = γ and b = 1
return yd mod N then return 1 else return 0

The following theorem [2] proves the security of PSS in the random oracle
model:

Theorem 2. Assuming that RSA is (t′, ε′)-secure, the scheme PSS[k0, k1] is (t,
qsig, qhash, ε)-secure, where :

t = t′ − (qhash + qsig + 1) · k0 · O(k
3) (3)

ε = ε′ + 3 · (qsig + qhash)
2
·
(

2−k0 + 2−k1
)

(4)

Theorem 2 shows that for PSS to be as secure as RSA (i.e. ε′ ' ε), it must
be the case that (qsig + qhash)

2 ·
(

2−k0 + 2−k1
)

< ε′, which gives k0 ≥ kmin and
k1 ≥ kmin, where:

kmin = 2 · log2(qhash + qsig) + log2
1

ε′
(5)

Taking qhash = 2
60, qsig = 2

30 and ε′ = 2−60 as in [2], we obtain that k0 and k1

must be greater than kmin = 180 bits.

The following theorem shows that PSS can be proven as secure as RSA for a
much shorter random salt, namely k0 = log2 qsig bits, which for qsig = 2

30 gives
k0 = 30 bits. The minimum value for k1 remains unchanged.

Theorem 3. Assuming that RSA is (t′, ε′)-secure, the scheme PSS[k0, k1] is (t,
qsig, qhash, ε)-secure, where :

t = t′ − (qhash + qsig) · k1 · O(k
3) (6)

ε = ε′ ·
(

1 + 6 · qsig · 2
−k0
)

+ 2 · (qhash + qsig)
2
· 2−k1 (7)

In appendix A, we give a security proof for a variant of PSS, for which the
proof is simpler. The proof of theorem 3 is very similar and can be found in the
full version of the paper [6]. The difference with the security proof of [2] is the
following: in [2], a new random salt r is randomly generated for each signature
query, and if r has appeared before, the inverter stops and has failed. Since
at most qhash + qsig random salts can appear during the reduction, the inverter
stops after a given signature query with probability less than (qhash+qsig) ·2

−k0 .
There are at most qsig signature queries, so this gives an error probability of:

qsig · (qhash + qsig) · 2
k0

which accounts for the term (qhash+qsig)
2 ·2−k0 in equation (4). On the contrary,

in our new security proof, we generate for each new message Mi a list of qsig
random salts. Those random salts are then used to answer the signature queries
for Mi, so there is no error probability when answering the signature queries.



-35

-30

-25

-20

-15

-10

-5

0

5

0 10 20 30 40 50 60

Salt size in bits

Security gap between RSA and PSS

Fig. 2. Security gap between PSS and RSA: log2 ε′/ε as a function of the salt size k0

for qsig = 2
30 signature queries.

3.1 Discussion

Theorem 3 shows that PSS is actually provably secure for any size k0 of the
random salt. In figure 2 we plot log2 ε

′/ε as a function of the size k0 of the salt,
which depicts the relative security of PSS compared to RSA, for qsig = 2

30 and
k1 > kmin. For k0 = 0, we reach the security level of FDH, where approximately
log2 qsig bits of security are lost compared to RSA. For k0 comprised between
zero and log2 qsig, we gain one bit of security when k0 increases by one bit.
And for k0 greater than log2 qsig, the security level of PSS is almost the same
as inverting RSA. This shows that PSS has a tight security proof as soon as
the salt size reaches log2 qsig, and using larger salts does not further improve
security. For the signer, qsig represents the maximal number of signatures which
can be generated for a given public-key. For example, for an application in which
at most one billion signatures will be generated, k0 = 30 bits of random salt are
actually sufficient to guarantee the same level of security as RSA, and taking a
larger salt does not increase the security level.

PSS-R is a variant of PSS which provides message recovery; the scheme is
illustrated in figure 1. The goal is to save on the bandwidth: instead of trans-
mitting the message separately, the message is recovered when verifying the
signature. The security proof for PSS-R is almost identical to the security proof
of PSS, and PSS-R achieves the same security level as PSS. Consequently, us-
ing the same parameters as for PSS with a 1024-bits RSA modulus, 813 bits of
message can now be recovered when verifying the signature (instead of 663 bits
with the previous security proof).



4 Optimal Security Proof for FDH

In section 2 we have seen that the security proof of theorem 1 for FDH is still not
tight: the probability εF of breaking FDH is smaller than roughly qsig ·εI where εI
is the probability of inverting RSA. In this section we show that the security proof
of theorem 1 for FDH is optimal, i.e. there is no better reduction from inverting
RSA to breaking FDH, and one cannot avoid loosing the qsig factor in the
probability bound. We use a similar approach as Boneh and Venkatesan in [3] for
disproving the equivalence between inverting low-exponent RSA and factoring.
They show that any efficient algebraic reduction from factoring to inverting
low-exponent RSA can be converted into an efficient factoring algorithm. Such
reduction is an algorithm A which factors N using an e-th root oracle for N .
They show how to convert A into an algorithm B that factors integers without
using the e-th root oracle. Thus, unless factoring is easy, inverting low-exponent
RSA cannot be equivalent to factoring under algebraic reductions.

Similarly, we show that any better reduction from inverting RSA to breaking
FDH can be converted into an efficient RSA inverting algorithm. Such reduction
is an algorithm R which uses a forger as an oracle in order to invert RSA. We
show how to convert R into an algorithm I which inverts RSA without using
the oracle forger. Consequently, if inverting RSA is hard, there is no such better
reduction for FDH, and the reduction of theorem 1 must be optimal.

Our technique is the following. Recall that resistance against adaptive cho-
sen message attacks is considered, so the forger is allowed to make signature
queries for messages of its choice, which must be answered by the reduction R.
Eventually the forger outputs a forgery, and the reduction must invert RSA.
Therefore we first ask the reduction to sign a message M and receive its sig-
nature s, then we rewind the reduction to the state in which it was before the
signature query, and we send s as a forgery for M . This is a true forgery for
the reduction, because after the rewind there was no signature query for M , so
eventually the reduction inverts RSA. Consequently, we have constructed from
R an algorithm I which inverts RSA without using any forger. Actually, this
technique allows to simulate a forger with respect to R, without being able to
break FDH. However, the simulation is not perfect, because it outputs a forgery
only for messages which can be signed by the reduction, whereas a real forger
outputs the forgery of a message that the reduction may or may not be able to
sign.

We quantify the efficiency of a reduction by giving the probability that the
reduction inverts RSA using a forger that (tF , qhash,qsig,εF )-breaks the signature
scheme, within an additional running time of tR:

Definition 7. We say that a reduction algorithm R (tR, qhash, qsig, εF , εR) -
reduces inverting RSA to breaking FDH if upon input (N, e, y) and after run-

ning any forger that (tF , qhash, qsig,εF )-breaks FDH, the reduction outputs yd

mod N with probability greater than εR, within an additional running time of

tR.



In the above definition, tR is the running time of the reduction algorithm only
and does not include the running time of the forger. Eventually, the time needed
to invert RSA is tF +tR, where tF is the running time of the forger. For example,
the reduction of theorem 1 for FDH (tR, qhash, qsig, εF , εR)-reduces inverting
RSA to breaking FDH with tR(k) = (qhash+ qsig) ·O(k

3) and εR = εF /(4 · qsig).

The following theorem, whose proof is given in appendix B, shows that from
any such reduction R we can invert RSA with probability greater than roughly
εR − εF /qsig, in roughly the same time bound.

Theorem 4. Let R be a reduction that (tR, qhash, qsig, εR, εF )-reduces inverting
RSA to breaking FDH. R runs the forger only once. From R we can construct

an algorithm that (tI , εI)-inverts RSA, with:

tI = 2 · tR (8)

εI = εR − εF ·
exp(−1)

qsig
·

(

1−
qsig
qhash

)−1

(9)

Theorem 4 shows that from any reduction R that inverts RSA with probabil-
ity εR when interacting with a forger that outputs a forgery with probability εF ,
we can invert RSA with probability roughly εR − εF /qsig, in roughly the same
time bound, without using a forger. For simplicity, we omit here the factors
exp(−1) and (1−qsig/qhash) in equation (9). Moreover we consider a forger that
makes qsig signature queries, and with probability εF = 1 outputs a forgery

1.

Theorem 4 implies that from a polynomial time reduction R that succeeds
with probability εR when interacting with this forger, we obtain a polynomial
time RSA inverter I that succeeds with probability εI = εR − 1/qsig, without
using the forger. If inverting RSA is hard, the success probability εI of the poly-
nomial time inverter must be negligible. Consequently, the success probability
εR of the reduction must be less than 1/qsig + negl. This shows that from a
forger that outputs a forgery with probability one, a polynomial time reduction
cannot succeed with probability greater than 1/qsig + negl. On the contrary, a
tight security reduction would invert RSA with probability close to one. Here
we cannot avoid the qsig factor in the security proof: the security level of FDH
cannot be proven equivalent to RSA, and the security proof of theorem 1 for
FDH is optimal.

5 Extension to any Signature Scheme with Unique

Signature

We have introduced a new technique that enables to simulate a forger with
respect to a reduction. It consists in making a signature query for a message M ,
rewinding the reduction, then sending the signature of M as a forgery. Actually,

1 Such forger can be constructed by first factoring the modulus N , then computing a
forgery using the factorisation of N .



this technique stretches beyond FDH and can be generalized and applied to any
signature scheme in which each message has a unique signature. Moreover, the
technique can be generalized to reductions running a forger more than once. The
following theorem shows that for a hash-and-sign signature scheme with unique
signature, a reduction allowed to run or rewind a forger at most r times cannot
succeed with probability greater than roughly r · εF /qsig. The definitions and
the proof of the theorem are given in the full version of the paper [6].

Theorem 5. Let R be a reduction that (tR, qhash, qsig, εF , εR)-reduces solving a
problem Π to breaking a hash-and-sign signature scheme with unique signature.

R is allowed to run or rewind a forger at most r times. From R we can construct

an algorithm that (tA, εA)-solves Π, with:

tA = (r + 1) · tR (10)

εA = εR − εF ·
exp(−1) · r

qsig
·

(

1−
qsig
qhash

)−1

(11)

6 Security Proofs for Signature Schemes in the Standard

Model

The same technique can be applied to security reductions in the standard model,
and we obtain the same upper bound in 1/qsig for signature schemes with unique
signature. The definitions and the proof of the following theorem are given in
the full version of the paper [6].

Theorem 6. Let R be a reduction that (tR, qsig, εF , εR)-reduces solving Π to

breaking a signature scheme with unique signature. R can run or rewind the

forger at most r times. Assume that the size of the message space is at least 2`.
¿From R we can construct an algorithm that (tA, εA)-solves Π, with:

tA = (r + 1) · tR (12)

εA = εR − εF ·
exp(−1) · r

qsig
·
(

1−
qsig
2`

)−1

(13)

In [6] we give an example of a signature scheme with unique signature, prov-
ably secure in the standard model, and reaching the the above bound in 1/qsig.

7 Optimal Security Proof for PSS

In section 3 we have seen that k0 = log2 qsig bits of random salt are sufficient
for PSS to have a security level equivalent to RSA, and taking a larger salt does
not further improve the security. In this section, we show that that this length
is optimal: if a shorter random salt is used, the security level of PSS cannot be
proven equivalent to RSA. Our technique described in section 4 does not apply



directly because PSS is not a signature scheme with unique signature. We extend
our technique to PSS using the following method.

We consider PSS in which the random salt is fixed to 0k0 , and we denote this
signature scheme PSS0[k0, k1]. Consequently, PSS0[k0, k1] is a signature scheme
with unique signature. First, we show how to convert a forger for PSS0[k0, k1] into
a forger for PSS[k0, k1]. A reductionR from inverting RSA to breaking PSS[k0, k1]
uses a forger for PSS[k0, k1] in order to invert RSA. Consequently, from a forger
for PSS0[k0, k1], we can invert RSA using the reduction R. This means that from
R we can construct a reduction R0 from inverting RSA to breaking PSS0[k0, k1].
Since PSS0[k0, k1] is a signature scheme with unique signature, theorem 5 gives
an upper bound for the success probability of R0, from which we derive an upper
bound for the success probability of R.

Theorem 7. Let R a reduction that (t, qhash, qsig,εF , εR)-reduces inverting RSA
to breaking PSS[k0, k1], with qhash ≥ 2 · qsig. The reduction can run or rewind

the forger at most r times. ¿From R we can construct an inverting algorithm

for RSA that (tI , εI)-inverts RSA, with:

tI = (r + 1) · (tR + qsig · O(k)) (14)

εI = εR − r · εF ·
2k0+2

qsig
(15)

Proof. The proof is given in the full version of the paper [6].

Let consider as in section 4 a forger for PSS[k0, k1] that makes qsig signature
queries and outputs a forgery with probability εF = 1/2. Then, from a poly-
nomial time reduction R that succeeds with probability εR when running once
this forger, we obtain a polynomial time inverter that succeeds with probabil-
ity εI = εR − 2

k0+1/qsig, without using the forger. If inverting RSA is hard,
the success probability εI of the polynomial time inverter must be negligible,
and therefore the success probability εR of the reduction must be less than
2k0+1/qsig + negl. Consequently, in order to have a tight security reduction
(εR ' εR), we must have k0 ' log2 qsig. The reduction of theorem 3 is conse-
quently optimal.

8 Conclusion

We have described a new technique for analyzing the security proofs of signature
schemes. The technique is both general and very simple and allows to derive
upper bounds for security reductions using a forger as a black box, both in the
random oracle model and in the standard model, for signature schemes with
unique signature. We have also obtained a new criterion for a security reduction
to be optimal, which may be of independent interest: we say that a security
reduction is optimal if from a better reduction one can solve a difficult problem,
such as inverting RSA. Our technique enables to show that the Full Domain Hash
scheme, Gennaro-Halevi-Rabin’s scheme and Paillier’s signature scheme have an



optimal security reduction in that sense. In other words, we have a matching
lower and upper bound for the security reduction of those signature schemes:
one cannot do better than losing a factor of qsig in the security reduction.

Moreover, we have described a better security proof for PSS, in which a
much shorter random salt is sufficient to achieve the same security level. This
is of practical interest, since when PSS is used with message recovery, a better
bandwidth is obtained because larger messages can be embedded inside the sig-
nature. Eventually, we have shown that this security proof for PSS is optimal: if
a smaller random salt is used, PSS remains provably secure, but it cannot have
the same level of security as RSA.

Acknowledgements :
I would like to thank Burt Kaliski, Jacques Stern and David Pointcheval for
helpful discussions and the anonymous referees for their comments.

References

1. M. Bellare and P. Rogaway, Random oracles are practical: a paradigm for designing
efficient protocols. Proceedings of the First Annual Conference on Computer and
Commmunications Security, ACM, 1993.

2. M. Bellare and P. Rogaway, The exact security of digital signatures - How to sign
with RSA and Rabin. Proceedings of Eurocrypt’96, LNCS vol. 1070, Springer-
Verlag, 1996, pp. 399-416.

3. D. Boneh and R. Venkatesan, Breaking RSA may not be equivalent to factoring.
Proceedings of Eurocrypt’ 98, LNCS vol. 1403, Springer-Verlag, 1998, pp. 59–71.

4. R. Canetti, O. Goldreich and S. Halevi, The random oracle methodology, revisited,
STOC’ 98, ACM, 1998.

5. J.S. Coron, On the exact security of Full Domain Hash, Proceedings of Crypto
2000, LNCS vol. 1880, Springer-Verlag, 2000, pp. 229-235.

6. J.S. Coron, Security proofs for PSS and other signature schemes, Cryptology ePrint
Archive, Report 2001/062, 2001. http://eprint.iacr.org

7. R. Cramer and I. Damg̊ard, New generation of secure and practical RSA-based
signatures, Proceedings of Crypto’96, LNCS vol. 1109, Springer-Verlag, 1996, pp.
173-185.

8. R. Cramer and V. Shoup, Signature schemes based on the Strong RSA As-
sumption, May 9, 2000, revision of the extended abstract in Proc. 6th ACM
Conf. on Computer and Communications Security, 1999; To appear, ACM Trans-
actions on Information and System Security (ACM TISSEC). Available at
http://www.shoup.net/

9. W. Diffie and M. Hellman, New directions in cryptography, IEEE Transactions on
Information Theory, IT-22, 6, pp. 644-654, 1976.

10. C. Dwork and M. Naor, An efficient existentially unforgeable signature scheme and
its applications, In J. of Cryptology, 11 (3), Summer 1998, pp. 187-208.

11. FIPS 186, Digital signature standard, Federal Information Processing Standards
Publication 186, U.S. Department of Commerce/NIST, 1994.



12. R. Gennaro, S. Halevi and T. Rabin, Secure hash-and-sign signatures without the
random oracle, proceedings of Eurocrypt ’99, LNCS vol. 1592, Springer-Verlag,
1999, pp. 123-139.

13. S. Goldwasser, S. Micali and R. Rivest, A digital signature scheme secure against
adaptive chosen-message attacks, SIAM Journal of computing, 17(2), pp. 281-308,
April 1988.

14. IEEE P1363a, Standard Specifications For Public Key Cryptography: Additional
Techniques, available at http://www.manta.ieee.org/groups/1363

15. A. Lenstra and H. Lenstra (eds.), The development of the number field sieve,
Lecture Notes in Mathematics, vol 1554, Springer-Verlag, 1993.

16. K. Ohta and T. Okamoto, On concrete security treatment of signatures derived
from identification. Prooceedings of Crypto ’98, Lecture Notes in Computer Science
vol. 1462, Springer-Verlag, 1998, pp. 354-369.

17. P. Paillier, Public-key cryptosystems based on composite degree residuosity classes.
Proceedings of Eurocrypt’99, Lecture Notes is Computer Science vol. 1592,
Springer-Verlag, 1999, pp. 223-238.

18. PKCS #1 v2.1, RSA Cryptography Standard (draft), available at http://www.rsa
security.com /rsalabs/pkcs.

19. D. Pointcheval and J. Stern, Security proofs for signature schemes. Proceedings of
Eurocrypt’96, LNCS vol. 1070, Springer-Verlag, pp. 387-398.

20. R. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures
and public key cryptosystems, CACM 21, 1978.

A Security Proof of a variant of PSS

We describe a variant of PSS that we call PFDH, for Probabilistic Full Domain
Hash, for which the security proof is simpler. The scheme is similar to Full
Domain Hash except that a random salt of k0 bits is concatenated to the message
M before hashing it. The difference with PSS is that the random salt is not
recovered when verifying the signature; instead the random salt is transmitted
separately. As FDH, the scheme uses a hash function H : {0, 1}∗ → Z∗N .

SignPFDH(M) : VerifyPFDH(M, s, r) :

r
R
← {0, 1}k0 y ← se mod N

y ← H(M‖r) if y = H(M‖r) then return 1
return (yd mod N, r) else return 0

The following theorem proves the security of PFDH in the random oracle
model, assuming that inverting RSA is hard. It shows that PFDH has a tight
security proof for a random salt of length k0 = log2 qsig bits.

Theorem 8. Suppose that RSA is (t′, ε′)-secure. Then the signature scheme

PFDH[k0] is (t, qhash, qsig, ε)-secure, where:

t = t′ − (qhash + qsig) · O(k
3)− qhash · qsig · O(k) (16)

ε = ε′ ·
(

1 + 6 · qsig · 2
−k0
)

(17)



Proof. Let F be a forger that (t, qsig, qhash, ε)-breaks PFDH. We construct an
inverter I that (t′, ε′)-breaks RSA. The inverter receives as input (N, e, η) and
must output ηd mod N . We assume that the forger never repeats a hash query.
However, the forger may repeat a signature query, in order to obtain the signature
of M with distinct integers r. The inverter I maintains a counter i, initially set
to zero.

When a message M appears for the first time in a hash query or a signature
query, the inverter increments the counter i and setsMi ←M . Then, the inverter
generates a list Li of qsig random integers in {0, 1}k0 .

When the forger makes a hash query for Mi‖r, we distinguish two cases. If
r belongs to the list Li, the inverter generates a random x ∈ Z∗N and returns
H(Mi‖r) = xe mod N . Otherwise, the inverter generates a random x ∈ Z∗N and
returns η·xe mod N . Consequently, for each messageMi, the list Li contains the
integers r ∈ {0, 1}k0 such that the inverter knows the signature x corresponding
to Mi‖r.

When the forger makes a signature query for Mi, the inverter takes the
next random r in the list Li. Since the list contains initially qsig integers and
there are at most qsig signature queries, this is always possible. If there was
already a hash query forMi‖r, we have H(Mi‖r) = xe mod N and the inverter
returns the signature x. Otherwise the inverter generates a random x ∈ Z∗N , sets
H(Mi‖r) = xe mod N and returns the signature x.

When the forger outputs a forgery (M, s, r), we assume that it has already
made a hash query forM , soM =Mi for a given i. Otherwise, the inverter goes
ahead and makes the hash query for M‖r. Then if r does not belong to the list
Li, we have H(Mi‖r) = η ·xe mod N . From s = H(Mi‖r)

d = ηd ·x mod N , we
obtain ηd = s/x mod N and the inverter succeeds in outputting ηd mod N .

Since the forger has not made any signature query for the message Mi in the
forgery (Mi, s, r), the forger has no information about the qsig random integers in
the list Li. Therefore, the probability that r does not belong to Li is (1−2

−k0)qsig .
If the size k0 of the random salt is greater than log2 qsig, we obtain if qsig ≥ 2:

(

1− 2−k0
)qsig

≥

(

1−
1

qsig

)qsig

≥
1

4

Since the forger outputs a forgery with probability ε, the success probability
ε′ of the inverter is then at least ε/4, which shows that for k0 ≥ log2 qsig the
probability of breaking PFDH is almost the same as the probability of inverting
RSA.

For the general case, i.e. if we do not assume k0 ≥ log2 qsig, we generate
fewer than qsig random integers in the list Li, so that the salt r in the forgery
(Mi, s, r) belongs to Li with lower probability. More precisely, starting from an
empty list Li, the inverter generates with probability β a random r ← {0, 1}k0 ,
adds it to Li, and starts again until the list Li contains qsig elements. Otherwise
(so with probability 1 − β) the inverter stops adding integers to the list. The



number ai of integers in Li is then a random variable following a geometric law
of parameter β:

Pr[ai = j] =

{

(1− β) · βj if j < qsig
βqsig if j = qsig

(18)

The inverter answers a signature query for Mi if the corresponding list Li
contains one more integer, which happens with probability β (otherwise the
inverter must abort). Consequently, the inverter answers all the signature queries
with probability greater than βqsig . Note that if β = 1, the setting boils down to
the previous case: all the lists Li contain exactly qsig integers, and the inverter
answers all the signature queries with probability one.

The probability that r in the forgery (Mi, s, r) does not belong to the list Li
is then (1− 2−k0)j , when the length ai of Li is equal to j. The probability that
r does not belong to Li is then:

f(β) =

qsig
∑

j=0

Pr[ai = j] ·
(

1− 2−k0
)j

(19)

Since the forger outputs a forgery with probability ε, the success probability of
the inverter is at least ε · βqsig · f(β). We select a value of β which maximizes
this success probability; in [6], we show that for any (qsig, k0), there exists β0

such that:

β
qsig

0 · f(β0) ≥
1

1 + 6 · qsig · 2−k0
(20)

which gives (17). The running time of I is the running time of F plus the time
necessary to compute the integers xe mod N and to generate the lists Li, which
gives (16).

B Proof of Theorem 4

¿From R we build an algorithm I that inverts RSA, without using a forger for
FDH. We receive as input (N, e, y) and our goal is to output yd mod N using
R. We select qhash distinct messages M1, . . . ,Mqhash

and start running R with
(N, e, y).

First we ask R to hash the qhash messages M1, . . . ,Mqhash
, and obtain the

hash values h1, . . . , hqhash
. We select a random integer β ∈ [1, qhash] and a

random sequence α of qsig integers in [1, qhash] \ {β}, which we denote α =
(α1, . . . , αqsig

). We select a random integer i ∈ [1, qsig] and define the sequence
of i integers α′ = (α1, . . . , αi−1, β). Then we make the i signature queries corre-
sponding to α′ to R and receive from R the corresponding signatures, the last
one being the signature sβ of Mβ . For example, if α

′ = (3, 2), this corresponds
to making a signature query for M3 first, and then for M2.

Then we rewind R to the state it was after the hash queries, and this time,
we make the qsig signature queries corresponding to α. If R has answered all



the signature queries, then with probability εF , we send (Mβ , sβ) as a forgery
to R. This is a true forgery for R because after the rewind of R, there was no
signature query for Mβ . Eventually R inverts RSA and outputs y

d mod N .

We denote by Q the set of sequences of signature queries which are correctly
answered by R after the hash queries, in time less than tR. If a sequence of
signature queries is correctly answered by R, then the same sequence without
the last signature query is also correctly answered, so for any (α1, . . . , αj) ∈ Q,
we have (α1, . . . , αj−1) ∈ Q. Let us denote by ans the event α ∈ Q, which
corresponds to R answering all the signature queries after the rewind, and by
ans’ the event α′ ∈ Q, which corresponds to R answering all the signature
queries before the rewind.

Let us consider a forger that makes the same hash queries, the same signature
queries corresponding to α, and outputs a forgery for Mβ with probability εF .
By definition, when interacting with such a forger, R would output yd mod N
with probability at least εR. After the rewind, R sees exactly the same transcript
as when interacting with this forger, except if event ans is true and ans’ is
false: in this case, the forger outputs a forgery with probability εF , whereas our
simulation does not output a forgery. Consequently, when interacting with our
simulation of a forger, R outputs yd mod N with probability at least:

εR − εF · Pr[ans ∧ ¬ans’] (21)

The proof of the following lemma is given in the full version of the paper [6].

Lemma 1. Let Q be a set of sequences of at most n integers in [1, k], such
that for any sequence (α1, . . . , αj) ∈ Q, we have (α1, . . . , αj−1) ∈ Q. Then the

following holds:

Pr
i←[1,n]

(α1,...,αn,β)←[1,k]n+1

[(α1, . . . , αn) ∈ Q ∧ (α1, . . . , αi−1, β) /∈ Q] ≤
exp(−1)

n

Using lemma 1 with n = qsig and k = qhash, we obtain:

Pr[ans ∧ ¬ans’] ≤
exp(−1)

qsig

(

1−
qsig
qhash

)−1

(22)

The term (1 − qsig/qhash) in equation (22) is due to the fact that we select
α1, . . . , αqsig

in [1, qhash] \ {β} whereas in lemma 1 the integers are selected
in [1, qhash]. ¿From equations (21) and (22) we obtain that I succeeds with
probability greater than εI given by (9). Because of the rewind, the running
time of I is at most twice the running time of R, which gives (8) and terminates
the proof.


