
Computing Zeta Functions of Hyperelliptic

Curves over Finite Fields of Characteristic 2

Frederik Vercauteren1,2 ?

1 Department of Electrical Engineering
University of Leuven

Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium
frederik.vercauteren@esat.kuleuven.ac.be

2 Computer Science Department
University of Bristol

Woodland Road, Bristol BS8 1UB, United Kingdom
frederik@cs.bris.ac.uk
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1 Introduction

Since elliptic curve cryptosystems were introduced by Koblitz [16] and Miller [23],
various other systems based on the discrete logarithm problem in the Jacobian of
curves have been proposed, e.g. hyperelliptic curves [17], superelliptic curves [10]
and Cab curves [1]. One of the main initialization steps of these cryptosystems
is to generate a suitable curve defined over a given finite field. To ensure the
security of the system, the curve must be chosen such that the group order of
the Jacobian is divisible by a large prime.
The problem of counting the number of points on elliptic curves over finite

fields of any characteristic can be solved in polynomial time using Schoof’s al-
gorithm [32] and its improvements due to Atkin [2] and Elkies [6]. An excellent
account of the resulting SEA-algorithm can be found in [3] and [20]. For finite
fields of small characteristic, Satoh [29] described an algorithm based on p-adic
methods which is asymptotically faster than the SEA-algorithm. Skjernaa [33]
and Fouquet, Gaudry and Harley [7] extended the algorithm to characteristic 2
and Vercauteren [35] presented a memory efficient version. Mestre proposed a

? F.W.O. research assistant, sponsored by the Fund for Scientific Research - Flanders
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variant of Satoh’s algorithm based on the Arithmetic-Geometric Mean, which
has the same asymptotic behavior as [35], but is faster by some constant. Satoh,
Skjernaa and Taguchi [30] described an algorithm which has a better complexity
than all previous algorithms, but requires some precomputations.

The equivalent problem for higher genus curves seems to be much more dif-
ficult. Pila [28] described a theoretical generalization of Schoof’s approach, but
the algorithm is not practical, not even for genus 2 as shown by Gaudry and
Harley [12]. An extension of Satoh’s method to higher genus curves needs the
Serre-Tate canonical lift of the Jacobian of the curve, which need not be a Ja-
cobian itself and thus is difficult to compute with. The AGM method does gen-
eralize to hyperelliptic curves, but currently only the genus 2 case is practical.

Recently Kedlaya [14] described a p-adic algorithm to compute the zeta func-
tion of hyperelliptic curves over finite fields of small odd characteristic, using the
theory of Monsky-Washnitzer cohomology. The running time of the algorithm
is O(g4+ε log3+ε q) for a hyperelliptic curve of genus g over Fq. The algorithm
readily generalizes to superelliptic curves as shown by Gaudry and Gurel [11].

A related approach by Lauder and Wan [18] is based on Dwork’s proof of
the rationality of the zeta function and leads to a polynomial time algorithm for
computing the zeta function of an arbitrary variety over a finite field. Note that
Wan [36] suggested the use of p-adic methods, including the method of Dwork
and Monsky, already several years ago. Despite the polynomial complexity of the
Lauder and Wan algorithm, it is not practical for cryptographical sizes. Using
Dwork cohomology, Lauder and Wan [19] adapted their original algorithm for
the special case of Artin-Schreier curves, resulting in an O(g5+ε log3+ε q) time
algorithm. Denef and Vercauteren [4] described an extension of Kedlaya’s algo-
rithm for Artin-Schreier curves in characteristic 2 which has the same running
time O(g5+ε log3+ε q).

In this paper we describe an extension of Kedlaya’s algorithm to compute
the zeta function of an arbitrary hyperelliptic curve C defined over a finite field
Fq of characteristic 2. The resulting algorithm has running time O(g

5+ε log3+ε q)
and needs O(g3 log3 q) storage space for a genus g curve. Furthermore, a first
implementation of this algorithm in the C programming language shows that
cryptographical sizes are now feasible for any genus g. For instance, computing
the order of a 160-bit Jacobian of a hyperelliptic curve of genus 2, 3 or 4 takes
less than 100 seconds. The theoretical version of this paper, co-authored by
Jan Denef [5], provides a detailed description of the underlying mathematics
of the algorithm and contains several proofs which we have omitted from the
current article.

The remainder of the paper is organized as follows: after recalling some ba-
sics about curves and zeta functions in Section 2, we give a brief overview of
the formalism of Monsky-Washnitzer cohomology in Section 3. In Section 4 we
study the cohomology of hyperelliptic curves over finite fields of characteristic 2
and in Section 5 we present a ready to implement description of the resulting
algorithm. We conclude in Section 6 with some numerical examples obtained by
an implementation of our algorithm in the C programming language.
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2 Hyperelliptic Curves, Zeta Functions and p-adics

In this section we briefly recall the definition of a hyperelliptic curve, the main
properties of its zeta function and some basic facts about p-adic numbers. More
details can be found in the elementary books by Fulton [9], Lorenzini [21] and
Koblitz [15] or in the standard reference by Hartshorne [13].

2.1 Hyperelliptic Curves

Let Fq be a finite field with q = pn elements and fix an algebraic closure Fq

of Fq. For k ∈ N0, let Fqk be the unique subfield of Fq of order q
k. An affine

hyperelliptic curve C of genus g is a plane curve defined by an equation of the
form

C : y2 + h(x)y = f(x) , (1)

where f(x) ∈ Fq[x] is a monic polynomial of degree 2g+ 1 and h(x) ∈ Fq[x] is a
polynomial of degree at most g. Furthermore, the curve should be non-singular,
i.e. there is no point in C(Fq) such that both partial derivatives

2y + h(x) and h
′
(x)y − f

′
(x) ,

simultaneously vanish. Note that for g = 1 we recover the definition of an elliptic
curve and that for g > 1 the hyperelliptic curve C is singular at the point
at infinity. However, there always exists a unique smooth projective curve C̃
birational to C. Since the degree of f(x) is odd, C̃ has a unique place of degree 1

(i.e. a point) at infinity. Note that there exists an involution ı on C̃ which sends
the point (x, y) to the point (x,−y − h(x)).

Let C̃(Fqk) denote the set of points on C̃ with coordinates in Fqk . If C̃ is an

elliptic curve, one can define an additive abelian group law on the set C̃(Fqk) by
the chord-tangent method. For a hyperelliptic curve with g > 1 this is no longer
possible; instead one computes in the group of points on the Jacobian JC̃(Fqk)
of the curve.
A divisor D on a curve C̃ is a finite formal sum of points

D =
∑

P∈C̃(Fq)

nPP ,

where nP ∈ Z. The degree of D is defined as
∑
nP . A divisor is called Fqk -

rational if it is stable under the action of the qk-th power Frobenius endomor-

phism Fk : Fq → Fq : x 7→ xqk

. Every function on the curve gives rise to a so
called principal divisor, i.e. the degree zero divisor consisting of the formal sum of
the poles and zeros of the function. The Jacobian JC̃(Fqk) is then defined as the
group of Fqk -rational divisors of degree zero modulo principal divisors. This is a
finite abelian group and forms the basis of the cryptographic schemes based on
hyperelliptic curves. In this article we give an efficient algorithm for computing
the group order of JC̃(Fqk) for k ∈ N0 and Fq a finite field of characteristic 2.
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2.2 Zeta-Functions

Let Nk denote the number of Fqk -rational points on C̃, i.e. Nk = #C̃(Fqk). The

zeta function Z(C̃/Fq;T ) of C̃ is then defined as

Z(C̃/Fq;T ) := exp

(
∞∑

k=1

NkT
k

k

)
. (2)

Weil [37] conjectured and proved that Z(C̃/Fq;T ) has many remarkable prop-
erties, which we summarize in the next theorem.

Theorem 1 (Weil) Let C̃ be a smooth projective curve of genus g defined over
a finite field Fq, then

Z(C̃/Fq;T ) =
Ψ(T )

(1− qT )(1− T )
, (3)

where Ψ(T ) ∈ Z[T ] is a degree 2g polynomial with integer coefficients. Since
Z(C̃/Fq; 0) = 1, we have Ψ(0) = 1. Write Ψ(T ) =

∏2g
i=1(1−ωiT ), then |ωi| =

√
q

for i = 1, . . . , 2g, and we can label the ωi such that ωi ·ωg+i = q for i = 1, . . . , g.
Substituting the expression for Ψ(T ) in equation (3) and taking the logarithm of
equations (2) and (3), it follows that

Nk = #C̃(Fqk) = qk + 1−
2g∑

i=1

ωk
i . (4)

Furthermore, Ψ(1) = #JC̃(Fq) is the group order of the Jacobian of C̃ over Fq.

The above theorem shows that it is sufficient to compute the zeta function of
a hyperelliptic curve C̃/Fq to recover the group order of its Jacobian JC̃(Fq) as

Ψ(1). Let F : Fq → Fq : x 7→ xq be the q-th power Frobenius automorphism, then
F extends naturally to the Jacobian JC̃(Fq). Denote with χ(T ) the characteristic
polynomial of F on JC̃(Fq), then one can prove that Ψ(T ) = T 2gχ(1/T ).

2.3 p-adic Numbers

Let K be the degree n unramified extension of Qp with valuation ring R and
residue field R/pR = Fq. The field K can be constructed as follows: let P (t) be a
monic, irreducible polynomial of degree n over Fp, such that Fq ' Fp[t]/(P (t)).
Take any lift P (t) ∈ Zp[t] of P (t) of degree n, then K is isomorphic with
Qp[t]/(P (t)). In practice, we represent an element α of R as a polynomial∑n−1

i=0 αit
i, with αi ∈ Z/(pNZ), where N is called the precision of the representa-

tion. The Galois group of K over Qp is cyclic of order n and there exists a unique
generator Σ which reduces to the p-th power Frobenius σ : Fq → Fq : x 7→ xp.
This generator Σ is called the Frobenius substitution on K. By definition Σ is a
Qp-linear automorphism, so we can compute Σ(α) as

∑n−1
i=0 αiΣ(t)

i. Since P (t)
is defined over Zp, it follows that P (Σ(t)) = 0, which implies that Σ(t) can be
computed by the Newton iteration Y → Y − P (Y )/P ′(Y ) initialized with tp.
Note that Σ is not a simple powering like σ.
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3 Monsky-Washnitzer Cohomology

We specialize the formalism of Monsky-Washnitzer cohomology to smooth affine
plane curves. The more general case of a smooth affine variety can be found
in the seminal papers by Monsky and Washnitzer [27, 24, 26], the lectures by
Monsky [25] and the survey by van der Put [34].

Let C be a smooth affine plane curve over a finite field Fq with q = pn and
let K be a degree n unramified extension of Qp with valuation ring R, such that
R/pR = Fq. The aim of Monsky-Washnitzer cohomology is to express the zeta
function of the curve C in terms of a Frobenius operator F acting on p-adic
cohomology groups H i(C/K) associated to C. Although “p-adic cohomology
groups” sounds very complicated, these groups are simply finite dimensional
K-vectorspaces. Furthermore, the Frobenius operator F acts linearly on these
vectorspaces which implies that F can be represented as a matrix over K. For
smooth affine plane curves the only non-trivial cohomology groups are H0(C/K)
and H1(C/K). Let MF be the matrix through which the Frobenius operator F
acts on H1(C/K). The crux of the whole construction is that the characteristic
polynomial ofMF is equal to χ(T ), i.e. the characteristic polynomial of Frobenius
on C.

In the remainder of this section we will give a middlebrow overview of the
construction of the cohomology group H1(C/K). Suppose that the smooth affine
plane curve C is given by an equation g(x, y) = 0 and let A := Fq[x, y]/(g(x, y))
be its coordinate ring. Take any lift g(x, y) ∈ R[x, y] of g(x, y) and let C be
the curve defined by g(x, y) = 0 with coordinate ring A := R[x, y]/(g(x, y)). To
compute the zeta function of C in terms of a Frobenius operator, one needs to
lift the Frobenius endomorphism F on A to the R-algebra A, but in general this
is not possible. Note that in the special case of elliptic curves, Satoh [29] solves
this problem by using the Serre-Tate canonical lift, which does admit a lift of
the Frobenius endomorphism.

A first attempt to remedy this difficulty is to work with the p-adic comple-
tion A∞ of A, since we can lift F to A∞. But then a new problem arises since
the de Rham cohomology of A∞, which provides the vectorspaces we are looking
for, is too big. For example, consider the affine line over Fp, then A = R[x] and
A∞ is the ring of power series

∑∞
k=0 rkx

k with ri ∈ R and limk→∞ rk = 0. We
would like to define H1(A/K) as (A∞⊗K) dx/ d

dx (A∞⊗K), but this turns out to
be infinite dimensional. For instance, it is clear that each term in the differential
form

∑∞
n=0 p

nxpn−1dx is exact, but its sum is not since
∑∞

n=0 x
pn

is not in A∞.
The fundamental problem is that

∑∞
n=0 p

nxpn−1 does not converge fast enough
for its integral to converge as well.

Monsky and Washnitzer therefore work with a subalgebra A† of A∞, whose
elements satisfy growth conditions. This dagger ring or weak completion A† is
defined as follows: letA = R[x, y]/(g(x, y)), then A† := R〈x, y〉†/(g(x, y)), where
R〈x, y〉† is the ring of overconvergent power series
{∑

ri,jx
iyj ∈ R[[x, y]] | ∃ δ, ε ∈ R, ε > 0,∀(i, j) : ordp ri,j ≥ ε(i+ j) + δ

}
.
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The ring A† satisfies A†/pA† = A and depends up to R-isomorphism only on
A. Furthermore, Monsky and Washnitzer show that if E is an Fq-endomorphism
of A, then there exists an R-endomorphism E of A lifting E. In particular, we
can lift the Frobenius endomorphism F on A to an R-endomorphism F on A.
For A† we define the universal module D1(A†) of differentials

D1(A†) := (A† dx+A† dy)/(A†(
∂g

∂x
dx+

∂g

∂y
dy)) . (5)

Taking the total differential of the equation g(x, y) = 0 gives ∂g
∂x dx+ ∂g

∂y dy = 0,

which accounts for the module A†( ∂g
∂x dx+ ∂g

∂y dy) in the above definition.

The first cohomology group is then defined as H i(A/R) := D1(A†)/d(A†)
and H1(A/K) := H1(A/R) ⊗R K finally defines the first Monsky-Washnitzer
cohomology group. Elements of d(A†), i.e. differentials of the form d(l(x, y)) for
l(x, y) ∈ A†, are called exact. One can prove that H1(A/K) is well defined and
is in fact a finite dimensional vectorspace over K. Furthermore, for a smooth
affine curve of genus g, the dimension of H1(A/K) is 2g+m− 1, where m is the
number of points needed to complete the affine curve to a projective curve.

4 Cohomology of Hyperelliptic Curves in Characteristic 2

Let Fq be a finite field with q = 2
n elements and consider the smooth affine

hyperelliptic curve C of genus g defined by the equation

C : y2 + h(x)y = f(x) ,

with h(x), f(x) ∈ Fq[x], f(x) monic of degree 2g+1 and deg h(x) ≤ g. Write h(x)
as c·

∏s
i=0(x−θi)

mi with θi ∈ Fq, c ∈ Fq the leading coefficient of h(x) and define
H(x) =

∏s
i=0(x−θi) ∈ Fq[x]. If h(x) is a constant, we setH(x) = 1. Without loss

of generality we can assume that H(x) | f(x). Indeed, the isomorphism defined
by x 7→ x and y 7→ y +

∑s
i=0 bix

i transforms the curve in

y2 + h(x)y = f(x)−
s∑

i=0

b2ix
2i − h(x)

s∑

i=0

bix
i .

The polynomial H(x) will divide the right hand side of the above equation if and

only if f(θj) =
∑s

i=0 b
2
i ·θ

2i

j for j = 0, . . . , s. This is a system of linear equations in
the indeterminates b2i and its determinant is a Vandermonde determinant. Since
the θj are the zeros of a polynomial defined over Fq, the system of equations is
invariant under the q-th power Frobenius automorphism F and it follows that
the b2i and therefore the bi are elements of Fq. We conclude that we can always
assume that H(x) | f(x).
Let π : C(Fq) → A1(Fq) be the projection on the x-axis. It is clear that π

ramifies at the points (θi, 0) ∈ Fq × Fq for i = 0, . . . , s where H(θi) = 0. Note
that the ordinate of these points is zero, since we assumed that H(x) | f(x). Let
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C ′ be the curve obtained from C by removing the ramification points (θi, 0) for
i = 0, . . . , s. Then the coordinate ring A of C ′ is

Fq[x, y,H(x)
−1]/(y2 + h(x)y − f(x)) .

Note that it is not really necessary to work with the open subset C ′ instead
of with C itself, but it is more efficient to do so. The coordinate ring of C ′

contains the inverse of H(x) which will enable us to choose a particular lift of
the Frobenius endomorphism F of A.
Let K be a degree n unramified extension of Q2 with valuation ring R and

residue field R/2R = Fq. Write h(x) = c ·∏r
i=1 P i(x)

ti , where the P i(x) are
irreducible over Fq. Let D = maxi ti, then h(x) divides H(x)

D, since we have the
identity H(x) =

∏r
i=0 P i(x). Lift P i(x) for i = 0, . . . , r to any monic polynomial

Pi(x) ∈ R[x] with Pi(x) ≡ P i(x) mod 2. Define H(x) =
∏r

i=0 Pi(x) and h(x) =
c ·∏r

i=0 Pi(x)
ti , with c any lift of c to R. Since H(x) divides f(x) we can define

Qf (x) = f(x)/H(x). Let Qf (x) ∈ R[x] be any monic lift of Qf (x) and finally
set f(x) = H(x) ·Qf (x). The result is that we have now constructed a lift C of
the curve C to R defined by the equation

C : y2 + h(x)y = f(x) .

Note that due to the careful construction of C we have the following properties:
H(x) | h(x), H(x) | f(x) and h(x) |H(x)D. Furthermore, let π : C(K) → A1(K)
be the projection on the x-axis, then it is clear that π ramifies at (θi, 0) for
i = 0, . . . , s where the θi are the zeros of H(x).
Let C′ be the curve obtained from C by deleting the points (θi, 0) for i =

0, . . . , s, then the coordinate ring A of C ′ is

R[x, y,H(x)−1]/(y2 + h(x)y − f(x)) .

Let A† denote the weak completion of A. Using the equation of the curve, we
can represent any element of A† as a series

∑∞
i=−∞(Ui(x) + Vi(x)y)H(x)

i, with
the degree of Ui(x) and Vi(x) smaller that the degree of H(x) if degH(x) > 0.
If H(x) = 1, every element can be written as

∑∞
i=0(Ui+ Viy)x

i with Ui, Vi ∈ K.
The growth condition on the dagger ring implies that there exist real numbers
δ and ε > 0 such that ord2(Ui(x)) ≥ ε · |i| + δ and ord2(Vi(x)) ≥ ε · |i + 1| + δ,
where ord2(W (x)) is defined as minj ord2(wj) for W (x) =

∑
wjx

j ∈ K[x].
Since F = σn with σ the 2-nd power Frobenius, it clearly is sufficient to

lift σ to an endomorphism Σ of A†. It is natural to define Σ as the Frobenius
substitution on R and to extend it to R[x] by mapping x to x2. Using the
equation of the curve we see that Σ(y) must satisfy

(Σ(y))2 +Σ(h(x))Σ(y)−Σ(f(x)) = 0 and Σ(y) ≡ y2 mod 2 .

In practice Σ(y) is computed as a Laurent series
∑BU

i=−BL
(Si(x)+Ti(x)y)H(x)

i

if degH(x) > 0 or
∑BU

i=0(Si + Tiy)x
i if H = 1, via the Newton iteration

Wk+1 =Wk −
W 2

k +Σ(h(x)) ·Wk −Σ(f(x))

2 ·Wk +Σ(h(x))
mod 2k+1 . (6)
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Note that we have to invert 2 ·Wk + Σ(h(x)) in the dagger ring A†. Since
h(x) |H(x)D, we can define QH(x) = H(x)D/h(x), which immediately leads to
1/h(x) = QH(x)/H(x)

D. We can now compute the inverse of 2 ·Wk +Σ(h(x))
as

QH(x)
2

H(x)2D ·
(
1 +

QH(x)
2(2Wk +Σ(h(x))− h(x)2)

H(x)2D

) .

Note that Σ(h(x)) ≡ h(x)2 mod 2, which implies that the denominator in the
above formula is invertible in A†. Here we are using the fact that 1/H(x) is an
element of A†, which explains why we work with C ′ instead of with C.
A detailed analysis of the Newton iteration shows that if we write Wk as∑Uk

i=−Lk
(Si(x)+Ti(x)y)H(x)

i for degH(x) > 0 or
∑Uk

i=0(Si+Tiy)x
i if H(x) = 1,

with ord2(Si(x)) < k, ord2(Ti(x)) < k and Lk, Uk ∈ N, then we get the following
bounds for Lk and Uk:

Lk ≤ 4kD and Uk ≤ 2k
(
deg f(x)− 2 deg h(x)

degH(x)

)
+ 2

deg h(x)

degH(x)
. (7)

In [5] we prove that the first Monsky-Washnitzer cohomology groupH1(A/K)
splits into eigenspaces under the hyperelliptic involution: a positive eigenspace
H1(A/K)+ with basis xi/H(x) dx for i = 0, . . . , s and a negative eigenspace
H1(A/K)− with basis xiy dx for i = 0, . . . , 2g − 1. Note that the positive
eigenspace corresponds to the deleted ramification points (θi, 0) for i = 0, . . . , s
and that only the negative eigenspace H1(A/K)− is related to the original
curve C.
The final step in the algorithm is to compute the action of the Frobenius

operator F = Σn on the basis of the first Monsky-Washnitzer cohomology group
H1(A/K). However, since only H1(A/K)− corresponds to the original curve C,
it is sufficient to compute the action of F on H1(A/K)− to recover the zeta

function of C̃. Let MF be the matrix through which F acts on H1(A/K)−,
then we can prove [5] that the characteristic polynomial of MF is precisely the
characteristic polynomial χ(T ) of the Frobenius morphism on the hyperelliptic

curve C̃. Let M be the matrix of Σ on H1(A/K)−, i.e.

Σ(xjy dx) ≡
2g−1∑

i=0

M(i, j)xiy dx for j = 0, . . . , 2g − 1 ,

then one easily verifies that MF =MΣ(M) · · ·Σn−1(M).
The only remaining difficulty in computing M is the reduction of Σ(xjy dx)

on the basis of H1(A/K)−. Since Σ(xjy dx) = Σ(x)jΣ(y) d(Σ(x)), we get the
following expansion Σ(xjy dx) = 2x2j+1

∑∞
i=−∞(Si(x) + Ti(x)y)H(x)

i dx if

degH(x) > 0 and Σ(xjy dx) = 2x2j+1
∑∞

i=0(Si + Tiy)x
i dx if H(x) = 1.

For i ≥ 0 we can reduce the differential form Ti(x)H(x)
iy dx (or Tix

iy dx
if H = 1), if we know how to reduce the form xky dx for k ∈ N. Rewriting the
equation of the curve as (2y + h(x))2 = 4f(x) + h(x)2 and differentiating both
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sides leads to (2y + h(x)) d(2y + h(x)) = (2f ′(x) + h(x)h′(x)) dx. Furthermore,
for all l ≥ 1, we have the following relations

xl(2f ′(x) + h(x)h′(x))(2y + h(x)) dx = xl(2y + h(x))2 d(2y + h(x))

≡ −1
3
(2y + h(x))3 dxl

= − l

3
xl−1(4f(x) + h(x)2)(2y + h(x)) dx .

Since W (x)h(x) dx is exact for any polynomial W (x) ∈ K[x], we finally obtain
that [

xl(2f ′(x) + h(x)h′(x)) +
l

3
xl−1(4f(x) + h(x)2)

]
y dx ≡ 0 .

The polynomial between brackets has degree 2g+ l and its leading coefficient is
2(2g + 1) + 4l/3 6= 0. Note that the formula is also valid for l = 0. This means
that we can reduce xky dx for any k ≥ 2g by subtracting a suitable multiple of
the above differential for l = k − 2g.
For i < 0 we need an extra trick to reduce the form Ti(x)H(x)

iy dx. Recall
that Qf (x) = f(x)/H(x) and since the curve is non-singular, we conclude that
gcd(Qf (x), H(x)) = 1. Furthermore, H(x) has no repeated roots which implies
gcd(H(x), Qf (x)H

′(x)) = 1. We can partially reduce Tk(x)/H(x)
ky dx where

k = −i > 0, by writing Tk(x) as Ak(x)H(x)+Bk(x)Qf (x)H
′(x), which leads to

Tk(x)

H(x)k
y dx =

Ak(x)

H(x)k−1
y dx+

Bk(x)Qf (x)H
′(x)

H(x)k
y dx .

The latter differential form can be reduced using the following congruence

Bk(x)

H(x)k
(2f ′(x) + h(x)h′(x))(2y + h(x)) dx ≡ −1

3
(2y + h(x))3d

(
Bk(x)

H(x)k

)
.

Substituting the expressions h(x) = Qh(x)H(x) and f(x) = Qf (x)H(x) we get

BkQfH
′

Hk
y dx ≡

Bk(kH
′Q2

h − 6Q′
f − 3Qhh

′)−B′
k(4Qf +Qhh

′)

(6− 4k)Hk−1
y dx+

I

H
dx ,

where I(x)/H(x) dx is some invariant differential. However, we can ignore all
invariant differentials since we know that H1(A/K)− is stable under Σ.

5 Algorithm and Complexity

Using the formulae devised in the previous section, we describe an algorithm to
compute the zeta function of a hyperelliptic curve C̃ of genus g over Fq with
q = 2n. Theorem 1 implies that it is sufficient to compute the characteristic
polynomial χ(T ) of Frobenius and that χ(T ) can be written as

χ(T ) =

2g∏

i=1

(T − ωi) = T 2g + a1T
2g−1 + · · ·+ a2g ,
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Algorithm 1 (Hyperelliptic Zeta Function)

IN: Hyperelliptic curve C over Fq given by equation y
2 + h(x)y = f(x).

OUT: The zeta function Z(C̃/Fq;T ).

1. B =
⌈
log2

((
2g
g

)
qg/2

)⌉
+ 1; N − 3− blog2(2N deg f + g)c ≥ B;

2. h(x), f(x), H(x), D = Lift Curve(h, f);

3. αN , βN = Lift Frobenius y(h, f,H,D,N);

4. For i = 0 To 2g − 1 Do
4.1. Redi(x) = Reduce MW Cohomology(2x2i+1βN , h, f,H,N);

4.2. For j = 0 To 2g − 1 Do M [j][i] = Coeff(Redi, j);

5. MF =MΣ(M) · · ·Σn−1(M) mod 2N ;

6. χ(T ) = Characteristic Pol(MF) mod 2
B;

7. For i = 0 To g Do

7.1. If Coeff(χ, 2g − i) >
(
2g
i

)
qi/2 Then Coeff(χ, 2g − i) − = 2B;

7.2. Coeff(χ, i) = qg−i Coeff(χ, 2g − i);

8. Return Z(C̃/Fq;T ) =
T 2gχ(1/T )

(1− T )(1− qT )
.

with ωi · ωj = q for i = 1, . . . , g, |ωi| =
√
q and ai ∈ Z for i = 1, . . . , 2g. Since

qg−iai = a2g−i for i = 0, . . . , g, it suffices to compute a1, . . . , ag. Moreover, ai is
the sum of

(
2g
i

)
products of i different zeros of the characteristic polynomial of

Frobenius, so we can bound the ai for i = 1, . . . , g by

|ai| ≤
(
2g

i

)
qi/2 ≤

(
2g

g

)
qg/2 ≤ 22gqg/2 .

Hence, to recover all the coefficients a1, . . . , a2g, we need to compute an approx-
imation of the characteristic polynomial χ(T ) modulo 2B , with

B ≥
⌈
log2

((
2g

g

)
qg/2

)⌉
+ 1 .

However, it is not sufficient to compute Σ(y) mod 2B , since the reduction process
causes some loss of precision. In [5] we prove that for i ∈ Z the valuation of the
denominators introduced during the reduction of Ti(x)H(x)

iy dx is bounded by
c1 = 3+ blog2(−i+ 1)c for i < 0 and c2 = 3+ blog2((i+ 1) · degH + g + 1)c for
i ≥ 0. Combining this with the rate of convergence (7) of the Newton iteration
for computing Σ(y), we conclude that it is sufficient to compute Σ(y) mod 2N
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Algorithm 2 (Lift Frobenius y)

IN: Curve C : y2 + h(x)y = f(x) over K, polynomial H(x) ∈ R[x] with
H|h and H|f , D ∈ N such that h|HD and precision N .

OUT: Series αN , βN ∈ R[x,H,H−1] with Σ(y) ≡ αN + βNy mod 2
N .

1. B = dlog2Ne+ 1; T = N ; QH := HD div h;

2. For i = B Down To 1 Do P [i] = T ; T = dT/2e;
3. α ≡ f mod 2; β ≡ −h mod 2; γ = 1; δ = 0;
4. For i = 2 To B Do

4.1. TA ≡
(
(α+Σ(h)) · α+ β2 · f −Σ(f)

)
·Q2

H ·H−2D mod 2P [i];

4.2. TB ≡ (2α− h · β +Σ(h)) · β ·Q2
H ·H−2D mod 2P [i];

4.3. DA ≡ 1 + (Σ(h)− h2 + 2α) ·Q2
H ·H−2D mod 2P [i−1];

4.4. DB ≡ 2β ·Q2
H ·H−2D mod 2P [i−1];

4.5. VA ≡ DA · γ +DB · δ · f − 1 mod 2P [i−1];

4.6. VB ≡ DA · δ +DB · (γ − δ · h) mod 2P [i−1];

4.7. γ ≡ γ − (VA · γ + VB · δ · f) mod 2P [i−1];

4.8. δ ≡ δ − (VA · δ + VB · (γ − δ · h)) mod 2P [i−1];

4.9. α ≡ α− (TA · γ + TB · δ · f) mod 2P [i];

4.10. β ≡ β − (TA · δ + TB · (γ − δ · h)) mod 2P [i];

5. Return αN = α, βN = β.

where N ∈ N satisfies

N − 3− blog2(2N deg f + g)c ≥ B .

The function Hyperelliptic Zeta Function given in Algorithm 1 computes
the zeta function of a hyperelliptic curve C defined over Fq where q = 2

n. In
step 2 we call the subroutine Lift Curve, which first constructs an isomorphic
curve such that H(x) | h(x) and H(x) | f(x) and lifts the curve following the
construction described in Section 4. The result of this function is a hyperelliptic
curve C : y2+h(x)y = f(x) over R and a polynomial H(x) such that H(x) | h(x),
H(x) | f(x) and h(x) |H(x)D. Since this function is rather straightforward, we
have omitted the pseudo-code.
In step 3 we compute Σ(y) mod 2N using the function Lift Frobenius y

given in Algorithm 2. This function implements the Newton iteration (6), but has
quadratic, instead of linear, convergence. The parameters αN , βN are Laurent
series in H(x), with coefficients polynomials over R mod 2N of degree smaller
than degH(x) > 0. If H(x) = 1, then αN , βN are Laurent series in x.
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Algorithm 3 (Reduce MW Cohomology)

IN: Series G ∈ R[x,H,H−1], polynomials h, f,H ∈ R[x] and precision N .
OUT: R ∈ K[x], with degR < 2g such that Ry dx ≡ Gy dx in H1(A/K)−.

1. DG = degG; VG = Valuation(G); DT = (DG + 1) · degH; T = 0;
2. For i = DG Down To 0 Do T = T ·H+ Coeff(G, i) mod 2N ;

3. For i = DT Down To 2g

3.1. P ≡ xi−2g(2f ′ + h · h′) + i−2g
3 xi−2g−1(4f + h2) mod 2N ;

3.2. T ≡ T − (Coeff(T, i)·P )/ Coeff(P, i) mod 2N ;

4. Qf = f div H; Qh = h div H; P = 0;

5. For i = VG To −1
5.1. V ≡ P+ Coeff(G,i) mod 2N ;

5.2. P ≡ V div H mod 2N ; V ≡ V − P ·H mod 2N ;

5.3. C,LA, LB = XGCD(V ·H, V ·Qf ·H ′, N);

5.4. P ≡ P + LA +
LB ·(−iQ2

h·H′−3(2Q′
f+Qh·h′))−L′

B ·(4Qf +Qhh)

6+4i mod 2N ;

6. Return R ≡ T + P mod 2N .

Note that the function Lift Frobenius y is a double Newton iteration: α+ βy
converges to Σ(y), whereas γ + δy is an approximation of the inverse of the
denominator in the Newton iteration.
Once we have determined an approximation of Σ(y), we compute the action

of Σ on the basis of H1(A/K)− as 2x2i+1Σ(y) dx for i = 0, . . . , 2g− 1. In step 4
we reduce these forms with the function Reduce MW Cohomology given in Algo-
rithm 3. Note that this algorithm is based on the reduction formulae given in
Section 4. The result of step 4 of Algorithm 1 is an approximation modulo 2B

of the matrix M through which Σ acts on H1(A/K)−. In step 5 we compute its
normMF asMΣ(M) · · ·Σn−1(M). Note that sinceM is not necessarily defined
over R, we have to compute this product with slightly increased precision to ob-
tain the correct result. In steps 6 and 7 we recover the characteristic polynomial
of Frobenius from the first g coefficients of the characteristic polynomial of MF .
Finally, we return the zeta function of the smooth projective hyperelliptic curve
C̃ birational to C in Step 8.
The complexity analysis of the algorithm is similar to Kedlaya’s algorithm

in [14, Section 5], except that in our case the reduction takes O(g5+εn3+ε) time
instead of O(g4+εn3+ε) time. A detailed complexity analysis can be found in [5],
which proves that the zeta function of a genus g hyperelliptic curve C over a finite
field Fq with q = 2

n elements, can be computed deterministically in O(g5+εn3+ε)
bit operations with space complexity O(g3n3).
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6 Implementation and Numerical Results

In this section we present running times of an implementation of Algorithm 1
in the C programming language and give some examples of Jacobians of hyper-
elliptic curves with almost prime group order.
The basic operations on integers modulo 2N where N ≤ 256 were written in

assembly language. Elements of R mod 2N are represented as polynomials over
Z/(2NZ) modulo a degree n irreducible polynomial, which we chose to be either a
trinomial or a pentanomial. For multiplication of elements in RN := R mod 2N ,
polynomials over RN and Laurent series over RN [x] we used Karatsuba’s algo-
rithm. In the near future, we plan to implement Toom’s algorithm which will
lead to a further speed-up of about 50%.

6.1 Running Times and Memory Usage

Table 1 contains running times and memory usages of our algorithm for genus 2, 3
and 4 hyperelliptic curves over various finite fields of characteristic 2. These
results were obtained on an AMDXP 1700+ processor running Linux Redhat 7.1.
Note that the fields are chosen such that g · n, and therefore the bit size of the
group order of the Jacobian, is constant across each row.

Table 1. Running times (s) and memory usage (MB) for genus 2, 3 and 4 hyperelliptic
curves over F2n

Size of Jacobian Genus 2 curves Genus 3 curves Genus 4 curves

g · n Time (s) Mem (MB) Time (s) Mem (MB) Time (s) Mem (MB)

120 30 4.5 38 5.4 35 5.2
144 44 5.7 61 7.3 59 7.2
168 71 8.6 101 11 100 11
192 116 13 143 14 139 13
216 170 16 196 17 185 16

6.2 Hyperelliptic Curve Examples

In this subsection we give two examples of Jacobians of hyperelliptic curves with
almost prime group order. The correctness of these results is easily proved by
multiplying a random divisor with the given group order and verifying that the
result is principal, i.e. is the zero element in the Jacobian JC̃(Fq).
It is clear that both curves are non-supersingular: for the genus 2 curve

note that a2 is odd and for the genus 3 curve this is trivial since there are no
hyperelliptic supersingular curves of genus 3 in characteristic 2 [31]. Furthermore,
both curves withstand the MOV-FR attack [8, 22].
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Genus 2 hyperelliptic curve over F283

Let F283 be defined as F2[t]/P (t) with P (t) = t83+t7+t4+t2+1 and consider
the random hyperelliptic curve C2 of genus 2 defined by

y2 + (

2∑

i=0

hix
i)y = x5 +

4∑

i=0

fix
i ,

where

h0 = 7FF29B08993336B479CD2 h1 = 32C101713C722F8FB5BC9

h2 = 553E16B6A3BC6B2432CA8

f0 = 7AD44882C02B9743CD58B f1 = 327254FA330B44958262A

f2 = 204AB23E12828D061AF04 f3 = 1C827250FFDEFF93B43BE

f4 = 13D80106C0E5571DFD139 .

The group order of the Jacobian JC̃2
of C2 over F283 is

#JC̃2
= 2 · 46768052394566313810931349196246034325781246483037 ,

where the last factor is prime. The coefficients a1 and a2 of the characteristic
polynomial of Frobenius χ(T ) = T 4 + a1T

3 + a2T
2 + a3T + a4 are given by

a1 = −4669345964042 and a2 = 18983903513383986646766787 .

Genus 3 hyperelliptic curve over F259

Let F259 be defined as F2[t]/P (t) with P (t) = t59+t7+t4+t2+1 and consider
the random hyperelliptic curve C3 of genus 3 defined by

y2 + (
3∑

i=0

hix
i)y = x7 +

6∑

i=0

fix
i ,

where

h0 = 569121E97EB3821 h1 = 49F340F25EA38A2

h2 = 2DE854D48D56154 h3 = 0B6372FF7310443

f0 = 1104FDBEB454C58 f1 = 0C426890E5C7481

f2 = 34967E2EB7D50C3 f3 = 1F1728AA28C616C

f4 = 1AE177BFE49826A f5 = 3895A0E400F7D18

f6 = 6DF634A1E2BFA8E .

The group order of the Jacobian JC̃3
of C3 over F259 is

#JC̃3
= 2 · 95780971407243394633762332360123160334059170481903949 ,

where the last factor is prime. The coefficients a1, a2 and a3 of the characteristic
polynomial of Frobenius χ(T ) = T 6 + a1T

5 + a2T
4 + a3T

3 + a4T
2 + a5T + a6

are given by

a1 = 620663068,

a2 = 848092512078818380,

a3 = 341008017371409573053936945 .



Computing Zeta Functions of Hyperelliptic Curves 385

7 Conclusion

We have presented an extension of Kedlaya’s algorithm for computing the zeta
function of an arbitrary hyperelliptic curve C over a finite field Fq of charac-
teristic 2. As a byproduct we obtain the group order of the Jacobian JC̃(Fq)
associated to C which forms the basis of the cryptographic schemes based on
hyperelliptic curves. The resulting algorithm runs in O(g5+εn3+ε) bit operations
and needs O(g3n3) storage space for a genus g hyperelliptic curve over F2n . A
first implementation of this algorithm in the C programming language shows that
cryptographical sizes are now feasible for any genus g. Computing the order of
a 160-bit Jacobian of a hyperelliptic curve of genus 2, 3 or 4 takes less than 100
seconds. In the near future we plan to use the formalism of Monsky-Washnitzer
cohomology as a basis for computing the zeta function of any non-singular affine
curve over finite fields of small characteristic.

References

1. S. Arita. Algorithms for computations in Jacobians of Cab curve and their applica-
tion to discrete-log-based public key cryptosystems. In Proceedings of Conference

on The Mathematics of Public Key Cryptography, Toronto, June 12-17 1999.
2. A.O.L. Atkin. The number of points on an elliptic curve modulo a prime. Series

of e-mails to the NMBRTHRY mailing list, 1992.
3. I.F. Blake, G. Seroussi, and N.P. Smart. Elliptic curves in cryptography. London

Mathematical Society Lecture Note Series. 265. Cambridge University Press., 1999.
4. J. Denef and F. Vercauteren. An extension of Kedlaya’s algorithm to Artin-Schreier

curves in characteristic 2. Algorithmic number theory. 5th international symposium.

ANTS-V, 2002.
5. J. Denef and F. Vercauteren. An extension of Kedlaya’s algorithm to hyperelliptic

curves in characteristic 2. Preprint, 2002.
6. N. Elkies. Elliptic and modular curves over finite fields and related computational

issues. Computational Perspectives on Number Theory, pages 21–76, 1998.
7. M. Fouquet, P. Gaudry, and R. Harley. On Satoh’s algorithm and its implementa-

tion. J. Ramanujan Math. Soc., 15:281–318, 2000.
8. G. Frey and H.-G. Rück. A remark concerning m-divisibility and the discrete

logarithm in the divisor class group of curves. Math. Comp., 62(206):865–874,
April 1994.

9. W. Fulton. Algebraic curves. Math. Lec. Note Series. W.A. Benjamin Inc., 1969.
10. S. Galbraith, S. Paulus, and N. Smart. Arithmetic on superelliptic curves. Math.

Comp., 71(237):393–405, 2002.
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