
Private Computation –

k-connected versus 1-connected Networks

Markus Bläser, Andreas Jakoby, Maciej Lískiewicz?, and Bodo Siebert??

Institut für Theoretische Informatik
Universität zu Lübeck

Wallstraße 40, 23560 Lübeck, Germany
blaeser/jakoby/liskiewi/siebert@tcs.mu-luebeck.de

Abstract. We study the role of connectivity of communication networks
in private computations under information theoretic settings. It will be
shown that some functions can be computed by private protocols even
if the underlying network is 1-connected but not 2-connected. Then we
give a complete characterisation of non-degenerate functions that can be
computed on non-2-connected networks.
Furthermore, a general technique for simulating private protocols on ar-
bitrary networks will be presented. Using this technique every private
protocol can be simulated on arbitrary k-connected networks using only
a small number of additional random bits.
Finally, we give matching lower and upper bounds for the number of
random bits needed to compute the parity function on k-connected net-
works.

1 Introduction

Consider a set of players, each knowing an individual secret. The goal is to
compute a function depending on these secrets such that after the computation
none of the players knows anything about the secrets that cannot be derived from
the result of the function. An example for such a computation is the secret voting
problem. The members of a committee wish to decide whether the majority votes
for yes or for no. But the ballot should be proprietary, i.e. after the vote nobody
should know anything about the opinion of the other committee members or
about the exact number of yes- or no-votes. The only thing known after the
computation is whether the majority votes for yes or for no. To exchange data
we allow that the committee member can talk to each other in private.

More formally, the players exchange messages to compute the value of a func-
tion. But no player should learn anything about the concrete input values of the
other players. Depending on the computational power of the players we distin-
guish between cryptographically secure privacy and privacy in an information
theoretic sense. In the first case we assume that no player is able to recompute

? On leave from Instytut Informatyki, Uniwersytet WrocÃlawski, Poland.
?? Supported by DFG research grant Re 672/3.

Private Computation – k-connected versus 1-connected Networks 195

any information about the input within polynomial time (see e.g. [5, 15, 21, 22]).
In the second case we do not restrict the computational power of the players
(see e.g. [3, 6]). Hence, this notion of privacy is much stronger than in the cryp-
tographic setting. In this paper we use the information theoretic approach.

Private computation has been the subject of a considerable amount of re-
search. Traditionally, one investigates the number of rounds and random bits
as complexity measures for private protocols. Chor and Kushilevitz [10] have
studied the number of rounds necessary to compute the sum modulo an in-
teger. This function has also been investigated by Blundo et al. [4] and Chor
et al. [8]. The number of random bits needed to compute the parity function,
i.e. the sum modulo 2, has been examined in [17, 19]. Gál and Rosén [14] have
shown that the parity function cannot be computed by any private protocol in
o(log n/ log d) rounds using d random bits. They have also given an almost tight
randomness-round-tradeoff for private computations of arbitrary Boolean func-
tions depending on their sensitivity. Bounds on the maximum number of rounds
needed in the worst-case to compute a function by a private protocol are given
by Bar-Ilan and Beaver [2] and by Kushilevitz [16].

The number of random bits necessary to compute a Boolean function by a
private protocol is closely related to its circuit size. Kushilevitz et al. [18] have
shown that every function that can be computed with linear circuit size can also
be computed by a private protocol with only a constant number of random bits.
Using this result one can show that the majority function can be computed by
a private protocol using a constant number of random bits and simultaneously
a linear number of exchanged bits between players (for the circuit complexity of
majority see e.g. [20]).

So far we have assumed that players do not attempt to cheat. Depending
on the way players attempt to acquire information about the input of the other
players we distinguish between dishonest players and players that can work in
teams (e.g. [3, 5, 6, 12]). The goal in this approach is to investigate the number
of dishonest players or players in a team that are necessary to learn anything
about the input of the remaining players. Chor and Kushilevitz [9] have shown
that Boolean functions with one bit output can be computed with teams either
of size at most

⌊

n−1
2

⌋

or of any size up to n. For extensions, see [7, 8].

All papers mentioned above do not restrict the communication capabilities
of the players. In other words, they use complete graphs as underlying communi-
cation networks. However, most realistic parallel architectures have a restricted
connectivity and nodes of bounded degree. Franklin and Yung [13] have been
the first who studied the role of connectivity in private computations. They
have presented a protocol for k-connected bus networks. This protocol can sim-
ulate one communication step of a private protocol that was originally written
for a complete graph. To simulate such a communication step, their protocol
uses O(n) additional random bits.

In this paper we investigate the number of random bits needed to compute
functions by private protocols on k-connected networks. The consideration of k-
connected networks instead of complete networks seems to be quite realistic for

196 M. Bläser et al.

practical applications. We present a new simulation technique that allows us to
reduce the number of random bits by taking the connectivity of the network into
account. Furthermore, we show that the parity function can be computed by a
private protocol on every k-connected network with

⌈

n−2
k−1

⌉

− 1 random bits. On

the other hand, we will present k-connected networks where
⌈

n−2
k−1

⌉

− 1 random
bits are necessary.

Furthermore, we investigate networks that are not 2-connected and present
non-trivial functions that can still be computed by private protocols on such
networks. We introduce the notion of a dominated function and prove that a
function can be computed by a private protocol on non-2-connected networks if
and only if the function is dominated. This result can be generalised to the case
where the players can work in teams. Such a computation is not possible if some
of the players are dishonest.

The paper is organised as follows. In the next section we define some notations
and give a formal definition of private computation. In Section 3 we present a new
technique to simulate private protocols on k-connected networks. Furthermore,
we present a simple non-trivial function that can be computed by a private
protocol on a non-2-connected network. In Section 4 we investigate the number
of random bits needed to compute the parity function on arbitrary k-connected
networks. Finally, in Section 5 we investigate non-2-connected networks and
give a structural property that precisely determines whether a function can be
computed on a non-2-connected network.

2 Preliminaries

2.1 Notations

For i, j ∈ IN define [i] := {1, . . . , i} and [i..j] := {i, . . . , j}. Throughout this
paper, we will often use the following string operations. Let x = x[1]x[2] . . . x[n] ∈
{0, 1}n be a string of length n. Then, for I ⊆ [n] and α ∈ {0, 1}|I|, xdI←α is
defined as follows:

z = xdI←α :⇐⇒ ∀i ∈ [n] : z[i] =











x[i] if i 6∈ I

α[j] if i ∈ I and i is the jth smallest
element in I .

For sets I1, I2, . . . , Ik ⊆ [n] and strings α1, α2, . . . , αk ∈ {0, 1}
∗ with |αi| = |Ii|

we define

xdI1,I2,...,Ik←α1,α2,...,αk
:= (xdI1←α1

) dI2,...,Ik←α2,...,αk
.

Let x denote the bitwise negation of x, i.e. ∀i ∈ [n] : x[i] = x[i]. For a function
f : {0, 1}n → {0, 1}, a set of indices I ⊆ [n], and a string α ∈ {0, 1}|I| define
the partially restricted function fdI←α : {0, 1}n−|I| → {0, 1} as the function
obtained from f by assigning the values given by α to the positions in I, i.e.

∀x ∈ {0, 1}n−|I| : fdI←α(x) := f(0ndI,J←α,x) ,

Private Computation – k-connected versus 1-connected Networks 197

where J = [n] \ I. Finally, for a string x ∈ {0, 1}n and a set I ⊆ [n] define
x[I] ∈ {0, 1}|I| as follows:

∀j ≤ |I| : (x[I])[j] = x[i] :⇐⇒ i is the jth smallest element in I .

A graph is called k-connected if, after deleting an arbitrary subset of at most
k − 1 nodes, the resulting node-induced graph remains connected.

2.2 Private Computation

We consider the computation of Boolean functions f : {0, 1}n → {0, 1} on a net-
work of n players. In the beginning each player knows a single bit of the input x.
The players can send messages to other players via point-to-point communica-
tion using secure links where the link topology is given by an undirected graph
G = (V,E). When the computation stops, all players know the value f(x). The
goal is to compute f(x) such that no player learns anything about the other
input bits in an information theoretic sense except for the information it can
deduce from its own bit and the result. Such a protocol is called private.

Definition 1. Let Ci be a random variable of the communication string seen by
player Pi, and let ci be a particular string seen by Pi. A protocol A for computing
a function f is private with respect to player Pi if for every pair of input
vectors x and y with f(x) = f(y) and x[i] = y[i], for every ci, and for every
random string Ri provided to Pi,

Pr[Ci = ci | Ri, x] = Pr[Ci = ci | Ri, y] ,

where the probability is taken over the random strings of all other players. A
protocol A is private if it is private with respect to every player Pi.

We call a protocol synchronous if the communication takes place in rounds
and each message consists of a single bit. We call a synchronous protocol oblivious
if the number of bits that player Pi sends to Pj in round t depends only on
i, j, and t but not on the input and the random strings. Furthermore, we do
not bound the computational resources of the players. We assume that all of
them are honest, i.e. the computation and the interactions between players are
determined only by the protocol.

For a synchronous oblivious protocol A let L(Pi, Pj ,A) be the number of bits
sent from Pi to Pj in A and

L(A) :=
∑

i∈[n]

∑

j∈[n] L(Pi, Pj ,A) .

We distribute the given input bits among the nodes of the graph. For conve-
nience, we call the node that gets the bit x[i] player Pi. The players Pi and Pj
can communicate directly if and only if they are connected by an edge in the
graph.

198 M. Bläser et al.

3 Private Computation on k-connected Networks

Most known private protocols are written for specific networks. A simulation of
such a private protocol on a different network can be done in such way that each
player of the new network simulates a player of the original network step-by-
step. Hence, we have to find a way to realize the communication steps between
all players that are not directly connected. Franklin and Yung [13] have presented
a strategy to simulate a transmission of one single bit on a hypergraph by using
O(n) additional random bits. Thus, the whole simulation presented there requires
O(m + nL(A)) random bits where m is the number of random bits used by
the original protocol. If we consider 2-connected graphs we can simulate each
communication step between two players Pi and Pj by one additional random
bit r as follows: Assume Pi has to send bit b to Pj . Then Pi chooses two disjoint
paths to Pj and sends r to Pj along the one path and r⊕ b along the other path.
In this way, O(m+ L(A)) random bits are sufficient.

To reduce the number of random bits even more we consider the following
problem:

Definition 2 (Max-Neighbour-Embedding). Let G = (V,E) be a graph
with edge weights σ : E → IN and G′ = (V ′, E′) a graph with |V | = |V ′|. Let
π : V → V ′ be a bijective mapping. Then the performance of π is defined as

ρ(π) :=
∑

{u, v} ∈ E and

{π(u), π(v)} ∈ E′

σ({u, v}) .

The aim is to find a bijection π : V → V ′ that maximizes ρ(π) over all bijections.

By a reduction from the 3-Dimensional-Matching-Problem, it can be shown
that the decision problem corresponding to finding an optimal bijection is NP-
hard. The Max-Neighbour-Embedding-problem is NP-hard even if both graphs
have maximum degree 4.

In the following lemma we estimate the performance for the case that G′ is
k-connected.

Lemma 1. Let G = (V,E) be an undirected graph with n nodes and edge weights
σ. Let G′ = (V ′, E′) be a k-connected graph with n nodes. Then we have

max
π : V → V ′

π is bijective

ρ(π) ≥
k

n− 1

∑

e∈E

σ(e) .

Proof. By the definition above, there is no difference between edges with weight
0 and nonexistent edges. Therefore, we treat nonexistent edges like edges with
weight 0 and restrict ourselves to the case that G is a complete graph.

The graph G′ is k-connected. Thus, every node in V ′ has degree at least k.
Let Π be a random bijection from V to V ′. Since every node in V ′ has degree

at least k, the probability that two arbitrary nodes u and v are neighbours under

Private Computation – k-connected versus 1-connected Networks 199

Π, i.e. {Π(u), Π(v)} ∈ E′, is at least k
n−1 . Thus, the edge e = {u, v} ∈ E yields

weight σ(e) with probability at least k
n−1 and its expected weight is at least

k
n−1 · σ(e). Hence, the expected performance ρ(Π) fulfils

E(ρ(Π)) ≥
∑

e∈E
k

n−1 · σ(e) =
k

n−1 ·
∑

e∈E σ(e) .

Therefore, there exists a bijection with performance at least k
n−1 ·

∑

e∈E σ(e). ut

A bijection that fulfils the requirements of the above lemma can be com-
puted in polynomial time using the method of conditional expectation (see e.g.
Alon et al. [1]).

Theorem 1. Every oblivious private protocol A using m random bits can be
simulated on every k-connected graph by using m+ (1− k

n−1) ·min{L(A), n2 +
L(A)
k−1 } random bits.

Proof. Let G = (V,E) be the network used in protocol A and G′ = (V ′, E′) be
the k-connected network for protocolA′. To simulateA we first choose a bijection
between the players in G and the players in G′. For every edge {Pi, Pj} ∈ E
define σ({Pi, Pj}) := L(Pi, Pj ,A) + L(Pj , Pi,A). In Lemma 1 we have seen
that there exists a bijection π : V → V ′ with performance ρ(π) ≥ k

n−1L(A).

Using this bijection, at least k
n−1L(A) bits of the total communication in A

are sent between players that are also neighbours in G′. Thus, this part of the
communication can be simulated directly and without additional random bits.

For the remaining (1− k
n−1)L(A) bits we proceed as follows: Let Pi and Pj

be two players that are not directly connected in G′. Then Pi partitions the bits
it will send to Pj into blocks B1, . . . , BdL(Pi,Pj ,A)/(k−1)e of size at most k − 1.
Furthermore, Pi chooses k node-disjoint paths from Pi to Pj . Pi uses a separate
random bit r[`] for each block B`. It sends r[`] along the first path and b⊕ r[`]
for each b ∈ B` along the remaining paths, each bit on a separate path. ut

We have seen that every function that can be computed by a private protocol
on some network can also be computed by a private protocol on an arbitrary
2-connected network. On the other hand, there exist functions that cannot be
computed by a private protocol, if the underlying network is not 2-connected.

Proposition 1. The parity function over n > 2 bits cannot be computed by a
private protocol on any network that is not 2-connected.

The above theorem can be generalised to a large class of non-degenerate
functions. This will be done in Section 5. There we give a characterisation for
the class of non-degenerate functions that can be computed by private protocols
on networks that are not 2-connected.

Definition 3. A function f : {0, 1}n → {0, 1} is called non-degenerate if for
every i ∈ [n] we have fd{i}←0 6= fd{i}←1.

200 M. Bläser et al.

In other words, a non-degenerate function depends on all of its input bits. It
turns out that there are functions that can be computed by a private protocol,
even if the underlying network is not 2-connected.

Proposition 2. There are non-degenerate functions that can be computed by a
private protocol on networks that are not 2-connected.

Consider the following non-degenerate function f : {0, 1}2n+1 → {0, 1}:

f(z, x, y) := (z ∧
∧n
i=1 x[i]) ∨ (z ∧

∧n
i=1 y[i]) .

Here, z is a single bit and both x and y are bit strings of length n. We construct a
communication network G for f as follows: Let Gx and Gy be complete networks
with n players each. Then connect another player Pz with all players in both
Gx and Gy. Obviously, the obtained network is not 2-connected. Using a slight
modification of the protocol presented by Kushilevitz et al. [18] one can compute
the subfunctions

fx(z, x) := z ∧
∧n
i=1 x[i] and fy(z, y) := z ∧

∧n
i=1 y[i]

by a private protocol on the networks Gx with Pz and Gy with Pz, respectively.
After the computation has been completed, Pz is the only player that knows
the results of both subfunctions. Due to symmetry we consider the case that
z = 1. Then fy(z, y) = 0 and therefore, since fy has been computed by a private
protocol, Pz does not learn anything about y. Furthermore, Pz does not learn
anything about x what he has not already known before the computation started.

4 Computing Parity on k-connected Networks

It is well known that the parity function of n bits can be computed on a cycle by
using only one random bit. On the other hand, using our simulation discussed
in Section 3 one gets an upper bound of n random bits for general 2-connected
networks. The aim of this section is to close this gap. We present a private
protocol for parity that uses

⌈

n−2
k−1

⌉

− 1 random bits and show that there are k-

connected networks on which parity cannot be computed with less than
⌈

n−2
k−1

⌉

−1
random bits.

Lemma 2. There exist k-connected networks with n ≥ 2k players on which the
parity function cannot be computed by a private protocol with less than

⌈

n−2
k−1

⌉

−1
random bits.

Proof. We consider the bipartite graph Kk,n−k (which is obviously k-connected)
and show that every private protocol that computes the parity function on
this network needs at least

⌈

n−2
k−1

⌉

− 1 random bits. Let {P1, P2, . . . , Pk} and
{Pk+1, Pk+2, . . . , Pn} be the two sets of nodes of Kk,n−k. Recall that for each
i = 1, . . . , k and j = k + 1, . . . , n we have an edge {Pi, Pj} in Kk,n−k and that

Private Computation – k-connected versus 1-connected Networks 201

there are no other edges. Now assume to the contrary that there exists a private
protocol A on Kk,n−k using less than

⌈

n−2
k−1

⌉

− 1 random bits.
Let R = (R1, . . . , Rn) be the contents R1, . . . , Rn of all random tapes. For

a string x ∈ {0, 1}n and i ∈ [n], let Ci(x,R) be a full description of the com-
munication received by Pi during the computation of A with R on the input x.
Moreover, let

C(x) = {〈c1, c2, . . . , ck〉 | ∃R ∀i ∈ [k] ci = Ci(x,R)} .

We consider computations of A on inputs

X = {x | x[1] = x[2] = . . . = x[k] = 0 and
⊕n

i=1x[i] = 0} .

Then for any x ∈ X and any communication c1 we define

C(c1, x) = {〈c2, . . . , ck〉 | 〈c1, c2, . . . , ck〉 ∈ C(x)} .

From the fact that A is private it follows:

Claim. ∃c1 ∀x ∈ X C(c1, x) 6= ∅.

Indeed, because x is a valid input for the protocol A, there exists at least one
tuple 〈c1, . . . , ck〉 in C(x). Hence, there exists at least one c1 with C(c1, x) 6= ∅.
On the other hand, if for some y ∈ X the set C(c1, y) is empty then one can
conclude that A is not private.

Note that |X| = 2n−k−1 and that for every x, y ∈ X and i ∈ [k] we have
⋃

R Ci(x,R) =
⋃

R Ci(y,R). Furthermore, using a bound on the number of
different communication strings from Kushilevitz and Rosén [19] it follows that

|
⋃

R Ci(x,R)| < 2
n−k−1

k−1 . Hence, we have |
⋃

x∈X C(c1, x)| < 2n−k−1, because A

uses less than n−k−1
k−1 random bits. Therefore, by the pigeon hole principle and

the above claim we obtain

∃c1, c2, . . . , ck ∃x, y ∈ X x 6= y and 〈c2, . . . , ck〉 ∈ C(c1, x) ∩ C(c1, y) .

This means that there are two different input string x, y ∈ X such that on
both strings the players P1, . . . , Pk receive c1, . . . , ck, respectively. Let i, with
k + 1 ≤ i ≤ n, be a position where x and y differ, i.e. x[i] 6= y[i]. Let R =
〈R1, . . . , Rn〉 and R′ = 〈R′1, . . . , R

′
n〉 be the contents of the random tapes such

that ci = Ci(x,R) = Ci(y,R
′) for all 1 ≤ i ≤ k.

It is easy to see that during a computation of A with random string R′′ =
〈R1, . . . , Ri−1, R

′
i, Ri+1, . . . Rn〉 on the input xd{i}←y[i] the players P1, P2, . . . , Pk

receive again communication strings c1, c2, . . . , ck, respectively. Hence, for this
input they give the same result as for x – a contradiction. ut

Now we show that this bound is best possible. To obtain a private protocol
that computes the parity function with

⌈

n−2
k−1

⌉

− 1 random bits we use the result
from Egawa, Glas, and Locke [11] that every k-connected graph G with minimum
degree at least d and with at least 2d vertices has a cycle of length at least 2d
through any specified set of k vertices. From this result we get the following
observations:

202 M. Bläser et al.

Proposition 3. Let G = (V,E) be a k-connected graph with k ≤ |V | − 1. Then
for any subset V ′ ⊆ V with |V ′| = k+1 there exists a simple path containing all
nodes in V ′.

Proposition 4. Let G = (V,E) be a k-connected graph with k ≤ |V |. Then for
every subset V ′ ⊆ V with |V ′| = k there exists a simple cycle containing all
nodes in V ′.

Proposition 5. Let G = (V,E) be a k-connected graph. Then G has a simple
path of length at least min{2k + 1, |V |}.

To compute the parity function by a private protocol on an arbitrary k-
connected network G, we proceed as follows:

1. Mark all nodes in G red. Set z[i] := x[i] for each player Pi.
2. Choose a path in G of length 2k+1. According to Proposition 5 such a path

always exists. The first player Pi in the path generates a random bit r. Then
Pi computes r ⊕ z[i] and sends the result to the next player in the path.
Finally, Pi sets z[i] := r.
Each internal player Pj on the path receives a bit b from its predecessor in
the path, computes b ⊕ z[j], sends this bit to its successor, and changes its
colour to black.
The last player P` on the path receives a bit b from its predecessor and
computes z[`] := z[`]⊕ b.
After this step 2k − 1 players have changed their colour.

3. We repeat the following step dn−3k+1
k−1 e times.

Choose k+1 red nodes and a path in G containing all these nodes. According
to Proposition 3 such a path always exists. We can assume that the start and
the end node of the path are among the k + 1 given players, hence both are
red. Then the first player Pi on this path generates a random bit r, computes
r ⊕ z[i], and sends the result to the next player in the path. Finally, Pi sets
z[i] := r.
Each internal player of the path Pj receives a bit b from its predecessor in
the path. If Pj is a black player, it sends b to its successor. If Pj is a red
player, it computes b ⊕ z[j], sends this bit to its successor, and changes its
colour to black.
The last player P` on the path receives a bit b from its predecessor and
computes z[`] := z[`]⊕ b.
After this step k−1 players have changed their colour. Hence, after dn−3k+1

k−1 e
iterations of this step we have at least

⌈

n−3k+1
k−1

⌉

· (k − 1) + 2k − 1 ≥ n− k

black players. Thus, at most k are red.
4. Choose a cycle in G containing all red nodes. According to Proposition 4

such a cycle always exists. Let Pi0 be a red player. Then Pi0 generates a
random bit r, computes r ⊕ z[i0], and sends the result to the next player in
the cycle.

Private Computation – k-connected versus 1-connected Networks 203

Each other player Pj on the cycle receives a bit b from its predecessor. If Pj
is a black player, it sends b to its successor. If Pj is a red player, it computes
b⊕ z[j], sends this bit to its successor, and changes its colour to black.
If Pi0 receives a bit b, it computes b⊕ r. The result of this step is the result
of the parity function.

Let us now count the number of random bits used in the protocol above. In
the second and in the last step we use one random bit. In the third step we need
dn−3k+1

k−1 e random bits. Hence, the total number of random bits is

⌈

n−3k+1
k−1

⌉

+ 2 =
⌈

n−2
k−1

⌉

− 1 .

It remains to show that the protocol is private and computes the parity function.
The correctness follows from the fact that each input bit x[i] is stored by exactly
one red player and each random bit is stored by either none or two players that
are red after each step. By storing a bit b we mean that a player Pi knows a
value z[i] that depends on b. Since Pi0 is the last red player, it knows the result
of the parity function.

Every bit a player receives in the second and third step is masked by a
separate random bit. Hence, none of these players can learn anything from these
bits. The same holds for all players except for player Pi0 in the last step. So we
have to analyse the bits sent and received by Pi0 more carefully. In the last step
z[i0] is either x[i0], a random bit, or the parity of a subset of input bits masked
by a random bit. In neither case Pi0 can learn anything about the other input
bits from the bit it receives and the value of z[i0] except for what can be derived
from the result of the function and x[i0].

Theorem 2. Let G be an arbitrary k-connected network. Then the parity func-
tion of n bits can be computed by a private protocol on G using at most d n−2

k−1 e−1
random bits. Moreover, there exist k-connected networks for which this bound is
best possible.

For 2-connected networks, we obtain the following corollary.

Corollary 1. Let G be an arbitrary 2-connected network of n players (n ≥ 4).
Then the parity function over n bits can be computed by a private protocol on the
network G using n− 3 random bits. Moreover, there exists 2-connected networks
for which this bound is best possible.

5 Private Computation on Non-2-connected Networks

In Section 3 we have claimed that the parity function cannot be computed by
a private protocol on a network that is not 2-connected. On the other hand,
we have presented a non-degenerate function that can be computed on a non-
2-connected network. In this section, we study this phenomenon to a greater
extend.

204 M. Bläser et al.

Throughout this section f : {0, 1}n → {0, 1} denotes the function we want to
compute. Furthermore, I1, I2, J1, J2 denote both subsets of input positions and
indices of players.

We say that a pair (J1, J2) of two disjoint subsets J1, J2 ⊆ [n] has the flip-
property if there exist an input x ∈ {0, 1}n and two strings α ∈ {0, 1}|J1| and
β ∈ {0, 1}|J2| with

f(xdJ1,J2←α,β) 6= f(xdJ1,J2←α,β) = f(xdJ1,J2←α,β) .

We call the strings α and β flip-witnesses for (J1, J2).

Lemma 3. If a function f : {0, 1}n → {0, 1} is non-degenerate, then for every
partition I1, I2 ⊆ [n] and every i ∈ I1 and j ∈ I2 we have: There exist subsets
J1 ⊆ I1 and J2 ⊆ I2 with i ∈ J1, j ∈ J2 such that (J1, J2) has the flip-property.

Loosely speaking, this lemma says that each non-degenerate function behaves
on subsets of input positions in some sense like the parity function.

Proof. By contradiction, assume that the lemma does not hold for a particular
partition I1, I2 ⊆ [n] and two indices i ∈ I1 and j ∈ I2. From Def. 3 it follows
that for every i ∈ I1 and j ∈ I2 there exist input strings y, z ∈ {0, 1}n such that

f(yd{i}←0) 6= f(yd{i}←1) and f(zd{j}←0) 6= f(zd{j}←1) .

If the lemma does not hold, we can conclude that

f(yd{i},{j}←0,0) = f(yd{i},{j}←0,1) 6= f(yd{i},{j}←1,0) = f(yd{i},{j}←1,1) .

Otherwise, at least one of the following cases holds:

– f(yd{i},{j}←0,1) 6= f(yd{i},{j}←1,1) and f(yd{i},{j}←0,1) = f(yd{i},{j}←1,0).
Choosing J1 = {i}, J2 = {j}, and α = β = 1 satisfies the claim of the
lemma.

– f(yd{i},{j}←0,0) 6= f(yd{i},{j}←0,1) and f(yd{i},{j}←0,0) = f(yd{i},{j}←1,1)
Choosing J1 = {i}, J2 = {j}, α = 0 and β = 1 satisfies the claim of the
lemma.

Analogously, one can show that

f(zd{i},{j}←0,0) = f(zd{i},{j}←1,0) 6= f(zd{i},{j}←0,1) = f(zd{i},{j}←1,1) .

W.l.o.g. assume that y[i] 6= z[i] and y[j] 6= z[j]. If f(y) = f(z), we flip the bits
y[j] and z[j]. Since f(y) does not depend on y[j], we have f(y) 6= f(z). We
choose

Y1 := { k ∈ I1 | y[k] 6= z[k] } and Y2 := { k ∈ I2 | y[k] 6= z[k] } .

Let Y1 := {i1, . . . , i|Y1|} with i1 < i1 < · · · < i|Y1| and Y2 := {j1, . . . , j|Y2|} with

j1 < j1 < · · · < j|Y2|. Define ρ ∈ {0, 1}|Y1| and σ ∈ {0, 1}|Y2| such that

∀` ∈ [1, |Y1|] : ρ[`] := y[i`] and ∀` ∈ [1, |Y2|] : σ[`] := y[i`] .

Private Computation – k-connected versus 1-connected Networks 205

Note that ydY1,Y2←ρ,σ = z.
Recall that f(y) 6= f(z). To prove the claim we have to distinguish between

the following three cases: f(y) 6= f(ydY2←σ) = f(z), f(y) = f(ydY1←ρ) 6= f(z),
and f(y) 6= f(ydY1←ρ) = f(z). The last case can be reduced to the first case by
exchanging y and z with each other.

1. If f(y) 6= f(ydY2←σ) = f(z), we choose

α := y[i], β := σ, J1 := {i}, J2 := Y2, and x := y .

From the definition of non-degenerate functions and the observation above
we conclude that

y = xdJ1,J2←α,β and J1 = {i} =⇒ f(xdJ1,J2←α,β) 6= f(xdJ1,J2←α,β) ,

ydJ2←σ = xdJ1,J2←α,β =⇒ f(xdJ1,J2←α,β) 6= f(xdJ1,J2←α,β) .

2. If f(y) = f(ydY2←σ) = f(zdY1←ρ) 6= f(z) then we choose

α := ρ, β := z[j], J1 := Y1, J2 := {j}, and x := z .

It follows

z = xdJ1,J2←α,β and J2 = {j} =⇒ f(xdJ1,J2←α,β) 6= f(xdJ1,J2←α,β) ,

zdJ1←ρ = xdJ1,J2←α,β =⇒ f(xdJ1,J2←α,β) 6= f(xdJ1,J2←α,β) .

Hence, we can always find subsets J1 ⊆ I1 and J2 ⊆ I2 fulfilling the claim – a
contradiction. ut

For a given subset I1 of input positions define the flip-witness-set for I1

f-set(I1) := {(α, J1) |J1 ⊆ I1, α ∈ {0, 1}
|J1|

and there exists J2 ⊆ [n] \ I1, β ∈ {0, 1}
|J2|

such that α, β are flip-witnesses for J1, J2} .

A set I1 is dominated by an input position k ∈ I1 if the following holds: For
each pair of subsets J1 ⊆ I1 and J2 ⊆ [n] \ I1, such that (J1, J2) fulfils the
flip-property, we have k ∈ J1. A function is `-dominated if there exists a set
I1 ⊆ [n] of size ` that is dominated by some k ∈ I1. A function f is called
dominated if there exists ` > 1 such that f is `-dominated. Otherwise, f is
called non-dominated.

Theorem 3. Let f be a non-degenerate function and G be a network that can
be separated into two networks G1 and G2 of size n1 and n2, respectively, by
removing one bridge node from G. If f can be computed by a private protocol on
G, then f is (n1 + 1)- or (n2 + 1)-dominated.

Theorem 3 follows directly from Lemma 3 and the lemma below. Recall that
for all i ∈ [n] player Pi initially knows x[i]. Hence, we can obtain every possible
allocation of players and input bits by permuting the enumeration of the players.

206 M. Bläser et al.

Lemma 4 (Fooling private protocols). Let G be a network with n nodes. As-
sume that there exist I1, I2 ⊆ [n] and k ∈ [n], such that the following conditions
hold:

1. I1, I2 6= ∅ and k 6∈ I1 ∪ I2, I1 ∩ I2 = ∅,
2. for every path Wi,j from Pi to Pj, with i ∈ I1 and j ∈ I2, Pk ∈Wi,j, and

3. (I1, I2) has the flip-property.

Then f cannot be computed on G by a private protocol.

Proof. Assume that there exists such a protocol. Let M t
i be a message sent by

player Pi in round t and T (A) be the maximum number of rounds of A for all
inputs of length n and all random tapes. Obviously M t

i is a function of the input
string z and the random tapes R. Player Pi receives in round t ≤ T (A) the
messages

Ct
i (z,R) := M t

i1(z,R), . . . ,M t
is(z,R) ,

where Pi1 , . . . , Pis are all the players incident to player Pi. We denote the se-

quence C1
i (z,R), C2

i (z,R), . . . , C
T (A)
i (z,R) by Ci(z,R).

Now let k, I1, I2 fulfil conditions 1, 2, and 3 of the lemma and choose x, α,
and β such that

f(xdI1,I2←α,β) 6= f(xdI1,I2←α,β) = f(xdI1,I2←α,β) .

Keep R fixed. Then consider Ck(xdI1,I2←α,β , R), which is the sequence of mes-
sages received by the player k during the computation on xdI1,I2←α,β with
random bits R. Since the protocol is private and k 6∈ I1 ∪ I2, there exists
R′ = (R′1, . . . , R

′
n), with Rk = R′k, such that

Ck(xdI1,I2←α,β , R
′) = Ck(xdI1,I2←α,β , R) . (1)

Let Y := {` | there is a path W`,i from ` to a node i ∈ I1 with k 6∈W`,i }.
Obviously we have I1 ⊆ Y and I2 ∩ Y = ∅. Now let R′′ = (R′′1 , . . . , R

′′
n) be

a content of random tapes defined as follows: for every ` ∈ Y let R′′` := R` and
for every j ∈ [n] \Y let R′′j := R′j . Note that R′′k = R′k = Rk. From Equation (1)
it follows that on input xdI1,I2←α,β and with random tapes R′′ the protocol
generates the following messages for every player i ∈ [n] and every t ≥ 1

M t
i (xdI1,I2←α,β , R

′′) =

{

M t
i (xdI1,I2←α,β , R) if i ∈ Y ,

M t
i (xdI1,I2←α,β , R

′) if i ∈ [n] \ Y .

Hence, given the input string xdI1,I2←α,β the protocol computes the same value
as on the input string xdI1,I2←α,β and xdI1,I2←α,β – a contradiction. ut

Corollary 2. A non-dominated non-degenerate function cannot be computed by
a private protocol on a network that is not 2-connected.

Private Computation – k-connected versus 1-connected Networks 207

Examples of non-dominated non-degenerate functions are the parity function,
the or function, and the majority function. Hence, these functions cannot be
computed by private protocols on networks that are not 2-connected.

In the remainder of this section, we show that for every dominated function
f there is a non-2-connected network on which f can be computed by a private
protocol.

The following three lemmas can be proved similar to Lemma 3.

Lemma 5. Assume that a set I1 with |I1| ≥ 2 is dominated by an input position
k ∈ I1. Then every pair (a, J1) ∈ f-set(I1) assigns the same value to x[k].

For c ∈ {0, 1}, we call a set I1 (k, c)-dominated if I1 is dominated by k
and for each pair (α, J1) ∈ f-set(I1), α assigns c to x[k].

Lemma 6. Assume that a set I1 with |I1| ≥ 2 is (k, c)-dominated with k ∈ I1
for some c ∈ {0, 1}. Then for every α ∈ {0, 1}|I1| with α[k] 6= c, for every
w ∈ {0, 1}n, J2 ⊆ [n] \ I1, and β ∈ {0, 1}|J2| we have

f(wdI1,J2←α,β) = f(wdI1,J2←α,β) .

By the previous lemma, we can conclude that for each set I1 with |I1| ≥ 2
that is (k, c)-dominated with k ∈ I1 there exists a function f1 : {0, 1}|I1| → {0, 1}
such that

f(x) = ((x[k] = c) ∧ f(x)) ∨ ((x[k] 6= c) ∧ f1(x[I1])) .

This reduces the set of interesting variables to I1 if x[k] 6= c. Let us now focus
on input strings with x[k] = c.

Lemma 7. Assume that a set I1 with |I1| ≥ 2 is (k, c)-dominated with k ∈ I1
for some c ∈ {0, 1}. Then for every pair w1, w2 ∈ {0, 1}

n with w1[k] = w2[k] = c
and w1[i] = w2[i] for all i ∈ [n] \ I1 we have f(w1) = f(w2).

Thus, we can conclude that for each set I1 with |I1| ≥ 2 that is (k, c)-
dominated with k ∈ I1, there exists a function f2 : {0, 1}|I2| → {0, 1} such that
f(x) = ((x[k] 6= c)∧f2(x[I2]))∨ ((x[k] = c)∧f1(x[I1])). Summarising the above
three lemmas we get the following result.

Theorem 4. Assume that a set I1 with |I1| ≥ 2 is (k, c)-dominated with k ∈
I1 for some c ∈ {0, 1}. Let I2 = [n] \ I1. Then there are two functions f1 :
{0, 1}|I1| → {0, 1} and f2 : {0, 1}|I2| → {0, 1} such that

f(x) = ((x[k] = c) ∧ f1(x[I1])) ∨ ((x[k] 6= c) ∧ f2(x[I2])) .

Note, that k, I1, and I2 are uniquely determined by the function f . Hence,
every dominated function can be described by an if-then-else construction, i.e.
it is of the form if x[k] = c then f1(x[I1]) else f2(x[I2]).

Theorem 4 immediately implies that dominated functions can be computed
on networks that are not 2-connected.

208 M. Bläser et al.

Theorem 5. If f is `-dominated with ` > 1, then f can be computed by a private
protocol on a network that consists of two 2-connected components with one node
in common. One of the components has size ` and the other one size n− `+ 1.

Corollary 3. Assume that f is a dominated function. Then there are non-2-
connected networks on which f can be computed by a private protocol.

Theorem 5 can be generalised to the case where we allow teams of players
to work together. Assume that all members of a team belong to the component
that computes, say, f1. Then f is t-private if f1 is t-private. If the members are
distributed among both components, then this virtually decreases the team sizes
for both components. f is t-private if both f1 and f2 are t-private.

6 Conclusions and Open Problems

We have investigated the relation between the connectivity of networks and the
possibility of computing functions by private protocols on these networks. Special
emphasis has been put on the amount of randomness needed.

We have presented a general simulation technique which allows us to transfer
every oblivious private protocol on an arbitrary network into an oblivious private
protocol on a given k-connected network of the same size, where k ≥ 2. The
new protocol needs

(

1 − k
n−1

)

· min
{

L, n2 + L
k−1

}

random bits more than the
original protocol, where L is the total amount of bits sent in the original protocol.
The obvious open question here is either to further reduce the number of extra
random bits or to prove general lower bounds.

The parity function can be computed on a cycle using only one random bit
and only one message per link. Thus, 1 + n− kn

n−1 random bits are sufficient to
compute the parity function on an arbitrary k-connected graph by a private pro-
tocol using our simulation. We have strengthened this bound by showing that on
every k-connected graph, parity can be computed by an oblivious private proto-
col using at most

⌈

n−2
k−1

⌉

− 1 random bits. Furthermore, there exist k-connected
networks for which this bound is sharp. The latter bound even holds for non-
oblivious protocols.

While every Boolean function can be computed on a 2-connected network
by a private protocol, this is no longer true for 1-connected networks. Starting
from this observation, we have completely characterized the functions that can
be computed by a private protocol on 1-connected networks.

Our simulation results focus on the extra amount of randomness needed. It
would also be interesting to bound the number of rounds of the simulation in
terms of the number of rounds of the original protocol and, say, the diameter of
the new network.

Acknowledgement

We thank Adi Rosén for valuable discussions and hints to literature.

Private Computation – k-connected versus 1-connected Networks 209

References

1. N. Alon, J. H. Spencer, and P. Erdös. The Probabilistic Method. John Wiley and
Sons, 1992.

2. J. Bar-Ilan and D. Beaver. Non-cryptographic fault-tolerant computing in a con-
stant number of rounds of interaction. In Proc. 8th Ann. Symp. on Principles of
Distributed Comput. (PODC), pages 201–209. ACM, 1989.

3. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In Proc. 20th Ann. Symp.
on Theory of Comput. (STOC), pages 1–10. ACM, 1988.

4. C. Blundo, A. de Santis, G. Persiano, and U. Vaccaro. Randomness complexity of
private computation. Comput. Complexity, 8(2):145–168, 1999.

5. R. Canetti and R. Ostrovsky. Secure computation with honest-looking parties:
What if nobody is truly honest? In Proc. 31st Ann. Symp. on Theory of Comput.
(STOC), pages 255–264. ACM, 1999.

6. D. Chaum, C. Crépeau, and I. Damg̊ard. Multiparty unconditionally secure pro-
tocols. In Proc. 20th Ann. Symp. on Theory of Comput. (STOC), pages 11–19.
ACM, 1988.

7. B. Chor, M. Geréb-Graus, and E. Kushilevitz. On the structure of the privacy
hierarchy. J. Cryptology, 7(1):53–60, 1994.

8. B. Chor, M. Geréb-Graus, and E. Kushilevitz. Private computations over the
integers. SIAM J. Comput., 24(2):376–386, 1995.

9. B. Chor and E. Kushilevitz. A zero-one law for boolean privacy. SIAM J. Discrete
Math., 4(1):36–47, 1991.

10. B. Chor and E. Kushilevitz. A communication-privacy tradeoff for modular addi-
tion. Inform. Process. Lett., 45(4):205–210, 1993.

11. Y. Egawa, R. Glas, and S. C. Locke. Cycles and paths through specified vertices
in k-connected graphs. J. Combin. Theory Ser. B, 52:20–29, 1991.

12. M. Franklin and R. N. Wright. Secure communication in minimal connectivity
models. J. Cryptology, 13(1):9–30, 2000.

13. M. Franklin and M. Yung. Secure hypergraphs: Privacy from partial broadcast. In
Proc. 27th Ann. Symp. on Theory of Comput. (STOC), pages 36–44. ACM, 1995.

14. A. Gál and A. Rosén. A theorem on sensitivity and applications in private compu-
tation. In Proc. 31st Ann. Symp. on Theory of Comput. (STOC), pages 348–357.
ACM, 1999.

15. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or
a completeness theorem for protocols with honest majority. In Proc. 19th Ann.
Symp. on Theory of Comput. (STOC), pages 218–229. ACM, 1987.

16. E. Kushilevitz. Privacy and communication complexity. SIAM J. Discrete Math.,
5(2):273–284, 1992.

17. E. Kushilevitz and Y. Mansour. Randomness in private computations. SIAM J.
Discrete Math., 10(4):647–661, 1997.

18. E. Kushilevitz, R. Ostrovsky, and A. Rosén. Characterizing linear size circuits in
terms of privacy. J. Comput. System Sci., 58(1):129–136, 1999.

19. E. Kushilevitz and A. Rosén. A randomness-rounds tradeoff in private computa-
tion. SIAM J. Discrete Math., 11(1):61–80, 1998.

20. I. Wegener. The Complexity of Boolean Functions. Wiley-Teubner, 1987.
21. A. C.-C. Yao. Protocols for secure computations. In Proc. 23rd Ann. Symp. on

Foundations of Comput. Sci. (FOCS), pages 160–164. IEEE, 1982.
22. A. C.-C. Yao. How to generate and exchange secrets. In Proc. 27th Ann. Symp.

on Foundations of Comput. Sci. (FOCS), pages 162–167. IEEE, 1986.

