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Abstract. We present a new protocol for efficient distributed com-
putation modulo a shared secret. We further present a protocol to
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uct of two safe primes, much more efficiently than was previously known.
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1 Introduction

Many distributed protocols, e.g., [14, 17, 19], require that an RSA modulus N =
pq is generated during system initialization, together with a public exponent e
and shares of the corresponding private exponent. Moreover, many protocols,
e.g., [23, 11, 18, 3, 7], even require that N is the product of “safe” primes, i.e.,
p = 2p′ + 1 and q = 2q′ + 1, where p′ and q′ are themselves prime. While
the requirement for safe primes can sometimes be avoided (e.g., [13, 15]), this
typically comes at the cost of extra communication, computation, and/or non-
standard intractability assumptions.
While the initialization of the system with an RSA modulus N can be ac-

complished using a “trusted dealer,” it would be preferable not to rely on this.
Given a distributed protocol to generate a random (safe) prime, securely

shared among the players, it is not too difficult to solve the above problem. One
can of course use general multi-party computation techniques of Ben-Or, Gold-
wasser and Wigderson [5] to generate a random, shared (safe) prime. Indeed,
that would work as follows: one starts with a standard algorithm for generat-
ing a random (safe) prime, and converts this algorithm into a corresponding
Boolean or arithmetic circuit, and then for each gate in this circuit, the players
perform a distributed multiplication modulo a small prime t. This protocol is
not very practical, especially as the players need to perform a distributed com-
putation for every gate in the circuit, and so unlike in the non-distributed prime
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generation case, they cannot use much more efficient algorithms and practical
implementation techniques for working with large integers.
In this paper, we present new protocols that allow one to perform arithmetic

modulo a secret, shared modulus in a way that is much more efficient than
can be done using the general techniques of Ben-Or et al. More specifically, we
develop a new protocol to efficiently compute shares of c, where c ≡ ab (mod p),
given shares of a, b, and p. The shares of a, b, c, and p are integers modulo Q,
where Q is a prime whose bit-length is roughly twice that of p, and the cost
of this protocol is essentially the cost of performing a small, constant number
of distributed multiplications modulo Q. Actually, this is the amortized cost of
multiplication modulo p assuming many such multiplications are performed for
a fixed p. This protocol, together with several other new supporting protocols,
gives us a protocol to generate a random, shared prime, or safe prime, that is
much more efficient than the generically derived protocol discussed above. In
particular, we obtain a protocol for jointly generating an RSA modulus that is
the product of two safe primes that is much more efficient in practice than any
generic circuit-based protocol (which are the only previously known protocols
for this problem), even using the most efficient circuits for integer multiplication,
division, etc.
Our protocols work in the so-called “honest-but-curious” model. That is, we

assume that all players follow the protocol honestly, but we guarantee that even
if a minority of players “pool” their information they cannot learn anything
that they were not “supposed” to. Even though we make this restriction, fairly
standard techniques can be used to make our protocols robust, while maintaining
their practicality. In fact, using “optimistic” techniques for robustness, we can
obtain a fully robust protocol for distributively generating an RSA modulus that
is not significantly less efficient than our honest-but-curious solution — this is
the subject of on-going work.

Related Work. Boneh and Franklin [6] present a protocol for jointly generating
an RSA modulus N = pq along with a a public exponent and shares of the corre-
sponding private key. Like us, they also work in the honest-but-curious adversary
model. Unlike ours, their protocol is not based on a sub-protocol for generating
a random, shared prime. While our protocol for this task is asymptotically more
efficient than the protocol of Boneh and Franklin (when the number of players
is small), we do not claim that our protocol is in practice more efficient than
theirs for typical parameter choices. The relative performance of these protocols
in such a practical setting depends on a myriad of implementation details.
Unlike our techniques, those of Boneh and Franklin do not give rise to a

protocol for jointly generating an RSA modulus N = pq, where p and q are
safe primes. Indeed, prior to our work, the only known method for solving this
problem was to apply the much less efficient general circuit technique of Ben-Or
et al. [5].
As our protocols rely mainly on distributed multiplication over a prime field,

rather than over the integers, one can easily make them robust using traditional
techniques for verifiable secret sharing modulo a prime, avoiding the somewhat
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less efficient techniques by Frankel et al. [16] for robust distributed multiplication
over the integers. Moreover, using the optimistic approach mentioned above, even
further improvements are possible, so that we can get robustness essentially “for
free.”

2 Model

We consider k players P1, . . . , Pk that are mutually connected by secure and
authentic channels. Our protocols are secure against a static and honest-but-
curious behaving adversary, controlling up to τ = b k−1

2 c players. That is, all
players follow the protocol honestly but the dishonest players may pool their
data and try to derive additional information. We finally assume that no party
stops participating prematurely (we use k-out-of-k secret sharing schemes).

However, these assumptions can be relaxed: First, it’s possible to force the
participants to behave honestly by having them to commit to their inputs, to gen-
erate their individual random strings jointly, and to prove (using zero-knowledge
proofs) that they followed the protocols correctly. Second, the k-out-of-k secret
sharing schemes can easily be converted into τ + 1-out-of-k ones by the ‘share
back-up’ method introduced by Rabin [21]. We do not pursue these possibilities
here.

We prove security in the model by Canetti [8]. Here, we describe a simplified
version of it for a static adversary in the honest-but-curious model. Such an
adversary first chooses the players he wants to corrupt and then gets to see their
inputs, their internal state and all the messages they receive. A protocol π is
proved secure by specifying the functionality f the protocol should provide in
an ideal world where all the parties send their inputs to a trusted third party
T who then returns to them the outputs they are to obtain according to f . Let
πi(x1, . . . , xk, ρ) denote the output of party Pi when running protocol π on input
xi in the presence of adversary A, where ρ is a security parameter. As A has
honest-but-curious behavior, the output πi(x1, . . . , xk, ρ) does not depend on A.

Definition 1. A protocol is said to be statistically secure if for any honest-

but-curious behaving adversary A there exists a probabilistic polynomial-time

simulator S such that the two ensembles of random variables

{A(z), π1(x1, . . . , xk, ρ), . . . , πk(x1, . . . , xk, ρ)}ρ∈N;z,x1,...,xk∈{0,1}∗

and

{S(z), f1(x1, . . . , xk, ρ), . . . , fk(x1, . . . , xk, ρ)}ρ∈N;z,x1,...,xk∈{0,1}∗

are statistically indistinguishable.

It can be shown that security in this sense is preserved under non-concurrent,
modular composition of protocols [8].
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3 Preliminaries

3.1 Notation

Let a be a real number. We denote by bac the largest integer b ≤ a, by dae the
smallest integer b ≥ a, and by dac the largest integer b ≤ a+1/2. We denote by
trunc(a) the integer b such that b = dae if a < 0 and b = bac if a ≥ 0; that is,
trunc(a) rounds a towards 0.
Let Q be a positive integer. All modular arithmetic is done centered around 0;

to remind the reader of this, we use ‘rem’ as the operator for modular reduction
rather than ‘mod’, i.e., c remQ is c− dc/QcQ.
Define ZQ as the set {x ∈ Z | − Q/2 < x ≤ Q/2} (we should emphasize

that ZQ is properly viewed as a set of integers rather than a ring). We denote

an additive sharing of a value a ∈ ZQ over ZQ by 〈a〉
Q
1 , . . . , 〈a〉Qk ∈ ZQ, i.e.,

a =
∑k

j=1〈a〉
Q
j remQ and by [a]Q1 , . . . , [a]Qk ∈ ZQ we denote a polynomial sharing

(also called Shamir-sharing [22]), i.e., a =
∑τ

j=1 λj [a]
Q
j remQ, where λj are the

Lagrange coefficients. The latter only works if Q > k and if Q is prime.
For a ∈ Z we denote by 〈a〉I1, . . . , 〈a〉

I
k ∈ Z an additive sharing of a over the

integers, i.e., a =
∑k

j=1〈a〉
I
j .

We denote protocols as follows: the term b := PROTOCOLNAME(a) means
that the player in consideration runs the protocol PROTOCOLNAME with local
input a and gets local output b as the result of the protocol. Finally, lg(x) denotes
the logarithm of x to the base 2.

3.2 Known Primitives

We recall the known secure multi-party protocols for efficient distributed com-
putation with shared secrets that we will use to compose our protocols, and
we state the number of bit-operations for which we assume lgQ = Θ(n) and
that the bit-complexity of a multiplication of two n-bit integers is O(n2) (which
is a reasonable estimate for realistic values of n, e.g., n = 1024). The round-
complexity of all primitives is O(1) and their communication is O(kn) bits (we
consider communication complexity to be the number of bits each player sends
on average).

Additive sharing over ZQ: To share a secret a ∈ ZQ player Pj chooses 〈a〉
Q
i ∈R

ZQ for i 6= j, sets 〈a〉Qj := a−
∑k

i=1,i6=j〈a〉
Q
i remQ, and sends 〈a〉Qi to player

Pi. This takes O(kn) bit operations.
Polynomial sharing over ZQ: To share a secret a ∈ ZQ player Pj chooses co-
efficients al ∈R ZQ for l = 1, . . . , τ , where τ = b(k − 1)/2c, and sets

[a]Qi := a+
∑τ

l=1 ali
l remQ, and sends [a]Qi to player Pi. This takes O(nk

2 lg k)
bit operations.

Additive sharing over Z: To share a secret a ∈ [−A,A] player Pj chooses 〈a〉
I
i ∈R

[−A2ρ, A2ρ] for i 6= j, where ρ is a security parameter, and sets 〈a〉Ij := a −
∑k

i=1,i6=j〈a〉
I
i , and sends 〈a〉

I
i to player Pi. Note that for any set of k−1 players,
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the distribution of shares of different secrets are statistically indistinguishable
for suitably large ρ (e.g., ρ = 128). This takes O(k(ρ+ lgA)) bit operations.

Distributed computation over ZQ: Addition and multiplication modulo Q of a
constant and a polynomially shared secret is done by having all players lo-
cally add or multiply the constant to their shares. Hence [a]Qj + c remQ is a

polynomial share of a + c remQ and c · 〈a〉Qj remQ is a polynomial share of

ac remQ. These operations take O(n) and O(n2) bit operations, respectively.
Addition of two shared secrets is achieved by having the players locally add
their shares. Thus [a]Qj + [b]

Q
j remQ is a polynomial share of a+ b remQ and

takes O(lgQ) bit operations.
Multiplication modulo Q of two polynomially shared secrets is done by jointly
executing a multiplication protocol due to Ben-Or, Goldwasser and Wigder-
son [5] or by a more efficient variant due to Gennaro, Rabin and Rabin [20]
which requires O(n2k + nk2 lg k) bit operations for each player. We denote

this protocol by MUL([a]Qj , [b]Qj ).
Joint random sharing over ZQ: To generate shares of a secret chosen jointly at
random from ZQ, each player chooses a random number ri ∈R ZQ and shares
it according to the required type of secret sharing scheme and sends the shares
to the respective players. Each player adds up all the shares gotten to obtain
a share of a random value. We denote this protocol by JRS(ZQ) in case the
players get additive shares and by JRP(ZQ) if they get polynomial shares. The
protocols requireO(nk) andO(nk2 lg k) bit operations per player, respectively.

Joint random sharing of 0: In protocols it is often needed to re-randomized
shares obtained from some computation by adding random shares of 0. Such
shares can be obtained for any sharing scheme by having each player share 0
according to the required type of secret sharing scheme and sending them to
the respective players. Each player adds up all the shares gotten to obtain a
share of 0. We denote this protocol by JRSZ(ZQ) in case the players get ad-
ditive shares over ZQ and JRPZ(ZQ) if they get polynomial shares over ZQ.
The protocols require O(nk) and O(nk2 lg k) bit operations per player, respec-
tively. In case we want to have additive shares over the integers, it is required
to give the range (e.g., [−A,A]) from which the players choose the shares they
send to the other players. We denote this protocol by JRIZ([−A,A]) and it
requires O(k(ρ+ lgA)) bit operations per player.

Computing shares of the inverse of a shared secret: This protocol works only for
polynomial sharings over ZQ. Let a be the shared invertible element. Then,
using a protocol due to Bar-Ilan and Beaver [4], the players can compute

shares of a−1 remQ given shares [a]Qj . The protocol, denoted by INV([a]Qj ), is

as follows: first run [r]Qj := JRP(ZQ), then compute [u]
Q
j := MUL([a]Qj , [r]Qj ),

reveal [u]Qj , and reconstruct u. If u ≡ 0 (mod Q), the players start over.

Otherwise, they each locally compute their share of a−1 remQ as (u−1 remQ)·

[r]Qj remQ. This protocol requires an expected number of O(n2k + nk2 lg k)
bit operations per player.

Joint random invertible element sharing: This protocol, denoted JRP-INV(ZQ),
is due to Bar-Ilan and Beaver [4]. The players generate shares of random
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elements [r]Qj := JRP(ZQ) and [s]
Q
j := JRP(ZQ), jointly compute [u]

Q
j :=

MUL([s]Qj , [r]Qj ), reveal [u]
Q
j and then reconstruct u. If u is non-zero, they each

take [r]Qj as their share of a random invertible element. Otherwise, they repeat

the protocol. The protocol requires an expected number of O(nk2 lg k + n2k)
bit operations per player.

4 Conversions Between Different Sharings

In our protocols, we work with all three secret sharing schemes introduced in the
previous section. For this we need methods to convert shares from one sharing
scheme into shares of another one. This section reviews the known methods for
such transformations and provides a method to transform additive shares over
ZQ into additive shares over the integers. The latter is apparently new. The
section also provides a method to obtain shares of the bits of a shared secret.

4.1 Converting Between Integer Shares and ZQ Shares

It is well known how to convert additive shares modulo Q into polynomial shares
modulo Q and vice versa: If the players hold additive (or polynomial) shares of
a value a they re-share those with a polynomial (additive) sharing and send
the shares to the respective players, which add up (or interpolate) the received
shares to obtain a polynomial (or additive) share of a. We denote the first trans-
formation by SQ2PQ(·) and the latter by PQ2SQ(·).

Conversions between shares over the integers into shares over ZQ naturally
requires that Q/2 is bigger than the absolute shared value. If this is the case, an
additive sharing 〈c〉I1, . . . , 〈c〉

I
k over the integers of a secret c with −2

n−1 < c <
2n−1 < Q/2 can be converted in an additive sharing over ZQ (and thus also a

polynomial sharing) by reducing the shares modulo Q, i.e., 〈c〉Qi := 〈c〉
I
i remQ.

We denote this transformation by SI2SQ(·).

Obtaining additive shares over the integers from additive shares over ZQ is
not so straightforward. The main problem is that if one considers the additive
shares over ZQ as additive shares over the integers then one is off by an unknown
multiple Q, the multiple being the quotient of the sum of these shares and Q.
However, if the shared secret is sufficiently smaller than Q (i.e., ρ bits smaller,
where ρ is a security parameter), then the players can reveal the high-order bits
of their shares without revealing anything about the secret. Knowledge of these
high-order bits is sufficient to compute the quotient. This observation leads to
the following protocol.

Let 〈c〉Qj ∈ ZQ be the share of party Pj and let −2
n−1 < c =

∑
i〈c〉

Q
i remQ <

2n−1. If Q > 2ρ+n+lg k+4 holds, the parties can use the following protocol to
securely compute additive shares of c over the integers.
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Protocol SQ2SI(〈c〉Qj ):
Let t = ρ+ n+ 2. Party Pj executes the following steps.

1. Reveal aj := trunc(
〈c〉Qj
2t ) to all other parties.

2. Compute l :=
⌈

2t ∑
i ai

Q

⌋
.

3. Run 〈0〉Ij := JRIZ([−Q2ρ, Q2ρ]).

4. If j ≤ |l| set the output to 〈c〉Ij := 〈c〉
Q
j − Q + 〈0〉Ij if l > 0 and to 〈c〉Ij :=

〈c〉Qj +Q+ 〈0〉Ij if l < 0.

If j > |l| set the output to 〈c〉Ij = 〈c〉
Q
j + 〈0〉

I
j .

Theorem 1. Let 〈c〉Q1 , . . . , 〈c〉Qk be a random additive sharing of −2n−1 ≤ c <
2n−1. If lgQ > ρ+n+lg k+4, where ρ is a security parameter, then the protocol

SQ2SI(〈c〉Qj ) securely computes additive shares of c over the integers.

Proof. We have to provide a simulator that interacts with the ideal world trusted
party T and produces an output indistinguishable from that of the adversary.
The trusted party T gets as input the shares 〈c〉Q1 , . . . , 〈c〉Qk , computes c and
re-shares c over the integers by choosing integer shares of 0 the same way as it
would be done if the parties ran the protocol 〈0〉Ii := JRIZ([−Q2ρ, Q2ρ]). Then T
sets 〈c〉I1 := 〈0〉

I
1 + c and 〈c〉Ii := 〈0〉

I
i for i 6= 1, and then sends 〈c〉

I
i to player Pi.

Note that the players’ outputs are additive shares of c with the right distribution
(i.e., the distribution of any subset of k − 1 shares is statistically close to the
distribution of the corresponding subset if another value c′ was shared).

A simulator is as follows: it forwards the inputs 〈c〉Qi of the corrupted players
to T and obtains the shares 〈c〉Ii for these players from T . It extends the set

of shares 〈c〉Qi of the corrupted players into a full (and random) sharing of any
valid c′ (e.g., 0). Let r1, . . . , rn be the thereby obtained shares. The simulator
then computes ai = trunc( ri

2t ) and lets the adversary know the ai’s that the
corrupted players would receive in the protocol. Then the simulator computes

l =
⌈

2t ∑
i ai

Q

⌋
and, for every i where Party Pi is corrupted, it sets

〈0〉Ii :=





〈c〉Ii − 〈c〉
Q
i +Q if l > 0, i ≤ |l|

〈c〉Ii − 〈c〉
Q
i −Q if l < 0, i ≤ |l|

〈c〉Ii − 〈c〉
Q
i otherwise.

The simulator finally runs the simulator for JRIZ([−Q2ρ, Q2ρ]) such that these
shares 〈0〉Ii are the outputs of the corrupted players. Finally the simulator stops,
outputting whatever the adversary outputs.
It remains to show that for this simulator the distributions of the players’

and the simulators outputs are statistically indistinguishable from the views and
outputs of the players and the adversary when running protocol SQ2SI(〈c〉Qj ).

Let us first prove that the players’ outputs of protocol SQ2SI(〈c〉Qj ) are indeed

shares of c. Let l̂ =
⌈∑

i〈c〉
Q
i

Q

⌋
. Thus c =

∑
i〈c〉

Q
i − l̂Q fulfills |c| < 2n−1 by
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assumption. Define bi = 〈c〉
Q
i − ai2

t. Note that |bi| < 2
t. We have to show that

l = l̂. As
∑

i ai2
t = c + l̂Q −

∑
i bi we have l =

⌈
2t ∑

i ai

Q

⌋
=

⌈
c
Q
+ l̂ −

∑
i bi

Q

⌋
.

Because l̂ is an integer, we have l = l̂ if | c
Q
| < 1/4 and |

∑
i bi

Q
| < 1/4, that is,

if n < lgQ − 2 and 2 + t + lg k = ρ + n + lg k + 4 < lgQ holds. As 〈c〉Qi ∈ ZQ

we have |l| < k and thus c =
∑

i〈c〉
Q
i − lQ =

∑
i〈c〉

I
i . Furthermore it is easy to

see that the distribution of the shares output is statistically close to the ones
produced by T .
Let us now show that the distribution of the ai’s for different shared

values c are statistically indistinguishable. We consider the probability that
the ai’s take different values if a different value of c was shared. W.l.o.g.,
we can assume that 〈c〉Q1 , . . . , 〈c〉Qk−1 are random elements from ZQ and that

〈c〉Qk = c −
∑k−1

i=1 〈c〉
Q
i remQ. Clearly, the values a1 = trunc(

〈c〉Q1
2t ), . . . , ak−1 =

trunc(
〈c〉Q

k−1

2t ) do not depend on the shared value. It remains to consider ak. We

have 〈c〉Qk remQ = ak2
t+bk with bk < 2t. First note that C = −

∑k−1
i=1 〈c〉i remQ

is uniformly distributed over ZQ and that Q > 2t. If C > Q − 2n or if
C rem2t > 2t−2n then ak takes a value that depends on c. These conditions are

fulfilled with probability at most 2n+2n

2t+2n < 2n+1

2t = 2−t+n+1. Therefore, the sta-
tistical difference between the distribution of the ai’s for different shared values
must be smaller than 2 · 2−t+n+1 = 2−t+n+2 = 2−ρ.
As the JRIZ([−Q2ρ, Q2ρ]) protocol is secure, the distributions of the outputs

in the real world and the outputs of the ideal world with our simulator are
statistically indistinguishable.

Combining the above protocols, we can move from polynomial shares over
ZQ to additive shares over the integers and vice versa. The bit-complexities for
these conversions are O(nk2 lg k + n2k) and O(nk2 lg k), respectively. For both,
the communication-complexity is O(kn) bits and the round-complexity is O(1).
Moreover, it follows that we can also move from polynomial shares over ZQ

to polynomial shares over ZQ′ provided Q and Q′ are sufficiently large w.r.t. the
security parameter and the shared value.

4.2 Computing Shares of the Binary Representation of a Shared

Secret

To do a distributed exponentiation with a shared exponent b it is useful when
the players are given shares of the bits of b. In the following we assume (w.l.o.g.)
that the players hold additive shares of the exponent b over the integers. The
idea of the following protocol to obtain shares of b’s bits is that each player
distributes polynomial shares modulo Q̃ of the bits of her or his additive share.
Then the players perform a (general) multi-party computation to add these bits
to obtain shares of the bits of b. This multi-party computation, however, is
rather simple. In fact, we need to implement a circuit of size O(kn) and depth
O(lg k + lg n) (c.f., [10]). Each gate in this circuit requires O(1) invocations of
the multiplication protocol MUL(·, ·) over ZQ̃, where Q̃ can be small.
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Protocol I2Q-BIT(〈b〉Ij ):
Let n to be (an upper-bound on) the number of bits of b. Party Pj runs the
following steps.

1. Re-share each bit of the share 〈b〉Ij with a polynomial sharing over Q̃ and

send each share to the respective player. Let [bi,l]
Q̃
j denote the share held by

party Pj of the i-th bit of party Pl’s additive share of b.
2. The player use the computation techniques of Ben-Or, Goldwasser and
Wigderson [5] on a circuit for adding the k n-bit numbers. This takes
O(lg k + lg n) steps.

Let [b1]
Q̃
j , i = 1, . . . , n, be the shares of the bits of the result. (Recall that it

is ensured that b has n-bits.)

3. Output ([b1]
Q̃
j , . . . , [bn]

Q̃
j ).

Proving the security of this protocol is straightforward given the security of
its sub-protocols and the composition theorem.
Efficiency analysis: computing shares of the bits of b requires O(nk3 lg k lg Q̃+

nk2(lg Q̃)2) bit operations per player. This protocol requires only a relatively

small Q̃, e.g., ρ + 5 + lg k bits. If shares of the bits modulo a larger prime
Q are required, it is more efficient to compute shares modulo a small Q̃ us-
ing the above protocol and then convert these shares into ones modulo Q.
The following protocol converts polynomial shares of c modulo Q̃ to poly-

nomial shares of c modulo Q: 〈c〉Q̃j := PQ2SQ([c]Q̃j ); 〈c〉
I
j := SQ2SI(〈c〉Q̃j );

〈c〉Qj := SI2SQ(〈c〉Ij ); [c]
Q
j := SQ2PQ(〈c〉Qj ). The number of bit operations for

this is O(γnk3 lg k + γ2nk2 + n2k2 lg k), where lgQ = Θ(n) and lg Q̃ = Θ(γ),
as opposed to O(n2k3 lg k+n3k2) when using the bigger Q only. This optimiza-
tion may be quite important in practice as γ may be much smaller than n (e.g.,
γ = 100 and n = 2000). The communication-complexity for both variants is
O(n2k + nk lgQ) bits. and their round-complexity is O(lg k + lg n).

4.3 Approximate Truncation

This section presents a truncation protocol, that on input polynomial shares of
a and a parameter n outputs polynomial shares of b such that |b−a/2n| ≤ k+1.

Protocol TRUNC(a, n) :
Party Pj executes the following steps.

1. Get additive shares of a over the integers: 〈a〉Ij := SQ2SI(PQ2SQ([a]Qj )).

2. Locally compute 〈b〉Ij := trunc(
〈a〉Ij
2n ).

3. Get polynomial shares of b over ZQ: [b]
Q
j := SQ2PQ(SI2SQ(〈b〉Ij )).

4. Output [b]Qj .

It is easy to see that the protocol is secure and correct, if lgQ > ρ + n +
lg k+4 holds, where ρ is a security parameter (c.f. requirements of the SQ2SI(·)
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protocol). Its bit-complexity is O(nk2 lg k+n2k), its communication-complexity
is O(kn) bits, and its round-complexity is O(1) rounds.

5 Distributed Computation Modulo a Shared Integer

This section provides efficient protocols for distributed computation modulo a
shared, secret modulus p. All computations will be done using shares modulo a
prime Q whose bit-length is roughly twice that of p. The main building block
is an efficient protocol for reducing a shared secret modulo p. This immediately
gives us distributed modular addition and multiplication. The section further
provides a protocol for efficient modular exponentiation where the exponent is
a shared secret as well. As our modular reduction protocol does not compute
the smallest residue in absolute value but only one that is bounded by a small
multiple of the modulus, the usual approach for comparing two shared secrets no
longer works and therefore a new protocol for comparing such ‘almost reduced’
shared secrets modulo p is also presented.
The idea of our protocol for modular reduction is based on classical algo-

rithmic techniques (c.f. [1]). Recall that c rem p = c − d c
p
cp. Thus the problem

reduces to the problem of distributively computing d c
p
c.

By interpreting an integer m as the mantissa of a floating point number
with a public exponent, we can interpret shares of this integer as shares of
the corresponding floating point number. To multiply two such floating point
numbers we distributively multiply the mantissas and locally add the exponents.
To keep the shared numbers small, we ‘round’ the product by converting the
polynomial shares of the product mantissa modulo Q to additive shares over the
integers, by having each party locally right-shift its additive share by ξ bits and
add ξ to the exponent, and by converting back to polynomial shares modulo Q.
This rounding technique introduces a relative error of O(k2ξ/m).
So we split the problem of distributively computing d c

p
c into the problem of

distributively computing a floating point approximation of 1/p, and of distribu-
tively computing d c

p
c using the precomputed shares of 1/p. The first problem

can be solved using Newton iteration and is described in the next subsection.
In Section 5.2 we show how to compute a close approximation to d c

p
c if we are

given additive shares of a good approximation to c
p
over the integers by having

each participant locally truncate its share. The resulting (shared) integer s sat-
isfies |s − d c

p
c| ≤ k + 1. It turns out that this is accurate enough to compute

a value congruent to c modulo p that is sufficiently small to allow for on-going
computations modulo p (Section 5.3).

5.1 Computation of Shares of an Approximation to 1/p

Assume each party is given polynomial shares [p]Qi of p, with 2
n−1 < p < 2n. This

section provides a protocol that allows the parties to compute polynomial shares
of an integer 0 < p̃ < 2t+2 such that p̃ 2−n−t = 1/p+ε, where |ε| < (k+1)2−n−t+4

and t is a parameter whose choice is discussed below.
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As already mentioned we employ Newton iteration for this task with the
function f(x) = 1/x− p/2n which leads to the iteration formula xi+1 := xi(2−
xip/2

n) that has quadratic convergence. Using 3/2 as a start value gives us an
initial error of |2n/p− 3/2| < 1/2 and hence we need to do about lg t iterations
to get a t-bit approximation x̃ to 2n/p. We set p̃ = 2tx̃, which is an integer.

Protocol APPINV([p]Qj ) :
Party Pj executes the following steps.

1. Set [u0]
Q
j := u0 = 3 · 2

t−1 remQ.
2. For i = 0 to dlg(t− 3− lg(k + 1))e − 1 run
(a) Distributively compute [zi+1]

Q
j := MUL([p]Qj , [ui]

Q
j ).

(b) [wi+1]
Q
j := TRUNC([zi+1]

Q
j , n).

(c) Compute [vi+1]
Q
j := 2

t+1 · [ui]
Q
j −MUL([wi+1]

Q
j , [ui]

Q
j ).

(d) [ui+1]
Q
j := TRUNC([vi+1]

Q
j , t).

3. Output [p̃]Qj := [ui+1]
Q
j .

Theorem 2. Let ρ be a security parameter and let Q > 2ρ+t+ν+6+lg k, where

ν = max(n, t). Then, for any t > 5+lg(k+1) and any p satisfying 2n−1 < p < 2n

for some n, the protocol APPINV([p]Qj ) securely computes shares of an integer p̃,
such that ∣∣∣

2n

p
−

p̃

2t

∣∣∣ <
k + 1

2t−4
,

with 0 < p̃ < 2t+2. That is, p̃/2t+n is an approximation to 1/p with relative

error k+1
2t−4 .

Proof. We need to show that the protocol actually computes an approximation
to 1/p. Then the security follows from the security of the sub-protocols for
multiplication and truncation of the shares.
Consider how ui+1 is computed from ui in the protocol. Because of the local

truncation, we have 2ui−pu2
i 2
−n−t−(k+1)(1+ui/2

t) ≤ ui+1 ≤ 2ui−pu2
i 2
−n−t+

(k+1)(1+ui/2
t). As we will see ui/2

t < 3 holds. Thus | 2
n

p
− ui+1

2t | <
2n

p
−2ui

2t +
p
2n (

ui

2t )
2+ (k+1)

2t (1+ui/2
t) = p

2n (
2n

p
− ui

2t )
2+ (k+1)

2t (1+ui/2
t). From this it follows

that
∣∣ 2n

p
− ui+1

2t

∣∣ < ε2i +
k+1
2t−2 =: εi+1. As 2

n−1 < p < 2n and u0 = 3 ·2
t−1 we have

ε0 < 1/2 and by requiring k < 2t−5 − 1 we get ε1 < 1/2 and εi = 2
−2i

+ k+1
2t−3 <

1/2. In particular, we have εi =
k+1
2t−4 for i = dlg(t− 3− lg(k + 1))e.

Consider the size of the integers ui that are shared during the protocol. As
εi < 1/2 and 1 < 2n/p < 2 we have 0 < ui/2

t < 2+1/2 and hence 0 < ui < 2
t+2

for all i and hence 0 < zi < 2
n+t+2. Similarly, one can show that 0 < vi < 2

2t+2.
The lower-bound on Q follows from the fact that the TRUNC(·, ·) algorithm

must work on the vi’s and the zi’s.

Let us discuss the choice of t: in order for the b most significant bits of 1/p
and p̃/2t+n to be equal, tmust be chosen bigger than b+5+lg (k + 1). The cost of
the protocol is dominated by the MUL(·, ·) protocol and is O(lg t(n2k+nk2 lg k))
bit-operations per player. Its communication-complexity is O(kn lg t) bits and
its round-complexity is O(lg t).
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5.2 Reduction of a Shared Integer Modulo a Shared p

Assume the players hold polynomial shares moduloQ of the three integers−2w <
c < 2w, 0 < p̃ < 2t+2, and 2n−1 < p < 2n, where p̃ 2−n−t is an approximation of
1/p as computed by the protocol in the previous paragraph. Using the following
protocol, the players can compute shares of an integer d such that d ≡ c (mod p)
and lg |d| < lg(k + 1) + w − t+ 5.
As already mentioned this protocol computes d as c − dcp̃2−n−tcp. For dis-

tributively computing the product cp̃ the size of Q would need to be about w+ t
bits. However, as the n least significant bits of c do not significantly affect the
computation of the quotient, we can first cut off say ` ≈ n low-order bits, ob-
taining c̃, and then compute d as c− dc̃p̃2−n−t+`cp which requires the size of Q
to be only about w + t− ` bits.

Protocol MOD([c]Qj , [p]Qj , [p̃]Qj ):
Player Pj executes the following steps.

1. [c̃]Qj := TRUNC([c]Qj , `).

2. Compute [q̂]Qj := MUL([c̃]Qj , [p̃]Qj ).

3. [q]Qj := TRUNC([q̂]Qj , n+ t− `).

4. Compute [d]Qj := [c]
Q
j −MUL([p]Qj , [q]Qj ).

Theorem 3. Assume Q > max (2ρ+6+w−`+t+2 lg(k+1), 2ρ+w+4+lg(k+1)). Then,

given shares of three integers −2w < c < 2w, 0 < p̃ < 2t+2, and 0 < p < 2n,

the above protocol securely computes shares of d = (c rem p) + ip with |i| ≤
(k + 1)(1 + 2w+4−n−t + 2`−n+2), where k is the number of players.

Proof. Due to the local rounding in the TRUNC(·, ·) protocol in Step 1, we have
c− (k+1)2` ≤ c̃2` ≤ c+(k+1)2`. Due to the local rounding in the TRUNC(·, ·)
protocol in Step 3, we have trunc(c̃p̃2−n−t+`)−k ≤ q ≤ trunc(c̃p̃2−n−t+`)+k. As

p̃2−(n+t) is only an approximation to 1/p, we have trunc( c
p
− c(k+1)

2n−4+t−
p̃(k+1)
2n+t−` )−k ≤

q ≤ trunc( c
p
+ c(k+1)

2n−4+t+
p̃(k+1)
2n+t−` )+k and, as−2w < c < 2w and 0 < p̃ < 2t+2 , we get

d c
p
c−(k+1)(1+2w+4−n−t+2`−n+2) ≤ q ≤ d c

p
c+(k+1)(1+2w+4−n−t+2`−n+2).

Thus d = (c rem p) + ip with |i| < (k + 1)(1 + 2w+4−n−t + 2`−n+2).
The bound on Q follows from the requirements of the SQ2SI(·) in the

TRUNC(·, ·) protocol.

The cost of the MOD(·, ·, ·) protocol is dominated by the MUL(·, ·) proto-
col and is O(n2k + nk2 lg k) bit operations per players. The communication-
complexity of the protocol is O(kn) bits and its round-complexity is O(1).

5.3 Computing with a Shared Modulus p

Now, we are ready to discuss “on-going” distributed computation modulo a
shared integer. In particular, we discuss how the parameters for the MOD(·, ·, ·)
and APPINV(·) protocols must be set such that such computation is possible.



Computation Modulo a Shared Secret and Applications 431

Assume that the players hold polynomial shares modulo a primeQ of the integers
0 < p̃ < 2t+2, and 2n−1 < p < 2n, where p̃ 2−t−n is an approximation of 1/p as
computed above. Let

` = n− 2 , t = dn+ 10 + 2 lg(3(k + 1))e ,

Q > 2ρ+2n+36+6 lg(k+1) , and v = n+ lg(3(k + 1)) + 1 .

Then, given polynomial shares modulo a prime Q of an integer −22v < c <
22v, the players can compute shares of an integer −2v < d < 2v as [d]Qj :=

MOD([c]Qj , [p]Qj , [p̃]Qj ). In particular, given polynomial shares modulo a prime Q
of the integers −2v < a, b < 2v the players can compute shares of an integer
−2v < d′ < 2v as [d′]Qj := MOD(MUL([a]Qj , [b]Qj ), [p]

Q
j , [p̃]Qj ). Thus d and d′ can

be used as inputs to further modular multiplication computations.

Exponentiation with a Shared Exponent: Assume the players want to compute
shares of c ≡ ab (mod p), where a, b, p, p̃ are shared secrets and p̃ is an approx-
imation to 2n+t/p . This can be done by distributively running the square and
multiply algorithm where the fact that abi = (a− 1)bi+1 if bi ∈ {0, 1} comes in

handy. We assume that the players hold shares ([b1]
Q
j , . . . , [bn]

Q
j ) of the bits of

b, where b1 is the low-order bit of b (as computed, say, by protocol I2Q-BIT(·)).
Assuming that |a| < 2v then the following protocol securely computes shares

of c such that |c| < 2v and c ≡ ab (mod p).

Protocol EXPMOD([a]Qj , ([b1]
Q
j , . . . , [bn]

Q
j ), [p]

Q
j , [p̃]Qj ):

Player Pj executes the following steps.

1. Compute [cn]
Q
j := MUL([a]Qj − 1 remQ, [bn]

Q
j ) + 1 remQ.

2. For i = n− 1, . . . , 1 do
(a) [di]

Q
j := MUL([a]Qj − 1 remQ, [bi]

Q
j ) + 1 remQ.

(b) [csi]
Q
j := MOD(MUL([ci+1]

Q
j , [ci+1]

Q
j ), [p]

Q
j , [p̃]Qj ).

(c) [ci]
Q
j := MOD(MUL([csi]

Q
j , [di]

Q
j ), [p]

Q
j , [p̃]Qj ).

3. Output [c]Qj := [c1]
Q
j .

Efficiency analysis: This protocol invokes about 3n times MUL(·, ·) and about
2n times MOD(·, ·, ·) and hence requires O(n3k + n2k2 lg k)) bit operations per
player. The communication complexity is O(n2k) bits and it has O(n) rounds.

Set membership: Assume the players want to establish whether a ≡ b (mod p)
holds for three shared secrets a, b and p (where p is not necessarily a prime). This
can in principle be done by computing shares of c := a − b rem p, (re-)sharing
c modulo Q, multiplying it with a jointly generated random invertible element
from ZQ, revealing the result, and checking if it is 0 modulo Q (provided Q > p).
However, because of the properties of MOD(·, ·, ·), we can only compute shares
of c = (a − b rem p) + ip with |i| < 3(k + 1) and therefore the test does not
quite work. But as i is relatively small, it is possible to distributively compute

the integer s :=
∏3(k+1)−1

l=−3(k+1)+1(c − lp) which will be zero if c ≡ 0 (mod p) and
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non-zero otherwise. This also holds for s modulo Q because Q - s if Q > p6(k+1)
as then Q > |(c− lp)| holds for all l ∈ [−3(k + 1), 3(k + 1)].
The protocol below is a generalization of what we just described in that it

allows the players to check whether a equals one of b1, . . . bm modulo p. Here,
first an si is computed for each bi similarly as the s above for b and then it is
tested whether

∏
i si ≡ 0 (mod Q).

Assuming that a, b1, . . . , bm are less than 2
v in absolute value, then the fol-

lowing protocol securely tests if a ≡ bi (mod p) for some i.

Protocol SETMEM([a]Qj , {[b1]
Q
j , . . . , [bm]

Q
j }, [p]

Q
j , [p̃]Qj ):

Player Pj runs the following steps.

1. For all i = 1, . . . ,m compute [ci]
Q
j := MOD([a]Qj − [bi]

Q
j remQ, [p]Qj , [p̃]Qj ) (in

parallel).
2. For all i = 1, . . . ,m do (in parallel)
(a) Set [u(i,−3(k+1)+1)]

Q
j := [ci]

Q
j − (3(k + 1)− 1)[p]

Q
j remQ.

(b) For l = −3(k + 1) + 2, . . . , 3(k + 1)− 1 do
i. Compute [u(i,l)]

Q
j := MUL([u(i,l−1)]

Q
j , ([ci]

Q
j − l[p]Qj remQ)).

3. Let [ũ1]
Q
j := [u(1,3(k+1)+1)]

Q
j .

4. For i = 2, . . . ,m do
(a) Compute [ũi]

Q
j := MUL([ũi−1]

Q
j , [u(i,3(k+1)+1)]

Q
j ).

5. Perform [r]Qj := JRP-INV(ZQ), compute [z]
Q
j := MUL([ũm]

Q
j , [r]Qj ) and send

[z]Qj to all other players.
6. Reconstruct z and output success if z ≡ 0 remQ and failure otherwise.

Security of this protocol follows from the security of its sub-protocols, and
the fact that if z is non-zero, then it is a random element from ZQ and hence no
information about a or any of the bi’s is revealed other than that a is different
from all the bi’s modulo p.
Note that this protocol includes as a special case the comparison of two

almost reduced residues. It requires O(mk(n2k + nk2 lg k)) bit operations per
player. The communication-complexity O(mnk2) bits and it takes is O(k + n)
rounds. However, it is trivial to get the number of rounds down to O(lg k+ lg n)
by using a “tree multiplication method” in step 2b and 4.
We note that an alternative to the above protocol would be to use the tech-

niques of Ben-Or et al. [5] on a circuit to fully reduce a and b modulo p. As a
and b are “almost reduced” modulo p, this circuit is small.

6 Generation of Shared Random Primes and Safe Primes

We shortly discuss how the protocols described in the previous section can be
used to distributively generate random primes and safe primes. Clearly, the latter
allows to distributively generate random RSA moduli that are the product of
two primes or safe primes.
The strategy for generating a random shared prime is the same as the one

usually applied in the non-distributed case: choose a random number, do trial
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division, and then run sufficiently many rounds of some primality test, e.g., the
Miller-Rabin test. To generate a random shared safe prime, one can apply the
strategy proposed by Cramer and Shoup [12]. To reduce the round complexity,
one tests many candidates in parallel. We refer the reader to the full version of
this paper [2] for a detailed discussion and complexity analysis.
Many applications require also that the players generate shares of the private

exponent. This is much less computationally involved than distributively gener-
ating the modulus N . In particular, Boneh and Franklin [6] as well as Catalano
et al. [9] present efficient protocols to accomplish this, given additive shares over
the integers of the factors of N . Our techniques can in fact be used to improve
the latter protocol as well.
Let us compare the computational cost of the method described above of

generating a shared prime product to the one by Boneh and Franklin. (We do not
consider the improvement on the latter protocol described by Malkin, Wu, and
Boneh [24], as most of them apply to our protocol as well.) We first summarize
the latter approach. Boneh and Franklin propose to first choose random n-bit
strings and to do a distributed trial division of them. When two strings are found
that pass this trial division, they are multiplied to obtain N . Then, local trial
division is done on N , and finally a special primality test on N is applied that
checks whether N is the product of two primes. Thus, from a bird’s eyes view,
one finds that with this method one needs to test about (n/ lg n)2 candidates as
opposed to about n/ lg n with our method.
A more careful analysis assuming lg k ¿ n shows that the expected bit-

complexity of their protocol is O((n/ lg n)2(n3 + n2k + nk2 lg k) whereas it is
O(n2/ lg n(k3 lg kγ+k2γ2+nk2 lg k+n2k)) for ours, where γ ≈ 128 is a security
parameter smaller than n. For this analysis we assumed that the bound B for
trial division is about O(n). For small number of players k these figures become
O(n5/(lg n)2) and O(n4/ lg n). Round and communication complexities are O(1)
rounds and O(kn3/(lg n)2) bits for theirs and O(n) rounds and O(kn3/ lg n) bits
for ours. We note that, in practice, the round-complexities and communication
complexities are not relevant as for this kind of application one would run many
instances of the protocol in parallel and thereby keep the party with the least
computational power constantly busy.
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