
A Threshold Pseudorandom Function

Construction and Its Applications

Jesper Buus Nielsen?

BRICS?? Department of Computer Science
University of Aarhus
Ny Munkegade

DK-8000 Arhus C, Denmark

Abstract. We give the first construction of a practical threshold pseudo-
random function. The protocol for evaluating the function is efficient
enough that it can be used to replace random oracles in some protocols
relying on such oracles. In particular, we show how to transform the effi-
cient cryptographically secure Byzantine agreement protocol by Cachin,
Kursawe and Shoup for the random oracle model into a cryptographi-
cally secure protocol for the complexity theoretic model without loosing
efficiency or resilience, thereby constructing an efficient and optimally re-
silient Byzantine agreement protocol for the complexity theoretic model.

1 Introduction

The notion of pseudorandom function was introduced by Goldreich, Goldwasser
and Micali[GGM86] and has found innumerable applications. A pseudorandom
function family is a function F taking as input a key K and element x, we write
FK(x), where for a random key the output of FK cannot be distinguished from
uniformly random values if one does not know the key. If one have to require
that the input of FK is uniformly random for the output of FK to look uniformly
random, we say that F is weak pseudorandom.

One immediate application of pseudorandom functions is using them for im-
plementing random oracles: Consider a protocol setting with n parties. A c-
threshold random oracle with domain D is an ideal functionality (or trusted
party). After c parties have input (evaluate, x), where say x ∈ {0, 1}∗, the

functionality will return a uniformly random value rx
R
← D to all parties that

input (evaluate, x). This functionality defines a uniformly random function from
{0, 1}∗ to D. Numerous protocol constructions are known that can be proved
secure assuming that a random oracle is available. However, any implementation
of such a protocol must also provide an implementation of the oracle. In prac-
tice, a hash function is often used to replace a 1-random oracle, but then the
implementation is only secure if an adversary can do no better with the hash

? buus@brics.dk.
?? Basic Research in Computer Science,
Centre of the Danish National Research Foundation.

404 J.B. Nielsen

function than he could with the oracle. This is something that in general cannot
be proved, but must be a belief based on heuristics — in fact, for some protocols,
this belief is always wrong [CGH98,Nie02].

In contrast, pseudorandom functions can be used to implement random ora-
cles without loss of security. This can be done by generating K at the beginning
of the protocol and letting rx = FK(x) when rx is needed. It is however clearly
necessary that no party should know the key of FK , since the output of a pseudo-
random function only looks random to parties who do not have the key. Therefore
the key — and hence also ability to evaluate the function — must be distributed
among the parties using, for instance, a threshold secret-sharing scheme.

Our Results In this paper we construct a new pseudorandom function family.
The key will be a prime Q, where P = 2Q + 1 is also a prime, a random
value x from the subgroup QP of Z∗P of order Q, along with 2l random values
{αj,b}j=1,...,l,b=0,1 from ZQ. The function family maps from the set of strings of
length at most l to QP , and given σ = (σ1, . . . , σm) ∈ {0, 1}

≤l, the output will
be x

∏m
i=1 αi,σi mod P . We prove this function family secure under the decisional

Diffie-Hellman (DDH) assumption.
More importantly, we give a secure n-party protocol for evaluating the func-

tion. Our protocol is for the asynchronous model with authenticated public point-
to-point channels. This is a very realistic model of communication and can be
efficiently implemented[CHH00]. The protocol is statically secure as long as less
than n/3 parties misbehave. In some applications the protocol can communicate
as much as O(ln2k) bits per evaluation, where k is the security parameter (for
each exponent each party sends to each other party k bits). However, in many
uses the communication complexity will be O(n2k) bits.

To demonstrate the applicability of our new threshold pseudorandom func-
tion, we describe how to implement efficient Byzantine agreement (BA) in the
complexity theoretic model, by replacing the random oracles in the protocol
[CKS00] with our threshold pseudorandom function. The resulting protocol has
the same resilience as the protocol in [CKS00], namely resilience against a mali-
cious coalition of one third of the parties. It has the same communication com-
plexity of O(n2k) bits per activation and the same (constant) round complexity
up to a small constant factor. As part of the implementation we show how to
replace the random oracles in the threshold signature scheme from [Sho00] by
our threshold pseudorandom function.

Related Work The notion of distributed pseudorandom function, which is sim-
ilar to our threshold pseudorandom function, was introduced by Naor, Pinkas
and Reingold in [NPR99]. They do not define distributed pseudorandom func-
tions in a general multiparty computation model — their model is more ad-hoc
and implementation-near. Since there are differences between the two notions,
we have chosen a different name for our definition.

Until now the most efficient known construction of threshold pseudorandom
functions was using general multiparty computation techniques or coin-toss pro-

A Threshold Pseudorandom Function Construction and Its Applications 405

tocols, or were restricted to a (logarithmic) small number of parties because of
the way the key was distributed[MS95,BCF00].

In [NPR99] an efficient threshold weak pseudorandom function was con-
structed based on the DDH assumption, and it was left as an interesting open
problem to construct an efficient threshold pseudorandom function. Our proto-
col uses the protocol from [NPR99]. Indeed, our construction contains a general
and efficient construction of threshold pseudorandom functions from threshold
weak pseudorandom functions. This technique is reminiscent of the construction
of pseudorandom functions from pseudorandom generators in [GGM86].

Our pseudorandom function is similar to a function from [NR97], but there
are some essential differences, which allows to efficiently distribute our function.
Indeed, the construction from [NR97] does not seem to allow an efficient secure
distributed protocol.

Organization In Section 2 we give some preliminary notation and definitions.
In Section 3 we describe our pseudorandom function and prove that it is pseudo-
random under the DDH assumption. In Section 4 we sketch the framework for
secure multiparty computation from [Can01] and define the notions of thresh-
old function family, c-threshold random oracle, threshold trapdoor permutation,
threshold signatures and Byzantine agreement in this framework. In Section 5 we
construct a threshold pseudorandom function by giving a distributed protocol
for our threshold pseudorandom function. In Section 6 we show how to use this
threshold function family and the RSA based threshold trapdoor permutation
from [Sho00] to implement a threshold signature scheme based on the RSA and
DDH assumptions. Finally in Section 7 we show how to use this threshold sig-
nature scheme along with our threshold pseudo-random function to implement
the BA protocol from [CKS00] in the complexity theoretic model under the RSA
and DDH assumptions.

2 Preliminaries

We use ε to denote the empty string and for l ∈ N we use {0, 1}≤l to denote

the set
⋃l
i=0{0, 1}

i of all strings of length at most l. For a set S we use x
R
← S

to denote the action of sampling an element x (statistically close to) uniformly

random from S, and for a probabilistic algorithm we use a
R
← A to denote the

action of running A with uniformly random bits and letting a be the output.
We use k ∈ N to denote the security parameter. We will often skip the security
parameter if it is implicitly given by the context. If e.g. S = {Sk}k∈N is a
sequence of sets we will write x ∈ S to mean x ∈ Sk, where k is the security
parameter given by the context.

Trapdoor Commitment Scheme A trapdoor commitment scheme can be de-
scribed as follows: first a public key pk is chosen based on a security parameter
k, by running a probabilistic polynomial time (PPT) generator G. Further more,

406 J.B. Nielsen

there is a fixed function commit that the committer C can use to compute a com-
mitment c to s by choosing some random input r, computing c = commitpk(s, r),
and sending c. Opening takes place by sending (s, r); it can then be checked that
commitpk(s, r) is the value S sent originally. We require that the scheme is per-
fect hiding and computationally binding. The algorithm for generating pk also
outputs a string t, the trapdoor, and there is an efficient algorithm which on in-
put t, pk outputs a commitment c, and then on input any s produces uniformly
random r for which c = commitpk(s, r). In other words, a trapdoor commitment
scheme is binding if you know only the public key, but given the trapdoor, you
can cheat arbitrarily and undetectable.

Pseudorandom Functions The following definitions are adaptions of defini-
tions from [Gol01,BDJR97].

Definition 1. A function family is a sequence F = {Fk}k∈N of random vari-
ables, so that the random variable Fk assume values which are functions. We
say that a function family is a PPT function family if the following two condi-
tions hold:

Efficient indexing There exists a PPT algorithm, I, and a mapping from strings
to functions, φ, so that φ(I(1k)) and Fk are identically distributed. We de-
note by fi the function φ(i).

Efficient evaluation There exists a PPT algorithm, V, so that V (i, x) = fi(x).

Let F and G be two function families. We write F ⊂ G if for all k the func-
tions that receive non-zero probability mass in Fk is a subset of the functions that
receive non-zero probability mass in Gk. Consider two sequences A = {Ak}k∈N

and B = {Bk}k∈N of sets. If all Ak and Bk are finite, we use [A → B] to
denote the function family {Fk}k∈N where Fk is uniform over the set of all
functions from Ak to Bk. We say that a function family F maps from A to B if
F ⊂ [A→ B].

Definition 2. Let F ⊂ [A → B] be a PPT function family. Let b ∈ {0, 1}. Let
D be a distinguisher that has access to an oracle. Let Of be the oracle which on
input s ∈ A outputs f(s), and let Rf be the oracle which on input gen generates
a uniformly random s ∈ A and outputs (s, f(s)). Now consider the following
experiments and corresponding advantages.

proc Exp
wprf-b

F,D ≡

f0
R
← [A→ B]

f1
R
← F

d← DRfb

return d

proc Exp
prf-b

F,D ≡

f0
R
← [A→ B]

f1
R
← F

d← DOfb

return d

Adv
wprf

F,D = Pr[Exp
wprf-1

F,D = 1]− Pr[Exp
wprf-0

F,D = 1]

Adv
prf

F,D = Pr[Exp
prf-1

F,D = 1]− Pr[Exp
prf-0

F,D = 1]

A Threshold Pseudorandom Function Construction and Its Applications 407

We say that F is a weak pseudorandom function family (WPRF) from A to B
(is a pseudorandom function family (PRF) from A to B) if for all PPT distin-
guishers D the advantage Adv

wprf

F,D (Adv
prf

F,D) is negligible.

3 The DDH-Tree Function Family

Definition 3. The DDH-Tree function family is indexed by values
i = (Q, {αj,b}j∈{1,...,l},b∈{0,1}, xε), where Q is a random k-bit prime s.t. P =
2Q + 1 is also a prime, l is some polynomial in k, the elements αj,b are ran-
dom in Z∗Q, and xε is random in QP (the sub-group of Z∗P of order Q). For

an index i we define a function fi : {0, 1}
≤l → QP , fi(σ) = x

∏m
i=1 αi,σi

ε mod P ,
where σ = (σ1, . . . , σm) ∈ {0, 1}

≤l. We will sometimes use the notation xσ to
mean fi(σ), when i is clear from the context. Note that in particular, we have
fi(ε) = xε.

We would like the function family to output bit-strings, instead of elements in
QP . To this end, given an element y ∈ QP , let byc = min(y, P−y). Consider then
an index i as above except that Q is a (k+ δ(k))-bit prime, where log(k)/δ(k) ∈
o(1). We define the function gi : {0, 1}

≤l → {0, 1}k, gi(σ) = bfi(σ)c mod 2
k.

The DDH-Tree function family is given by the functions gi.

Definition 4. Given P = 2Q + 1 and a random generator g of QP , the DDH
assumption is that the random variable (g, gα mod P, gβ mod P, gαβ mod P),

where α, β
R
← ZQ, is computationally indistinguishable from the random variable

(g, gα mod P, gβ mod P, gγ mod P), where α, β, γ
R
← ZQ.

Theorem 1. Under the DDH assumption, the DDH-Tree function family is
pseudorandom from {0, 1}≤l to {0, 1}k.

Proof: Let i = (Q, {αj,b}j∈{1,...,l},b∈{0,1}, xε) be a random index. Since −1 is
not a square in Z∗P , the map b·c is bijective. Since Q is a (k + δ(k))-bit prime,
for a uniformly random value x ∈ ZQ, the value x mod 2

k is statistically close
to uniform in {0, 1}k. It is therefore enough to prove that the output of fi for
random i cannot be distinguished from uniformly random values from QP . For
this purpose define for j ∈ {1, . . . , l} and b ∈ {0, 1} a function fj,b : QP → QP ,
fj,b(x) = xαj,b mod P and a function gj,b which is uniformly random from QP to
QP . Then for m ∈ {0, . . . , l} let h

m
j,b = fj,b if j ≥ m and let hmj,b = gj,b otherwise.

Finally let hmi (σ) = hml,σl◦· · ·◦h
m
1,σ1

(xε) . Then fi = h0
i and h

l
i is statistically close

to a uniformly random function from {0, 1}≤l to QP . Only statistically close as
collisions will distinguish hli from a uniformly random function: If |σ1| = |σ2|
and hli(σ1) = hli(σ2), then for all suffixes σ, h

l
i(σ1‖σ) = hli(σ2‖σ).

It is therefore enough to prove that h0
i and h

l
i cannot be distinguished, which

can be done by a hybrids argument. Assume namely that there exists m ∈
{1, . . . , l} such that the functions hm−1

i and hmi can be distinguished by a PPT
distinguisher D having black-box access to the functions. We will show that this
contradicts the DDH assumption. For this purpose, assume that we have access

408 J.B. Nielsen

to a black-box o which returns random values of the form (x, fj,0(x), fj,1(x)) if
b = 0 and returns random values of the form (x, gj,0(x), gj,1(x)) if b = 1. By a
simple application of the DDH assumption it can be seen that no PPT algorithm
can guess b with anything but negligible advantage. We reach our contradiction
by using D to guess b. To be able to do this we show how to generate values
{xσ}σ∈{0,1}≤l distributed as those defined by h

m−1+b
i given oracle access to o:

Pick all the values xσ for σ ∈ {0, 1}
≤m−1 as uniformly random values with the

only restriction that they are consistent with random functions, i.e. if |σ1| = |σ2|
and xσ1

= xσ2
, then for all suffixes σ make sure xσ1‖σ = xσ2‖σ. To generate a

value xσ where |σ| = m−1, query o and receive a random evaluation (x, x1, x2),
where x is uniformly random from QP . Then let xσ = x, let xσ‖0 = x1, and let
xσ‖1 = x2. Then generate the remaining values xσ where |σ| > m as done in

hm−1
i and hmi using random exponents. It is straightforward to verify that the
values thus defined are distributed as in hm−1

i if b = 0 and as in hmi if b = 1.
To use D to distinguish, run it, and when it queries on σ ∈ {0, 1}≤l return xσ.

To make the process efficient, the values xσ are generated when needed.

4 The Multiparty Computation Model

We will study our protocol problems in the framework for universally composable
asynchronous multiparty computation from [Can01]. Below we sketch the model.

First the real-life execution of the protocol is defined. Here the protocol π is
modeled by n interactive Turing machines (ITMs) P1, . . . , Pn called the parties of
the protocols. Also present in the execution is an adversary A and an environment
Z modeling the environment in which A is attacking the protocol. The environ-
ment gives inputs to honest parties, receives outputs from honest parties, and
can communication with A at arbitrary points in the execution. Both A and Z
are PPT ITMs.

Second an ideal process is defined. In the ideal process an ideal functionality
F is present to which all the parties have a secure communication channel. The
ideal functionality is an ITM defining the desired input-output behavior of the
protocol. Also present is an ideal adversary S, the environment Z, and n so-called
dummy parties P̃1, . . . , P̃n— all PPT ITMs. The only job of the dummy parties is
to take inputs from the environment and send them to the ideal functionality and
take messages from the ideal functionality and output them to the environment.

The security of the protocol is then defined by requiring that the protocol
emulates the ideal process. We say that the protocol securely realizes the ideal
functionality.

The framework also defines the hybrid models, where the execution proceeds
as in the real-life execution, but where the parties in addition have access to an
ideal functionality. An important property of the framework is that an ideal func-
tionality in a hybrid model can securely be replaced by a sub-protocol securely
realizing that ideal functionality.

Below we add a few more details. For a more elaborate treatment of the
general framework, see [Can01].

A Threshold Pseudorandom Function Construction and Its Applications 409

The environment Z is the driver of the execution. It can either provide a
honest party, Pi or P̃i, with an input or send a message to the adversary. If a
party is given an input, that party is then activated. The party can then, in
the real-life execution, send a message to another party or give an output to
the environment. In the ideal process an activated party just copies its input
to the ideal functionality and the ideal functionality is then activated, sending
messages to the parties and the adversary according to its program. After the
party and/or the ideal functionality stops, the environment is activated again.

If the adversary, A or S, is activated it can do several things. It can corrupt a
honest party, send a message on behalf of a corrupted party, deliver any message
sent from one party to another, or communicate with the environment. After a
corruption the adversary sends and receives messages on behalf of the corrupted
party. We assume a static adversary which corrupts t parties before the execution
of the protocol, and then never corrupts again.

The adversary controls the scheduling of the message delivery. In the real-life
execution the adversary A can see the contents of all message and may decide
which messages should be delivered and when — it can however not change mes-
sages or add messages to a channel. In the ideal process the adversary S cannot
see the contents of the messages as the channels are assumed to be secure. It can
only see that a message has been sent and can then decide when the message
should be delivered. We will assume that the network is non-blocking. This means
that though the adversary is allowed to delay a message for an arbitrary number
of activations, any message is eventually delivered if the adversary is activated
enough times. If the adversary delivers a message to some party, then this party
is activated and the environment resumes control when the party stops.

There is one additional way that the adversary can be activated. An ideal
functionality has the opportunity of calling the adversary. This means that the
ideal functionality sends a value to the adversary, which then computes a value
which is passed back to the ideal functionality. The ideal functionality then
proceeds with its actions. Typically, this mechanism is used for modeling some
adversarially controlled non-determinism of the ideal functionality. When we
specify the functionality for Byzantine agreement, we will use this mechanism
to allow the adversary to decide on the result if the honest parties disagree.

At the beginning of the protocol all entities are given as input the security
parameter k and random bits. Furthermore the environment is given an auxil-
iary input z. The environment is then activated and the execution proceeds as
described above. At some point the environment stops activating parties and
outputs some bit. This bit is taken to be the output of the execution. We use
REALπ,A,Z(k, z) to denote the output of the environment in the real-life execu-
tion and use IDEALF,S,Z(k, z) to denote the output of the environment in the
ideal process.

We are now ready to state the definition of securely realizing an ideal func-
tionality. For this purpose let REALπ,A,Z denote the distribution ensemble
{REALπ,A,Z(k, z)}k∈N ,z∈{0,1}∗ and let IDEALF,S,Z denote the distribution en-
semble {IDEALF,S,Z(k, z)}k∈N ,z∈{0,1}∗ .

410 J.B. Nielsen

Definition 5. We say that π t-securely realizes F if for all real-life adversaries
A, which corrupts at most t parties, there exists an ideal-process adversary S such
that for all environments Z we have that the distribution ensembles IDEALF,S,Z
and REALπ,A,Z are computationally indistinguishable.

The following theorem (here stated informally) is proven in [Can01].

Theorem 2. If π t-securely realizes F in the hybrid model with ideal function-
ality G and ρ t-securely realizes G, then π, with the use of G implemented using
ρ, t-securely implements F in the model without ideal functionality G.

4.1 Some Functionalities

Definition 6. Let V be a PPT algorithm outputting an (n+ 1)-tuple of values.
A V -preprocessing model is a model equipped with an ideal functionality, which

when activated the first time generates (v0, v1, . . . , vn)
R
← V , outputs vi to party

Pi, and outputs v0 to the adversary.

We will use the preprocessing model for distributing keys for various crypto-
graphic primitives prior to running the actual protocols.

Definition 7. A (c, t)-threshold protocol π for function family F is a t-secure
realization of the functionality FF,c described below.

Init On the first activation, the functionality generates f
R
← F and outputs

(init) to all parties.
Evaluate If a party Pi inputs (j, x), we say that the permission to evaluate on

x is given to Pj by Pi. The message (i, j, x) is output to the adversary and
Pj. If at some point a total of c parties have given permission to some party
to evaluate on x, then (x, f(x)) is given to the adversary. If at some point a
total of c parties have given Pj permission to evaluate on x, then (x, f(x))
is given to Pj.

If F is pseudorandom from X to Y we call π a (c, t)-threshold pseudorandom
function from X to Y .

Definition 8. The c-threshold random oracle from X to Y is the ideal function-
ality Fro,c,X,Y = F[X→Y],c for evaluating a random function from X to Y .

The following theorem is an easy exercise in using the definitions.

Theorem 3. A (c, t)-threshold pseudorandom function from X to Y t-securely
realizes the c-threshold random oracle from X to Y .

Definition 9. Let F be a family of trapdoor permutations. A (c, t)-threshold
protocol for F is a protocol t-securely implementing the following functionality
FF,c:

A Threshold Pseudorandom Function Construction and Its Applications 411

Init On the first activation, the functionality generates (f, f−1)
R
← F and out-

puts f to all parties and the adversary.
Invert If a party Pi inputs (invert, j, x), we say that the permission to invert

on x is given to Pj by Pi. The message (invert, i, j, x) is output to the
adversary and Pj . If at some point a total of c parties have given permission
to some party to invert on x, then (invert, f−1(x)) is given to the adversary.
If at some point a total of c parties have given Pj permission to invert on x,
then (invert, f−1(x)) is given to Pj .

Definition 10. The ideal functionality for threshold signatures Ftsig,c is given
by the following description.

Init Let M be the message space. The functionality keeps for each M ∈ M
a set see(M) ⊂ {0, 1, . . . , n}. The interpretation of see(M) = P is that the
parties indexed by P (the adversary is index by 0) see a signature on M .
Initially see(M) = ∅ for all M ∈M.

Sign If a party Pi inputs (sign, j,M), we say that the permission to sign M is
given by Pi to Pj . The message (sign, i, j,M) is output to the adversary and
Pj . If at some point a total of c parties have given some party permission to
sign M , then set see(M) = see(M)∪{0} and output (signature,M) to the
adversary. If at some point a total of c parties have given Pj permission to
sign M , then set see(M) = see(M)∪ {j} and output (signature,M) to Pj .

Send If a party Pi or the adversary (P0) inputs (send, j,M) and i ∈ see(M),
then set see(M) = see(M) ∪ {j} and output (send, i,M) to Pj and the
adversary.

Definition 11. The ideal functionality for Byzantine agreement Fba,t is given
by the following description.

Vote If a party inputs (vote, vid, b), where b ∈ {0, 1}, then (vote, vid, i, b) is
output to the adversary and we say that the party has voted b in voting vid.
The adversary is also allowed to vote.

Decide
The result of voting vid is computed using one of the following rules:

– If n− t parties have voted and t+ 1 of them voted b and the adversary
voted b, then the result is b.

– If n− t honest parties have voted b, then the result is b.
– If n− t honest parties have voted, but do not agree, then the adversary
is called to decide the result.

When the result of voting vid has been decided to be b, then (decide, vid, b)
is output to all parties and the adversary.

Note, that the three rules for decision are consistent. Especially, if n−t honest
parties vote b, then no t+ 1 parties voted 1 − b and therefore the functionality
always terminates with decision b.

412 J.B. Nielsen

5 The Threshold DDH-Tree

We now describe our threshold protocol πc,DDH-Tree for the DDH-Tree function
family.

Key Generation The protocol runs in the preprocessing model for the follow-
ing values.

– For i = 1, . . . , n, a random public key pki for a trapdoor commitment
scheme.

– P = 2Q + 1, where P and Q are random primes and Q is of length
k + δ(k) bits, where log(k)/δ(k) ∈ o(1).

– g, a random generator of QP .
– For j = 1, . . . , l and b = 0, 1:

• αj,b ∈ Z∗Q, a uniformly random element.
• yj,b = gαj,b mod P .
• fj,b(X) ∈ ZQ[X], a uniformly random degree c − 1 polynomial for
which fj,b(0) = αj,b.

• For i = 1, . . . , n:

∗ αj,b,i = fj,b(i).
∗ yj,b,i = gαj,b,i mod P .

– xε ∈ QP , a uniformly random element.

The values ({pki}
n
i=1, Q, g, xε, {yj,b}

l,1
j=1,b=0, {yj,b,i}

l,1,n
j=1,b=0,i=1) are output to

all parties and the adversary, and the values {αj,b,i}
l,1
j=1,b=0 is output to Pi

only.
Evaluation On input (evaluate, σ), where σ ∈ {0, 1}l, the party Pi picks the

largest possible prefix σ′ of σ for which xσ′ is known. Then for j = |σ
′| +

1, . . . , l the party does the following: The party computes the evaluation share
xσ[1..j],i = x

αj,b,i
σ[1..(j−1)] mod P and sends the value to all parties and proves in

zero-knowledge (ZK) to all parties that logxσ[1..(j−1)]
(xσ[1..j],i) = logg(yj,b,i)

(see below for a description of how to do the ZK-proof). When a party has
received evaluation shares and accepted ZK-proofs from all i ∈ I, where

|I| = c, the party computes xσ[1..j] ←
∏

i∈I x
λi,I
σ[1..j],i = x

αj,b
σ[1..(j−1)] mod P ,

where the λi,I are the appropriate Lagrange coefficients. When xσ becomes
known, output bxσc mod 2

k.
ZK-Proofs Assume that Pi knows α ∈ ZQ and has sent g, h,A = gα, B = hα

to Pj , where g and h are generators of QP , and wants to prove in ZK that
logg(A) = logh(B). This is done as follows.

Commit Message Pi computes a ← gβ mod P and b ← hβ mod P for
uniformly random β ∈ ZQ, and c← commitpki((a, b), rc) for appropriate
random bits rc for the commitment scheme, and sends (commit, c) to Pj .

Challenge Pj generates e
R
← ZQ and sends e to Pi.

Response Pi computes z ← αe+ β mod Q and sends (a, b, rc, z) to Pj .
Check Pj checks that c = commitpki((a, b), rc), A

ea = gz mod P , and
Beb = hz mod P and if so, accepts the proof.

A Threshold Pseudorandom Function Construction and Its Applications 413

Theorem 4. For (c, t) where 0 ≤ t < c ≤ n − t, the protocol πc,DDH-Tree is a
(c, t)-threshold pseudorandom function from {0, 1}l to {0, 1}k.

Proof: In [NPR99] Naor, Pinkas and Reingold described a threshold protocol
for the weak pseudorandom function x 7→ xα mod P and analysed it for the
case c = t + 1. Subsequently in [CKS00] Cachin, Kursawe and Shoup made a
generalization of the proof to handle parameters where 0 ≤ t < c ≤ n − t.
Our protocol for computing x

αj,b
σ[1..(j−1)] from xσ[1..(j−1)] is exactly this protocol,

except that we use interactive zero-knowledge proofs, and as detailed below the
techniques used in [NPR99,CKS00] generalize straightforwardly to prove our
protocol secure. Note, that the theorem specifies input domain {0, 1}l, and not
{0, 1}≤l. This is to make it secure to reveal fi(σ

′) for all prefixes σ′ of σ when we
compute fi(σ). The only difference between our way of computing xσ from xσ′
and the protocol used in [NPR99,CKS00] is that we use interactive ZK-proofs.
Here we describe how to generalize the analysis to handle this. We show how to
simulate the ZK-protocol to an adversary A while running as an ideal adversary
in the ideal process. Say that Pi is giving a proof to Pj . There are two cases:

Assume first that Pi is honest and we as an ideal adversary must give a
proof for (g,A, h,B) that logh(B) = logg(A) mod P . The simulators used in
[NPR99,CKS00] is such that a honest Pi never has to give such a proof without
it actually being true. However, the witness α = logg(A) = logh(B) mod P is not
always known, so the simulator cannot just run the protocol. We deal with this
as follows: As the commit message c we send a trapdoor commitment, which can

be opened arbitrarily. When we receive e we then pick z
R
← ZQ and compute a←

gzA−e mod P and b← hzB−e mod P . Using the trapdoor of the commitment
scheme, we then construct random bits rc such that c = commitpki((a, b), rc) and
send (a, b, rc, z) to Pj . This conversation is distributed exactly as in the protocol.

Assume then that Pi is corrupted. We can then simply run the protocol,
as the code of all other parties than Pi is trivial. All that we have to check is
that when we accept (g,A, h,B), then indeed logh(B) = logg(A) mod P . That
this is the case, except with exponentially small probability, is a well-known
result[CP92].

The theorem specifies input domain {0, 1}l. If however the oracle is evaluated
on consecutive values ε, 0, 1, 00, 01, 10, 11, 000, . . ., or more generally, if it is never
evaluated on a prefix of a previous input, then the input domain {0, 1}≤l would
be secure. In that case the loop in Evaluation should just be repeated for
j = |σ′| + 1, . . . , |σ|. For consecutive values the worst-case round complexity
would be 3 and the worst-case communication complexity would be about 3n2k
bits.

If the oracle is evaluated on arbitrary values, then an extra overhead of a
factor l will be added. If no bound on the length of inputs is known, or to keep
l as low as possible, we can use a family of collision resistant hash-functions:
If F : {0, 1}l → {0, 1}m is a pseudorandom function and H : {0, 1}∗ → {0, 1}l

is a collision resistant hash-function, then F ◦H : {0, 1}∗ → {0, 1}m is again a
pseudorandom function, which we can distribute by first hashing the input value
locally and then running the threshold pseudorandom function on the hash-value.

414 J.B. Nielsen

In practice a hash-function with output length at least 160 bits would probably
by recommended, and so the round complexity would be 480.

Since the time for one round of network communication probably dominates
the time to access even a large database, some of this overhead can by removed
by preprocessing: Consider the 2m key values {αi,b}i=j,...,j+m−1,b=0,1. If instead
of sharing these values we share the 2m values {αj,σ =

∏m
i=1 αi+j−1,σi mod

Q}σ∈{0,1}m , then the computation of x
∏l
j=1 αj,σi mod P could be speed up by a

factor m. By setting m = 20 the round complexity could be brought down to
27. The price is a key of about 1Gb for k = 1024.

6 An RSA and DDH Based Threshold Signature Scheme

In this section we construct a threshold signature protocol πtsig,c secure rela-
tive to the DDH and RSA assumptions. We will describe the protocol assuming
access to a random oracle and an oracle for inverting the RSA function. Us-
ing the modular composition theorem, the random oracle can be replaced with
our threshold pseudorandom function protocol and the oracle for RSA can be
replaced with the protocol given by the following theorem.

Theorem 5. For the RSA function family with a modulus that is a product of
two strong primes and for (c, t), where n > 3t and t < c ≤ n − t, there exists
a statically secure (under the RSA assumption) (c, t)-threshold protocol running
in the preprocessing model.

Proof: In [Sho00] exactly such a protocol is described, which is secure in the
model that we consider here, i.e. asynchronous communication and a static ad-
versary. The protocol uses the random oracle model to get non-interactive proofs
of equality of discrete logarithms, but we can dispense of the random oracle by
doing interactive zero-knowledge proofs.

The round complexity of the protocol from [Sho00], using interactive zero-
knowledge proofs, is 3, and the communication complexity is about 3n2k bits.

Our threshold signature protocol πtsig,c is given by the following description.

Oracles The protocol runs in the hybrid-model with access to an (n, c)-threshold
trapdoor permutation functionality FF,c and a c-threshold random oracle
fromM to {0, 1}k.
We denote the value output by the random oracle on input M by H(M).

Sign

1. If a party Pi gets input (sign, j,M), then Pi inputs (evaluate, i,M) to
the random oracle and sends a message to all other parties instructing
them to do the same.

2. If the party later sees the output (evaluate,M,H(M)) from the random
oracle, then the party inputs (invert, j,H(M)) to FF,c.

3. If a party have received (evaluate,M,H(M)) from the random oracle
and (invert, f−1(H(M))) from FF,c, then the party outputs
(signature,M).

A Threshold Pseudorandom Function Construction and Its Applications 415

Send

1. If a party Pi gets input (send, j,M) and receives (evaluate,M,H(M))
from the random oracle and receives (invert, f−1(H(M))) from FF,c,
then Pi sends the message (send,M, f−1(H(M))) to Pj .

2. If a party Pj receives (send,M, f−1(H(M))) from party Pi and re-
ceives (evaluate,M,H(M)) from the random oracle, then Pj outputs
(send, i,M).

Theorem 6. For c < n− t, the protocol πtsig,c t-securely realizes the function-
ality Ftsig,c.

Proof (sketch): We give a slightly informal proof of the theorem, by arguing
correctness (if more than c honest parties give a honest Pj permission to sign
M , then Pj will eventually output (signature,M)) and non-forgeability (if at
most c honest parties give any other party permission to signM , then no honest
party will ever output (signature,M) or (send, i,M)). Constructing a formal
proof by formulating the proof as a simulator is an easy task and is left to the
reader.
Correctness: If more than c honest parties give Pj permission to sign M , then
because of the non-blocking assumption all these parties will eventually receive
H(M) and give Pj permission to invert on H(M). Because of the non-blocking
assumption Pj will eventually receive H(M) and f−1(H(M)) and will output
(signature,M).
Non-forgeability: If at most c honest parties give any other party permission to
sign M , then F will never output f−1(H(M)) and especially no honest party
will ever output (signature,M). For a honest party to output (send, i,M) the
party then has to receive the value f−1(H(M)) from (corrupted) Pi. Since F
did not output f−1(H(M)) and H(M) is uniformly random, this requires the
adversary to break the one-wayness of the trapdoor permutation family F .

To sign a message, one call to the oracle functionality and one call to the
threshold permutation functionality is used. Using the implementations of The-
orems 4 and 5 instead of the ideal functionalities, the round complexity is 6
and the communication complexity is about 6n2k bits, if consecutive values are
signed. The overhead over the protocol in [Sho00] is a factor 6. If arbitrary values
are signed, the overhead will be in the order 3l+3, where l is the output-length
of the hash-function used for hashing the messages.

7 Byzantine Agreement

The protocol πba,t is given by the following description.

Oracles The protocol runs in the hybrid-model with access to an (n − t, t)-
threshold signature functionality and a (t+1, t)-threshold signature function-
ality. By input (signn−t,M) we mean input (sign, j,M) to the (n − t, t)-
threshold signature functionality for all j and we use input (signt+1,M)

416 J.B. Nielsen

similarly. The protocol also has access to a (n− t, t)-threshold random ora-
cle. By flip the coin Cr we mean input (evaluate, r) to the random oracle
and take Cr to be the first bit of the output.

Decide If a party receives a signature on (main, r, o) for some r ∈ N and
some o ∈ {0, 1}, then it sends it to all parties and terminates with output
(decide, vid, o). In the remaining description we drop the vote id vid.

Initial Round. On input (vote, bi), party Pi follows the code described below.
Initialize the round counter r ← 0.
Input (signt+1, (pre, 0, bi)) and wait for 2t + 1 parties to do the same,
i.e. wait until the (t + 1, t)-threshold signature functionality has output
(sign, j, (pre, 0, bj)) for bj ∈ {0, 1} for 2t+ 1 different j.
Wait for a signature on some (pre, 0, b) and input (signn−t, (main, 0, b)).
Wait for n− t parties to do the same.

Flip coin. Let r = r + 1 and flip coin Cr.
Pre-vote.

1. If for some b ∈ {0, 1} a signature on (pre, r − 1, b) is known, then send
the signature to all parties and input (signn−t, (pre, r, b)).

2. If a signature on (main, r − 1,⊥) is known, then send the signature to
all parties and input (signn−t, (pre, r, Cr)).

Say that a party Pj has pre-voted when values are received verifying that the
party did one of the above.

Pre-collect Wait until n−t parties have pre-voted. This either gives a signature
on some (pre, r, b) (if all pre-voted in the same way or b = Cr) or (otherwise)
gives a signature on (pre, r − 1, 1− Cr).

Main-vote.

1. If a signature on (pre, r, b) is known, then send the signature to all parties
and input (signn−t, (main, r, b)).

2. If a signature on (pre, r−1, 1−Cr) is known, input (signn−t, (main, r,⊥)).

Say that a party Pj has main-voted when values are received verifying that
he did one of the above.

Main-collect Wait until n − t parties have main-voted. This either gives a
signature on (main, r,⊥) or gives a signature on some (pre, r, b).
Go to Flip coin.

Theorem 7. For t where n > 3t the protocol πba,t t-securely realizes Fba,t in
the preprocessing model.

Proof (sketch):We give an informal proof that the ideal functionality and the
protocol behaves consistently. A full proof can be constructed along the lines of
the proof in [CKS00].

If at least n − t honest parties agree on the value b, then at most t parties
will allow to sign (pre, 0, 1 − b) and thus it will not be signed. Therefore all
honest parties that come through the initial round have seen n− t parties send
(pre, 0, b) and input (signn−t, (main, 0, b)), and will thus terminate with decision
b. The non-blocking assumption guarantees that all honest parties terminate.
This justifies the second decision rule of the ideal BA functionality. The same

A Threshold Pseudorandom Function Construction and Its Applications 417

line of reasoning shows that if less than t+1 parties voted 1− b, then all parties
that terminate, do so after the initial round with output b. However, if less than
n − t honest parties participates, termination is not guaranteed. This justifies
the first decision rule.

To justify the third decision rule, we must argue that if at least n− t honest
parties participate, then all honest parties terminate, and agree. For termination,
call a round randomizing if when party number n − t contributed to flipping
Cr, for one of the values b ∈ {0, 1} it was impossible for (pre, r − 1, b) to be
signed. We need the fact that out of two consecutive rounds, at least one is
randomizing. To see this assume that exactly n − t parties have contributed to
Cr and round r is not randomizing. If any of the contributors had seen a signature
on (pre, r − 1, b), then n − t parties allowed to sign it and thus at least n − 2t
honest parties allowed to sign it. This means that at most 2t parties would allow
to signed (pre, r−1, 1−b), which will thus never be signed. So, since round r is not
randomizing, no party saw a signature on any (pre, r−1, b). So, the n−2t honest
of them are going to input (signn−t, (pre, r, Cr)), and thus (pre, r, 1−Cr)) will
never be signed, which proves that round r−1 is randomizing. Assume then that
n− t honest parties have received some input. Since at no point more than n− t
parties are waited for, if none of them terminates, arbitrary many rounds will be
executed. This means that arbitrary many randomizing rounds are executed, a
contradiction as there is a probability of at least 1

2 that the protocol terminates
after a randomizing round (namely if Cr = 1 − b, where (pre, r − 1, b) is never
signed). We then argue agreement. For any party to terminate there must be
a least r such that n − t parties allowed to sign (main, r, b) for some b. This
means that (main, r,⊥) will never be signed and that (pre, r, b) must have been
signed. This means that any honest party that goes throughMain-collect sees
n − t parties go through case one in Main-vote and receives a signature on
(main, r, b). The parties that do not get through Main-collect will receive a
copy of (main, r, b) sent be a terminating party.

Finally, there is an implicit fourth decision rule: If less that n− t− t′ honest
parties, where t′ is the number of corrupted parties, participate, none of the other
rules apply no matter what the adversary does, and thus the ideal functionality
will dead-lock. However, in the protocol less than n− t parties will participate,
so no (main, r, b) can get signed, so the protocol behaves accordingly.

If the honest parties do not terminate after the initial round (which costs the
signing of two messages), they terminate after an average of four iterations of the
main loop as every second round is randomizing. One iteration costs the signing
of two messages and one random oracle call. Therefore, the expected round
complexity will be at most 72 and the expected communication complexity will
be about 72n2k bits. These complexities are about a factor 5 larger than for the
protocol in [CKS00].

8 Acknowledgments

I’m grateful to Ivan Damg̊ard for many stimulating conversations.

418 J.B. Nielsen

References

[BCF00] Ernest F. Brickell, Giovanni Di Crescenzo, and Yair Frankel. Sharing block
ciphers. In Ed Dawson, Andrew Clark, and Colin Boyd, editors, Information
Security and Privacy, 5th Australasian Conference, ACISP 2000, Brisbane,
Australia, July 10-12, 2000, Proceedings, pages 457–470. Springer, 2000.

[BDJR97] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treat-
ment of symmetric encryption. In 38th Annual Symposium on Foundations
of Computer Science [IEE97].

[Can01] Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In 42th Annual Symposium on Foundations of Computer
Science. IEEE, 2001.

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle method-
ology, revisited (preliminary version). In Proceedings of the Thirtieth Annual
ACM Symposium on the Theory of Computing, pages 209–218, Dallas, TX,
USA, 24–26 May 1998.

[CHH00] Ran Canetti, Shai Halevi, and Amir Herzberg. Maintaining authenticated
communication in the presence of break-ins. Journal of Cryptology, 13(1):61–
106, winter 2000.

[CKS00] Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in
constantinople: Practical asynchronous byzantine agreement using cryptog-
raphy. In Proceedings of the 19th ACM Symposium on Principles of Dis-
tributed Computing (PODC 2000), pages 123–132. ACM, July 2000.

[CP92] D. Chaum and T. P. Pedersen. Wallet databases with observers. In Ernest F.
Brickell, editor, Advances in Cryptology - Crypto ’92, pages 89–105, Berlin,
1992. Springer-Verlag. Lecture Notes in Computer Science Volume 740.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct
random functions. Journal of the ACM, 33(4):792–807, 1986.

[Gol01] Oded Goldreich. The Foundations of Cryptography, volume 1. Cambridge
University Press, 2001.

[IEE97] IEEE. 38th Annual Symposium on Foundations of Computer Science, Miami
Beach, FL, 19–22 October 1997.

[MS95] Silvio Micali and Ray Sidney. A simple method for generating and sharing
pseudo-random functions, with applications to clipper-like escrow systems.
In Don Coppersmith, editor, Advances in Cryptology - Crypto ’95, pages
185–196, Berlin, 1995. Springer-Verlag. Lecture Notes in Computer Science
Volume 963.

[Nie02] Jesper B. Nielsen. Separating random oracle proofs from complexity theo-
retic proofs: the non-committing encryption case. In Advances in Cryptology
- Crypto ’02, 2002.

[NPR99] Moni Naor, Benny Pinkas, and Omer Reingold. Distributed pseudo-random
functions and KDCs. In Jacques Stern, editor, Advances in Cryptology -
EuroCrypt ’99, pages 327–346, Berlin, 1999. Springer-Verlag. Lecture Notes
in Computer Science Volume 1592.

[NR97] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient
pseudo-random functions (extended abstract). In 38th Annual Symposium
on Foundations of Computer Science [IEE97], pages 458–467.

[Sho00] Victor Shoup. Practical threshold signatures. In Bart Preneel, editor,
Advances in Cryptology - EuroCrypt 2000, pages 207–220, Berlin, 2000.
Springer-Verlag. Lecture Notes in Computer Science Volume 1807.

