
Separating Random Oracle Proofs from

Complexity Theoretic Proofs: The

Non-committing Encryption Case

Jesper Buus Nielsen?

BRICS
?? Department of Computer Science

University of Aarhus
Ny Munkegade

DK-8000 Arhus C, Denmark

Abstract. We show that there exists a natural protocol problem which
has a simple solution in the random-oracle (RO) model and which has
no solution in the complexity-theoretic (CT) model, namely the problem
of constructing a non-interactive communication protocol secure against
adaptive adversaries a.k.a. non-interactive non-committing encryption.
This separation between the models is due to the so-called programability
of the random oracle. We show this by providing a formulation of the RO
model in which the oracle is not programmable, and showing that in this
model, there does not exist non-interactive non-committing encryption.

1 Introduction

Before describing our separation result and the non-programmable random-
oracle (NPRO) model, we introduce non-committing encryption (NCE) and the
non-interactive NCE (NINCE) problem.

Non-committing Encryption. One way of constructing a secure protocol for the
cryptographic model is to take a protocol which is secure in the information
theoretical model, where secure channels are assumed, and then compile this
protocol for the cryptographic model by adding encryption to the channels. A
motivation for this approach has been, that only statically secure general multi-
party computation (MPC) protocols have been constructed for the cryptographic
model directly, whereas adaptively secure protocols for the information theoret-
ical model were published already in [BGW88,CCD88]. The goal is therefore to
replace the secure channels of the information theoretical model by open chan-
nels using an adaptively secure communication protocol a.k.a. NCE.

Before we can define NCE more formally we have to sketch our MPC model.
We use the model of asynchronous MPC from [Can01]. The security of a protocol

? buus@brics.dk.
?? Basic Research in Computer Science,
Centre of the Danish National Research Foundation.

112 J.B. Nielsen

is defined by requiring that the real-life execution of the protocol can be simu-
lated efficiently given only access to an ideal-world abstraction of the protocol
problem that the protocol is to solve. The real-life execution is controlled by an
adversary A (a probabilistic polynomial time (PPT) interactive Turing machine
(ITM)) which can see all communication between the parties and schedules mes-
sage delivery. By PPT we mean PPT in the security parameter k, which is given
to all entities in the system. The adversary can furthermore adaptively corrupt
parties to learn their current state (or entire execution history if we do not
model erasures) and start controlling the corrupted party. The execution takes
place in context of an environment Z (also a PPT ITM) which provides inputs
to and receives outputs from the parties. The environment and adversary can
communicate during the execution. We denote the output of the environment
after such an execution by REALπ,A,Z , where π is the protocol. This execu-
tion is compared to an ideal-world execution where the parties have access to
an ideal functionality with the desired input-output behavior of the protocol.
Message delivery is controlled by an ideal-world adversary S which can again
corrupt parties and learn their internal state (which is just the inputs from the
environment), and the protocol is executed in context of an environment Z with
the same role as in the real-life model. We denote the output of the environment
after such an execution by IDEALF,S,Z , where F is a PPT ITM specifying the
desired input-output behavior of the protocol problem to be solved. These ex-
ecutions are then compared by saying that for each real-life adversary A there
should exist an ideal-world adversary S such that for all environments Z the
executions REALπ,A,Z and IDEALF,S,Z are computationally indistinguishable,
i.e. the environment cannot tell whether its observing a real-life execution or the
simulator S running in the ideal-world. The role of S is similar to the role of
the simulator in the definition of zero-knowledge. The role of the environment is
that of an distinguisher between the real-life execution REALπ,A,Z and the sim-
ulation IDEALF,S,Z . An important part of the model is that the environment
receives the identity of all corrupted parties. This guarantees that the simula-
tor does not accomplish its goal by corrupting other parties than the real-life
adversary.

For the NCE problem the ideal functionality Fnce works as follows: On input
(mid, j,m) from Pi deliver (mid, i,m) to Pj , and reveal (mid, i, j, |m|) to the
adversary. Here mid is a message identifier, m is the message, and |m| is the
length of m. For the specific task of secure communication the above definition
of security basically says that whatever a real-life adversary can obtain from
attacking the protocol an ideal adversary S could obtain (simulate) given just
the length of the messages sent.

If we let each party Pi have a private key for a semantically secure public-
key encryption scheme, where the public key pki is known by all other parties,
and if we encrypt all communication to Pi under pki (including in the messages
the identity of the sender to protect against copying), then we will have a stat-
ically secure implementation. However, no encryption scheme exists for which
this protocol is adaptively secure. This follows from a general result that no non-

Separating Random Oracle Proofs from Complexity Theoretic Proofs 113

interactive communication protocol is adaptively secure; Throughout the paper
we will let non-interactive communication protocol denote a communication pro-
tocol with the property that after a pre-processing phase, which might involve
interaction (e.g. the receiver sending a public key to the sender), the sender
can send an unbounded number of bits to the receiver without there being any
communication from the receiver to the sender.

We show that no non-interactive communication protocol can be adaptively
secure in the asynchronous model. Assume for this sake that we have an adap-
tively secure communication protocol for the asynchronous model. Consider two
parties PR and PS acting as receiver resp. sender. Consider the environment Z
which activates PS with an arbitrary message m of length lm(k), where lm(k)
is some polynomial. Consider the adversary A that corrupts no party but just
waits for PR and PS to finish the preprocessing phase and for PS to send a ci-
phertext c to PR. The adversary outputs c to the environment and then corrupts
PR before c arrives, and the adversary outputs to the environment the value sk
of the internal state of PR. By the security of the encryption scheme we have
that if the environment runs the code of PR from internal state sk and with
input c, then c will decrypt to m, except possibly with negligible probability.
Now, by the definition of security there should exist a simulator S such that
the simulator executed in the ideal-world execution with the same environment
Z produces an output indistinguishable from that of the adversary A. But in
the ideal-world abstraction of secure communication given by Fnce, the simulator
does not seem during the execution as long as both parties are uncorrupted, and
the simulator must therefore generate c given just |m|. Then on the corruption
of PR, the simulator sees m and computes sk to give to the environment. Since
the definition of security requires that the environment cannot tell the difference
between the real-life execution and the simulation it follows that running PR
from sk on input c will result in output m except with negligible probability,
in particular with probability more than 1

2 . Since no internal state can make c
decrypt to two different values, both with more than probability 1

2 , there exists
an injective map from messages m to internal states skc,m which make c decrypt
to m. Intuitively this means that the length of sk must be at least lm. If the
protocol can send an unbounded number of bits, this holds for any polynomial
lm and thus the length of sk must be superpolynomial contradicting that PR is
a PPT ITM.

The NCE problem was first solved by Beaver and Haber in [BH92]. In their
protocol PR sends to PS the public key pk. Then PS generates a uniformly
random message p and sends c = Epk(p) to PR. Then PR computes p = Dsk(c)
and erases everything except p. Whenm later becomes known to PR he computes
c′ = p ⊕ m, where ⊕ denotes bitwise xor, and sends c′ to PR who can then
compute m = p⊕ c′. Since at no point PR knows both sk and the encryption c

′

ofm, the attacker cannot obtain both, which preempts the problem that for fixed
c′ there should be an injective map from sk to messages m. Since sk is deleted
a new key-pair must be generated each time PS has sent a total of |p| bits. If
further more synchronization between the parties are assumed, the protocol can

114 J.B. Nielsen

be made non-interactive: Set aside a prefix of p to use as a seed s for a pseudo-
random generator, and each time p is used up, expand s to obtain a new p as
long as the original p and delete s. This method is then iterated each time p is
used up. In this way no more than |p| bits are communicated from PS to PR
before PR deletes its internal state and creates a new one.

The protocol from [BH92] depends essentially on the use of erasure. However,
in many settings trusting the parties to be able to reliably erase parts of their
state might be unrealistic, due to e.g. physical limitations on erasure and weak
operating systems. The first solution to the NCE problem in the non-erasure
model is presented in [CFGN96] by Canetti et al. The scheme is however ineffi-
cient: It can encrypt 1 bit using a public key of Θ(k2) bits. Later Beaver[Bea97]
and Damg̊ard and Nielsen[DN00] proposed more efficient schemes communicat-
ing 1 plaintext bit using Θ(k) bits of communication. These protocols are all
three-round protocols.

The Random-Oracle Model. The idea behind the random-oracle (RO) model is
that by modeling primitives as DES, MD5 or SHA using the strong assumption
that they (properly used/modified) behave like ROs, one can build efficient and
secure protocols based on these primitives. The model has been used to argue
the security of a number of constructions. Examples are the OAEP encryption
mode for RSA[BR95,Sho01] and the Fiat-Shamir heuristic[FS86].

We define the RO model to be the real-life execution model described above
where additionally the parties and the adversary has access to a uniformly ran-
dom function {0, 1}∗ → {0, 1}k. This can be modeled within the framework in
[Can01] using a hybrid model. A hybrid model is the real-life model extended
with an ideal functionality F (also called a trusted party) to which all par-
ties have a secure channel. The calls to F works as in the ideal-world. We use
HYBFπ,A,Z to denote an execution of protocol π in the hybrid model with trusted
party F , and say that π realizes G in the F-hybrid model if for each hybrid ad-
versary A there exist an ideal-world adversary S such that for all environments
Z the executions HYBFπ,A,Z and IDEALG,S,Z are computationally indistinguish-
able. We let the RO model by the hybrid model with the trusted party Fro work-
ing as follows: On input x ∈ {0, 1}∗ from any of the parties or the adversary it
outputs a uniformly random value r ∈ {0, 1}k to the calling party; If queried on
the same x twice, the same r is returned. Thus Fro defines a uniformly random
function H : {0, 1}∗ → {0, 1}k.

Possibility of NINCE in the RO model. We prove that if trapdoor permutations
exists, then NINCE exists in the RO model. Our protocol is reminiscent of a con-
struction of chosen ciphertext secure encryption in [BR93]. In the pre-processing
phase the receiver PR sends a description f of a trapdoor permutation to the
sender PS . Each message from PS to PR is transmitted as (f(x), H(x) ⊕ m),
where x is a uniformly random element in the domain of f and H is the uni-
formly random function defined by Fro. To prove the scheme secure we construct
a simulator S. The simulator works by running internally a copy of the protocol
and a copy of A. It tries to make the internal protocol consistent with the values

Separating Random Oracle Proofs from Complexity Theoretic Proofs 115

of m input to the ideal-world execution (knowing only |m|) and lets A attack the
simulated execution and lets A do the interaction with the environment Z. The
simulator S simulates in such a way that A thinks that it observes a real-life
execution, and such that in particular its interaction with the environment is
distributed computationally indistinguishable from that observed by Z in the
real-life execution, which in turn makes the output of Z computationally indis-
tinguishable in the two worlds. The simulator S proceeds as follows: Distribute
the public keys as in the real-life. Note that A and the parties of the protocol
might request to evaluate the RO H on a value x, as they expect to run in
the RO model. To simulate the RO, S returns a uniformly random element r;
If queried on the same x twice, it returns the same r. To simulate the sending
of m the simulator S generates random x and sends (f(x), H(x) ⊕ 0l), where
l is the length of m and 0l is the all-zero string of length l. If the simulated
oracle H was not defined on x the simulator sets it to be a uniformly random
element r as above. Assume that after simulating the sending of an arbitrary
number of messages A corrupts PR. The simulator then corrupts PR in the ideal
evaluation, and for each (f(x), H(x) ⊕ 0l) sent in the simulation it receives the
real value m which should have been sent and must come up with an internal
state of PR consistent with m. Assume that the simulator defined H(x) = r,
i.e. that (f(x), r) was the message sent. The simulator then simulates by sim-
ply claiming that H(x) = m ⊕ r. This is a perfect simulation as we get that
(f(x), r) = (f(x), (r ⊕ m) ⊕ m) = (f(x), H(x) ⊕ m). However, there are two
ways this simulation can fail. First of all, if the same x was used twice the sim-
ulator might be in the situation that it needs to define H(x) to both r ⊕ m1

and r ⊕m2 for m1 6= m2. However this happens with negligible probability as
the x’s are chosen uniformly at random by the simulator. Second, it might be
that A queried H on x and therefore knows that H(x) was defined to r, which
commits the simulator to this choice and makes the simulation fail. However, if
the A queried H on x it intuitively had to invert the trapdoor function f on a
uniformly random element: A returned x given only f(x). This would contradict
the hardness of inverting f on random elements, and thus except with negligible
probability the simulation goes through.

Impossibility of NINCE in the CT and NPRO Model. The simulator sketched
above uses essentially that it is possible to program the RO, by defining the
value of H(x) to be some value appropriately chosen by the simulator: It sets
H(x) to r⊕m after H “should” have been defined on x. We can prove that the
use of the programability of the RO is necessary for the simulator. We start by
formalizing the NPRO model.

The NPRO model is the real-life model, where all ITMs are extended to be
ITMs with oracle access to a random oracle. An ITM M with oracle access is an
ITM which in addition to the usual tapes and states has an oracle query tape,
an oracle input tape, and a classification of some of its states as oracle query
states. We write M (·) to denote an ITM with oracle access. We write MO to
denote running M with oracle O. If M enters an oracle query state, then the
contents of the oracle query tape is given as input to O, and the output of O

116 J.B. Nielsen

is written on the oracle input tape of M . Now let O denote an ITM defining a
uniformly random function H : {0, 1}∗ → {0, 1}k. The NPRO model defines the
two distribution ensembles REALπO,AO,ZO and IDEALFO,SO,ZO and as above

these are compared by requiring that for each real-life adversary A(·) there exists
an ideal-world adversary S(·) such that for all environments Z(·) the executions
REALπO,AO,ZO and IDEALFO,SO,ZO are computationally indistinguishable.

The main difference between the RO model and the NPRO model is that in
the NPRO model also the environment has access to the RO O. Intuitively this
allows the environment to verify whether the values that it is shown is consistent
with the RO that it has access to, which basically makes it impossible for S to
program the random oracle according to its desires.

The impossibility of NINCE in the NPRO model follows the proof for the
CT model sketched in the introduction to NCE. Because Z has access to the
same RO as P

(·)
R it can run POR from internal state sk with input c and it follows

that there exists an injective mapping from the possible messages to the fixed set

of possible internal states of P
(·)
R after the pre-processing phase. This argument

fails in the programmable RO model as the environment does not have access
to O and thus cannot run POR .

To obtain our separation it would be enough to prove NINCE impossible in
the asynchronous model without erasure. However, to strengthen the separation
result we show that NINCE is impossible in a number of weaker models too. We
show the result for the asynchronous model with erasure, the synchronous model
without erasure, and for the synchronous model with erasure we show that no
NCE protocol can communicate an unbounded number of bits per round; By the
result from [BH92] mentioned above we cannot hope to prove a stronger result
than this for the synchronous model with erasure.

Previous Separation Results. Other examples of constructions secure in the RO
model and not secure in the CT model were known prior to our work. Most
prominently, in [CGH98] Canetti, Goldreich and Halevi construct an encryption
scheme which is secure in the RO model, but is not secure in the CT model
no matter the instantiation of the RO. The scheme is constructed as to try to
“detect” whether it is in the RO model or not, and then reveal the secret key if
it is not in the RO model. A strength of the result from [CGH98] is that it is
the semantic security of the encryption scheme that is violated in the CT model,
whereas it in our example it is the less standard non-committing property that
is violated. Their result thus establishes that even standard security properties
do not carry over from the RO model to the CT model. Another strength of the
result from [CGH98] is that their encryption scheme can be proven secure in the
NPRO model, as they do not use the programability of the RO. This means that
their result separates the CT model and the NPRO model.1

Another well-known separation result is that the Fiat-Shamir[FS86] method-
ology can be proven secure in the RO model, and that not all non-interactive
zero-knowledge proofs obtained by the methodology using a fixed function for

1 Using CS proofs for the NPRO model.

Separating Random Oracle Proofs from Complexity Theoretic Proofs 117

implementing RO cannot be black-box zero-knowledge in the CT model unless
BPP ⊂ NP .[GK90] This is however not a separation of the strength of the
models: When the RO is implemented by a random function h drawn from some
function family, say, by a trusted party, and handed to both the prover and the
verifier, then f is a de facto common random string and the existence of one-
round zero-knowledge proofs is no longer ruled out[BFM88]. It does in particular
not follow that there does not exist in some preprocessing model some kind of
non-interactive instantiation of the RO which makes the methodology secure.

Discussion and Future Work. We have shown that the programability of the RO
in proofs in the RO model is a feature of the model which is so strong that there
exist natural protocol problems which are trivially solvable in the RO model,
but have no solution in a model without the programability.

We point out that the NPRO model is formulated in this paper primarily to
pin-point a property of the RO model which allows for our separation result. It is
not meant as a suggestion for ’the’ formulation of a weaker RO model. Though it
could be interesting to have a weaker formulation of the RO model, as to increase
the trust that security in the model would imply a certain level of ’heuristic
security’ in the real world, our formulation has two shortcomings for this purpose:
First of all, our formulation of the NPRO model only addresses security defined
by simulation. Second, it is possibly to define even weaker versions of the RO
model than the NPRO model and it is not clear which would be ’the appropriate’
weak formulation.

As for the first shortcoming, the definition can to some extend be applied
to different types of definitions of security as semantic security of encryption
schemes and non-forgeability of signature schemes by giving an equivalent defi-
nition of the security notion in the MPC framework. As an example we describe
how to define NPRO semantic security of public-key encryption: Let E be a
public-key cryptosystem, and let πE be the following protocol for two parties
PS and PR: First PR generates a random key pair (pk, sk) and sends pk to PS .
Each time PS receives input m from the environment, it computes c = Epk(m)
and sends c to PR who computes and outputs to the environment the value
m′ = Dsk(c). It can be proven that a public-key cryptosystem E is semantic
secure in the CT model (resp. in the RO model of [BR93]) iff πE is statically
secure in the CT model (resp. in the RO model). Generalizing this, we can say
that a public-key cryptosystem E is semantic secure in the NPRO model iff πE
is statically secure in the NPRO model.

As for existence of even weaker RO models, note that another strong prop-
erty of the RO model which was used by our simulator was that the simulator
learns on which points the simulated adversary evaluates the RO. This was what
allowed us to make the reduction to the one-wayness of the trapdoor permuta-
tion f , as the simulator could obtain x from f(x) if the adversary could evaluate
H on x given f(x). We call this property evaluation point knowledge (EPK). One
interpretation of what is modeled by EPK is that it isn’t possible to learn the
value of H(x) without knowing all of x. The fact that the simulator learns all
points on which the adversary evaluates the oracle can then be viewed as a

118 J.B. Nielsen

knowledge extraction of the adversary’s EPK. The NPRO model still has the
EPK property. We could formulate a RO model without EPK by requiring that
S must simulate given only oracle access to AO and O. However, we find that
this is far from a satisfactory formulation of the model, as it has the serious
restriction that as it only applies to black-box proofs.

We find giving a simple and general formulating of the NPRO model and a
RO model without EPK an interesting open problem.

The Rest of the Paper. The purpose of the rest of the paper is to give a formal-
ization of the NPRO model and the separation between the RO and the NPRO
model.

2 Trapdoor Permutations

Definition 1 (Collection of trapdoor permutations). We call a tuple
(K, F,G,X) a collection of trapdoor permutations with security parameter k, if
K is an infinite index set, F = {fpk : Dpk → Dpk}pk∈K is a set of permuta-
tions, the key/trapdoor-generator G and the domain-generator X are PPT (in
k) algorithms, and the following hold:

Easy to generate and compute G generates pairs of keys and trapdoors,
(pk, sk) ← G(k), where pk ∈ K ∩ {0, 1}p(k) for some fixed polynomial p(k).
Furthermore, there is a polynomial time algorithm which on input pk and
x ∈ Dpk computes fpk(x).

Easy to sample domain X samples elements in the domains of the permuta-
tions, we write x← X (pk), where x is uniformly random in Dpk.

Hard to invert For (pk, sk)← G(k), x← X (pk), and for any PPT algorithm
A the probability that A(pk, fpk(x)) = x is negligible in k.

But easy with trapdoor There is a polynomial time algorithm which on input
pk, sk, fpk(x) computes x, for all (pk, sk) ∈ G(k) and x ∈ Dpk.

Let A be any PPT ITM and consider the following game, which we will
call the trapdoor game. The game is between A and the tuple (K, F,G,X). The
algorithm A can ask for a number of public key generations and element gener-
ations, and the goal of A is to invert a permutation for which it does not know
the trapdoor information, on an element it did not generate itself.

– On a key generation request,A is given pk for a uniformly random key (pk, sk)←
G(k, rG) (here rG denotes the random bits used by G).

– On a give up request on pk, where pk was generated in a key generation re-
quest, A is given rG .

– On an element generation request for pk, A receives y = fpk(x), where x was
generated as x← X (pk, rX).

– On a give up request on y, where y was generated in an element generation
request, A is given rX .

Separating Random Oracle Proofs from Complexity Theoretic Proofs 119

– The ITM A wins the game, if it manages to return an element x such that
y = fpk(x), where pk is a key from a key generation request on which it has
not given up and where y is from an element generation request on which it
has not given up.

It is straightforward to prove the following lemma.

Lemma 1. The tuple (K, F,G,X) is a collection of trapdoor permutations iff
for all PPT algorithms A, the probability that A wins over (K, F,G,X) in the
trapdoor permutation game is negligible.

3 The Multiparty Computation Model

We will use the framework for universally composable asynchronous MPC from
[Can01].

The General Framework. A protocol π = (P1, . . . , Pn) consists of n PPT ITMs.
The most general computation model considered in [Can01] is the hybrid model
with ideal functionality F . The execution in the hybrid model involves the par-
ties, the ideal functionality F , the adversary A, and the environment Z. The
ideal functionality, the adversary and the environment are PPT ITMs. All par-
ties are connected by point-to-point channels. These channels are modeled as
insecure authenticated asynchronous channels by letting the adversary A see all
messages sent and schedule message delivery (without being able to introduce
messages). Besides controlling message delivery the adversary can corrupt par-
ties. When a party is corrupted the adversary learns the current internal state
or the entire execution history of the party (depending on whether we allow
erasures or not) and from the point of corruption the adversary sends messages
on behalf of the corrupted party. Besides the communication channels all parties
are connected to F with secure channels (A does not see the messages, but still
schedules the delivery). When a party Pi or the ideal functionality F receives a
message it runs it code and sends messages accordingly. The ideal functionality
can also receive messages from A and send messages to A. Finally, the role of
the environment is to deliver input to the parties and receive outputs from the
parties. The environment can also input to the adversary and the adversary can
send messages to the environment. The environment is the driver of the execu-
tion. At the beginning of the protocol it receives an auxiliary input z ∈ {0, 1}∗,
and it then activates the adversary and the parties of the protocol by giving
them input. At some point the environment stops activating parties and halts
by outputting some bit b. Let HYBFπ,A,Z(k, z) be a random variable describing
the output of Z.

We define the security of a protocol by comparing the input-output behavior
(as seen be the environment) of its execution to an ideally secure protocol with
the desired input-output behavior. We specify the desired input-output of the
protocol by giving an ideal-functionality F defining the desired input-output
behavior of the protocol. The ideally secure protocol implementing this desired

120 J.B. Nielsen

input-output behavior is then defined to be HYBFπ̃,A,Z(k, z), where π̃ is the
dummy protocol where the parties just send their input from the environment
to F and send the response from F to the environment. Since the parties are
connected to F via secure channels and F cannot be corrupted this protocol
is trivially secure. We call IDEALF,S,Z(k, z) = HYB

F
π̃,S,Z(k, z) the ideal-world

execution. We then say that a protocol π securely realizes G in the F-hybrid model
if for all adversaries A there exists an adversary S such that for all environments
Z and all c ∈ N there exists kc ∈ N such that for all z ∈ {0, 1}∗ it holds that
that |Pr[IDEALG,S,Z(k, z) = 1]− Pr[HYB

F
π,A,Z(k, z) = 1]| < k−c.

Non-committing Encryption. We specify the desired input-output behavior of
secure communication by the functionality Fnce, which on input (send,mid, j,m)
from Pi delivers (receive,mid, i,m) to Pj and delivers (receive,mid, i, j, |m|)
to A. The value mid is a message identifier. We say that π is a an NCE protocol
for some model if π securely realizes Fnce in that model.

Consider any communication protocol for two parties, sender PS and receiver
PR, of the following form: First the parties execute a pre-processing phase. The
protocol is executed independently of the messages to be send later, and in
particular the length of the internal state of PR after the pre-processing, which
we denote by sk, is independent of the messages to be send. Then each time
a message m becomes known to PS he computes an encryption c of m and
sends c to PR who outputs a value m

′. We allow access to ideal functionalities
during the pre-processing phase. This means that in principle the keys could
be distributed entirely by a trusted party. We only require that PR receives
no messages from PS or ideal functionalities during decryption! We call such
a protocol a non-interactive communication protocol. Since no messages are send
from PR to PS between the encryptions sent to PR from PS and the computation
is asynchronous we can assume that the protocol can handle arbitrary long
messages, possibly by blockwise encryption using unique message identifiers.

The Random-Oracle Model. The random-oracle model is the hybrid model with
access to an ideal functionality O specified as follows: On input x ∈ {0, 1}∗ from
any party (including the adversary) the functionality outputs to the calling party
a uniformly random element y ∈ {0, 1}k independent of all other evaluations
(except that if queried on the same x twice the same value y will be returned). We
say that a protocol π securely realizes G in the random-oracle model if π securely
realizes G in the O-hybrid model.

The Non-Programmable Random-Oracle Model. We say that a protocol π(·) =

(P
(·)
1 , . . . , P

(·)
n) securely realizes G in the non-programmable random-oracle model

if for all adversaries A(·) there exists an adversary S(·) such that for all envi-
ronments Z(·) we have that IDEALGO,SO,ZO and REALπO,AO,ZO are computa-
tionally indistinguishable, where O is the RO functionality.

Separating Random Oracle Proofs from Complexity Theoretic Proofs 121

4 Possibility of NINCE in the RO Model

Let F be a family of trapdoor permutations, where one can verify y ∈ Dpk

given just pk, and consider the following protocol πF,nce: On initialization of the
protocol each party Pi generates (pki, ski) ← G(k) and sends pki to all other
parties. After the key distribution phase the protocol proceeds as follows:

Send On input (send,mid, j,m) party Pi generates a uniformly random element
x ← X (pkj), computes (mid, fpkj

(x), H(mid‖i‖j‖x) ⊕ m), and sends this
value to Pj .

2

Receive If Pj receives (mid, y,R) from Pi, where y ∈ Dpkj
, then Pj computes

x = f−1
skj
(y) and m = R⊕H(mid‖i‖j‖x) and outputs (receive,mid, i,m).

Theorem 1. If F is a family of trapdoor permutations, then πF,nce is a NINCE
protocol for the RO model.

Proof. Let A be any PPT adversary. We construct an ideal process adversary
S, which running in the ideal process will simulate an execution of πF,nce to A
and let A do the communication with any Z to convince Z that it is viewing a
real-life execution. Since the protocol runs in the RO model, S will also have to
simulate a RO H. It does this by defining H(h) to be some uniformly random
value r ∈ {0, 1}k, when H(h) is needed. The simulator S will simulate the key-
distribution phase by generating random keys as in the protocol. In fact, to make
the proof of security easier we will assume that S, besides running in the ideal
process, participates in a trapdoor game. The public keys pki for the parties will
then be obtained from the trapdoor game using n key generation requests. The
trapdoors will therefore not be known to S.

To be able to simulate without the trapdoors we represent H in a particular
way using two dictionaries raw and img. At the beginning of the simulation
both dictionaries are empty, and H is undefined on all values. We record a new
definition H(h) := r as follows.

– If h can be parsed as mid‖i‖j‖x, where i and j are indicies of parties and
x ∈ Dpkj

, then the entry (mid‖i‖j‖y, r), where y = fpkj
(x), is added to img.

– If h cannot be parsed as described above, then (h, r) is added to raw.

We say that H(h) is defined and H(h) = r iff h = mid‖i‖j‖x (for x ∈
Dpkj

) and (mid‖i‖j‖fpkj
(x), r) ∈ img, or h cannot be parsed as specified and

(h, r) ∈ raw. Because fpkj
is a permutation, this representation is consistent:

H(h) = r will become defined iff recorded. Equally important, this representation
allows to define and evaluate H on h = mid‖i‖j‖x given just (mid, i, j, y), where
y = fpkj

(x). We call these manipulations oblivious.
Remember that S has access to the ideal-world execution. We name the

parties in the ideal world P̃1, . . . , P̃n — remember that these dummy parties just
pass messages between the environment and the ideal functionality Fnce. The
parties of the simulated execution run by S we call P1, . . . , Pn. The simulation
proceeds as follows:

2 We let ‖ denote an injective and easily parsable encoding {0, 1}∗×{0, 1}∗ → {0, 1}∗.

122 J.B. Nielsen

RO Evaluation If A asks for an evaluation of the RO on some string h, then
if H(h) is defined, return H(h), otherwise generate uniformly random r ∈
{0, 1}k, set H(h) := r, and return r.

Send On input (send,mid, i, j, |m|) from the NCE functionality we know that
P̃i has input (send,mid, j,m) for some m ∈ {0, 1}|m| to the NCE function-
ality, which has then sent (receive,mid, i,m) to P̃j .

– If P̃j is corrupted, then S will deliver the message to P̃j to learn m and
will then simulate by following the protocol using m as the message.

– If P̃j is honest, then S simulates the protocol to A by sending the mes-
sage (mid, y,R), where y is obtained as a uniformly random element in
the image of fpkj

from the trapdoor game and R ∈ {0, 1}k is chosen
uniformly at random. If at a later point Pi or Pj is corrupted then:

• If Pi was corrupted, then S corrupts P̃i in the ideal process and
learns m. The simulator then gives up on y and learns x, r such that
x = X (pkj , r) and y = fpkj

(x). The simulator then gives up on pki
and learns ski, r such that (pki, ski) = G(k, r). Then the simulator
gives this internal view of Pi to A and records H(mid‖i‖j‖x) :=
R⊕m.

• If Pj was corrupted, then S corrupts P̃j in the ideal process and
learns m. The simulator then gives up on pkj and learns skj , r such
that (pkj , skj) = G(k, r). Then the simulator gives this internal view
of Pj to A and records H(mid‖i‖j‖x) := R⊕m.

If H(mid‖i‖j‖x) was already defined in either of the above cases (to a
value different from R⊕m), then the simulator gives up the simulation.

Receive On the message (mid, y,R) from Pi to Pj the simulator S needs to

make the ideal functionality output (receive,mid, i,m) to P̃j , where m =
R⊕H(mid‖i‖j‖f−1

skj
(y)).

– If Pi is honest, then (mid, y,R) was sent by S itself and in that case the
message (receive,mid, i,m) has already been sent to P̃j in the ideal

process. The simulator then delivers this message to P̃j .
– If Pi is corrupted, then decrypt as follows: If H(mid‖i‖j‖f−1

skj
(y)) is not

defined then obliviously define it to a uniformly random value. Oblivi-
ously look upH(mid‖i‖j‖f−1

skj
(y)), and letm = R⊕H(mid‖i‖j‖f−1

skj
(y)).

Then input (send,mid, j,m) to P̃i in the ideal process and make Fnce

deliver the message (receive,mid, i,m) to P̃j .

If the simulation is not given up, then it is distributed exactly as a real-life
execution. It is therefore enough to prove that the probability that the simulation
is given up is negligible. Assume for the sake of contradiction that the simulation
is given up with significant (i.e. not negligible) probability. This means that with
significant probability the simulator obtained y = fpkj

(x) from the trapdoor
game and send (mid, y,R) from honest Pi to honest Pj , and the dictionary was
defined on the value mid‖i‖j‖x before S needed to define it on that value. Since
Pi is guaranteed to be honest up to the point in the simulation where S needs to
define the dictionary on the valuemid‖i‖j‖x, we can neglect the probability that

Separating Random Oracle Proofs from Complexity Theoretic Proofs 123

the simulator has defined H on mid‖i‖j‖x twice, as it would involve choosing
the same value y in the image of fpkj

twice under the uniform distribution,
which happens with negligible probability. Therefore the other definition of H
onmid‖i‖j‖x was made by the adversary in a RO Evaluation. The first definition
of H on mid‖i‖j‖x was therefore not oblivious, and thus x = f−1

skj
(y) is known.

Since both Pi and Pj are honest up to the point where the simulation is given
up, the simulator has not given up on y or pkj . This allows the simulator to win
the trapdoor game with significant probability, a contradiction to Lemma 1. ut

5 Impossibility of NINCE in the NPRO Model

We start by proving a lemma. Let S(·) be a probabilistic ITM with oracle access,
let D(·) be a probabilistic TM with oracle access, and let lm, lsk : N → N . We
say that S(·) is a NPRO non-committing cryptosystem simulator with private
key-length lsk, message length lm, and decryption algorithm D(·) if the following
holds: On input k ∈ N and access to a RO O the ITM S(·) outputs a string
c ∈ {0, 1}∗. Then on input m ∈ {0, 1}lm(k) the ITM S(·) outputs a string sk ∈
{0, 1}≤lsk(k), where {0, 1}≤lsk(k) is the set of strings of length at most lsk(k). For
all m ∈ {0, 1}lm(k), let PrS,m[c, sk, r] denote the joint probability distribution
on the values (c, sk, r) when c, sk are generated by SO on inputs (k,m) and r is
a uniformly random string. Let PrS [c, r] be the distribution of the values (c, r),
which are independent of m. We require that there exists k0 such that for all
k > k0 and all m ∈ {0, 1}

lm(k),

PrS,m[D
O(sk, c; r) = m] ≥

3

4
. (1)

Lemma 2. If S(·) is a NPRO non-committing cryptosystem simulator with pri-
vate key-length lsk, message length lm, and decryption algorithm D(·), then for
all k > k0: lsk(k) + 2 ≥ lm(k).

Proof. Assume for the sake of contradiction that there exists k > k0 such that
lsk(k) + 2 < lm(k). For all c ∈ {0, 1}

∗ and all m ∈ {0, 1}lm(k) define

SK(c,m) = {sk ∈ {0, 1}≤lsk(k)|PrS [D
O(sk, c; r) = m] >

1

2
}

Xm =
∑

c∈{0,1}∗

PrS [c]|SK(c,m)|

X =
∑

m∈{0,1}lm(k)

Xm .

If sk ∈ SK(c,m1) ∩ SK(c,m2) and m1 6= m2, then PrS [D
O(sk, c; r) ∈

{m1,m2}] > 1. So, for fixed c each sk ∈ {0, 1}≤lsk(k) belongs to only one of
the sets SK(c,m). Therefore

X =
∑

c∈{0,1}∗

PrS [c]
∑

m∈{0,1}lm(k)

|SK(c,m)|

≤
∑

c∈{0,1}∗

PrS [c](2
lsk(k)+1 − 1) = 2lsk(k)+1 − 1 .

(2)

124 J.B. Nielsen

If Xm ≥
1
4 for all m ∈ {0, 1}

lm(k), then by (2) we have that 2lsk(k)+1 − 1 ≥
X ≥ 2lm(k) 1

4 contradicting lsk(k) + 2 < lm(k). So, there exists m ∈ {0, 1}
lm(k)

s.t. Xm < 1
4 . In particular, by the Markov inequality PrS [|SK(c,m)| ≥ 1] <

1
4

and

PrS,m[D
O(sk, c; r) = m]

=PrS,m[|SK(c,m)| ≥ 1] · PrS,m[D
O(sk, c; r) = m||SK(c,m)| ≥ 1]+

PrS,m[|SK(c,m)| = 0] · PrS,m[D
O(sk, c; r) = m||SK(c,m)| = 0]

<
1

4
· 1 + 1 ·

1

2
=
3

4

contradicting (1). ut

Theorem 2. There exists no NINCE protocol for the NPRO model with erasure.

Proof. Consider the real-life execution of a NINCE protocol with two parties PS
and PR (we drop the (·) superfix as all ITMs in the proof are ITMs with oracle
access). Let sk(k) denote the random variable describing the internal state of
PR after the pre-processing phase and before receiving the first encryption. Since
this state is independent of the inputs to be sent, there exists a polynomial lsk(k)

s.t. the expected value of |sk(k)| is bounded by lsk(k)
6 for large enough k, and by

the Markov inequality Pr[|sk(k)| ≥ l(k)] < 1
6 for large enough k.

Consider the following environment Z: It activates PS on a message m ∈
{0, 1}lm(k), where lm(k) = lsk(k) + 3 and m is a prefix of z. Let E1 denote
the event that after activating PS with input m the adversary outputs a value
c ∈ {0, 1}∗. If E1 does not occur, the environment terminates with output 0.
If E1 occurs, the environment activates the adversary with input “corrupt the
receiver”. Let E2 be the event that Z as response to this activation observes that
PR is corrupted and that the adversary outputs a value sk ∈ {0, 1}

≤lsk(k). If E2

does not occur, Z outputs 0. If E2 does occur, Z generates uniformly random
bits r and computes m′ by running the code of PR from internal state sk with
input c and random bits r and using the RO O; Since PR does not access any
ideal functionalities during decryption and Z has access to the same oracle as
PR, the environment can actually carry out this computation. If m

′ = m then
Z outputs 1, otherwise Z outputs 0.

Consider the following real-life adversary A: It activates PS and PR until
PS sends c. Then A outputs c, where c is the value sent from PS to PR but
not delivered. Then on the next activation, it corrupts PR and outputs to the
environment the internal state of PR.

Let E be the event that E1 and E2 occurs. Note that in the real-life exe-
cution REALπO,AO,ZO (k, z) the event E occurs with probability at least 5

6 for
large enough k. Furthermore, by the security (which implies correctness) of the
protocol, the probability that m′ 6= m for uniformly random r is bounded by a
negligible function δ(k). Therefore Pr[REALπO,AO,ZO (k, z) = 1] ≥ 5

6 − δ(k) >
4
5

for large enough k. Since the protocol is secure and 3
4 < 4

5 there exists S and k0

Separating Random Oracle Proofs from Complexity Theoretic Proofs 125

such that for all k > k0 we have that Pr[IDEALFnce,SO,ZO (k, z) = 1] ≥ 3
4 . We use

this to construct a NPRO non-committing cryptosystem simulator S as follows:
On input k and access to oracle O run IDEALFnce,SO,ZO (k, z) on a message m
of length lm(k). Note that as long as no party is corrupted the execution does
not require that we know the value of m. If during the execution the event E
does not occur, S uses arbitrary values for c and sk. If E occurs, S proceeds as
follows: Run IDEALFnce,SO,ZO (k, z) until S outputs c and then output c. Then

on input m ∈ {0, 1}lm(k) run IDEALFnce,SO,ZO (k, z) until S corrupts PR, give
S the value m, and run IDEALFnce,SO,ZO (k, z) until S outputs sk. Then out-
put sk. Let D be the TM which on input c, sk and access to oracle O runs PR
from internal state sk and input c using uniformly random bits and the RO
O. By Pr[IDEALFnce,SO,ZO (k, z) = 1] ≥ 3

4 we have that S is a non-committing
cryptosystem simulator with private key-length lsk, message length lm, and de-
cryption algorithm D, contradicting Lemma 2. ut

The proof of Theorem 2 was done in the model from [Can01]. Since Theorem
2 states a negative result, the result would be stronger if we could prove it
in a weaker model. In [CFGN96] the NCE problem was formulated in the MPC
model of [Can00], which is a considerably weaker model as it models synchronous
computation and only guarantees security preservation under non-concurrent
composition of protocols. The negative result however still holds in this model.
We can prove that no NINCE protocol exists for the synchronous model without
erasure, and we can prove that no NINCE protocol which can communicate an
unbounded number of bits in one round (i.e. without synchronizing the sender
and the receiver) exists for the synchronous model with erasure. The proof of the
first claim follows the proof of Theorem 2, except that c is communicated between
the execution and the so-called post-execution phase and PR is corrupted in the
post-execution phase. We sketch the proof of the second claim.

The main difference between the models in [CFGN96] and [Can00] is that
the model in [Can00] does not have an explicit mechanism for the adversary to
output values to the environment during the execution. Since it is essential to the
proof with erasure that PR is corrupted before c arrives and that it is essential
that c is output before PR is corrupted, this becomes an issue. However in [Can00]
some information can indeed flow from the adversary to the environment as
the environment learns the identity of the parties corrupted by A. The NCE
problem is cast as a multiparty problem, see [CFGN96], where a polynomial
number of parties participate. So the adversary can use its corruption pattern
to communicate c; To guarantee that the value output has a fixed polynomial
length, a Markov inequality can be used as in the proof of Theorem 2.

6 Acknowledgments

I would like to thank the following persons for valuable discussions of the paper
and for suggestions on how to improve the presentation: Ran Canetti, Ronald
Cramer, Ivan Damg̊ard, Yehuda Lindell, Moti Yung, and a number of anonymous
referees.

126 J.B. Nielsen

References

[ACM88] Proceedings of the Twentieth Annual ACM Symposium on Theory of Com-

puting, Chicago, Illinois, 2–4 May 1988.
[Bea97] D. Beaver. Plug and play encryption. In Crypto ’97, pages 75–89, Berlin,

1997. Springer. LNCS Vol. 1294.
[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-

knowledge and its applications (extended abstract). In [ACM88], pages
103–112.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness the-
orems for non-cryptographic fault-tolerant distributed computation (ex-
tended abstract). In [ACM88], pages 1–10.

[BH92] D. Beaver and S. Haber. Cryptographic protocols provably secure against
dynamic adversaries. In EuroCrypt ’92, pages 307–323, Berlin, 1992.
Springer. LNCS Vol. 658.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In First ACM Conference on

Computing and Communications Security, pages 62–73. ACM, 1993.
[BR95] M. Bellare and P. Rogaway. Optimal asymmetric encryption. In EuroCrypt

’94, pages 92–111, Berlin, 1995. Springer. LNCS Vol. 950.
[Can00] Ran Canetti. Security and composition of multiparty cryptographic proto-

cols. Journal of Cryptology, 13(1):143–202, winter 2000.
[Can01] Ran Canetti. Universally composable security: A new paradigm for crypto-

graphic protocols. In 42th Annual Symposium on Foundations of Computer

Science. IEEE, 2001.
[CCD88] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty uncondi-

tionally secure protocols (extended abstract). In [ACM88], pages 11–19.
[CFGN96] Ran Canetti, Uri Feige, Oded Goldreich, and Moni Naor. Adaptively se-

cure multi-party computation. In Proceedings of the Twenty-Eighth Annual

ACM Symposium on the Theory of Computing, pages 639–648, Philadelphia,
Pennsylvania, 22–24 May 1996.

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle method-
ology, revisited (preliminary version). In Proceedings of the Thirtieth Annual

ACM Symposium on the Theory of Computing, pages 209–218, Dallas, TX,
USA, 24–26 May 1998.

[DN00] Ivan Damg̊ard and Jesper B. Nielsen. Improved non-committing encryption
schemes based on a general complexity assumption. In Crypto 2000, pages
432–450, Berlin, 2000. Springer. LNCS Vol. 1880.

[FS86] A. Fiat and A. Shamir. How to prove yourself: practical solutions to identi-
fication and signature problems. In Crypto ’86, pages 186–194, Berlin, 1986.
Springer. LNCS Vol. 263.

[GK90] O. Goldreich and H. Krawczyk. On the composition of zero knowledge proof
systems. In Proceedings of ICALP 90, Berlin, 1990. Springer. LNCS Vol.
443.

[Sho01] Victor Shoup. OAEP reconsidered. In Crypto 2001, pages 239–259, Berlin,
2001. Springer. LNCS Vol. 2139.

