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Abstract. NTRU is an efficient patented public-key cryptosystem pro-
posed in 1996 by Hoffstein, Pipher and Silverman. Although no devas-
tating weakness of NTRU has been found, Jaulmes and Joux presented
at Crypto ’00 a simple chosen-ciphertext attack against NTRU as orig-
inally described. This led Hoffstein and Silverman to propose three en-
cryption padding schemes more or less based on previous work by Fu-
jisaki and Okamoto on strengthening encryption schemes. It was claimed
that these three padding schemes made NTRU secure against adaptive
chosen-ciphertext attacks (IND-CCA2) in the random oracle model. In
this paper, we analyze and compare the three NTRU schemes obtained.
It turns out that the first one is not even semantically secure (IND-
CPA). The second and third ones can be proven IND-CCA2–secure in the
random oracle model, under however rather unusual assumptions. They
indeed require a partial-domain one-wayness of the NTRU one-way func-
tion which is likely to be a stronger assumption than the one-wayness of
the NTRU one-way function. We propose several modifications to achieve
IND-CCA2–security in the random oracle model under the original NTRU
inversion assumption.

1 Introduction

The NTRU cryptosystem [13], patented by the company NTRU Cryptosys-

tems (see http://www.ntru.com), is one of the fastest public-key encryption
schemes known. Although this may not be a decisive advantage compared to
hybrid encryption with say RSA, NTRU has attracted considerable interest and
is being considered by the Efficient embedded security standards [6] and the
IEEE P1363 study group for future public-key cryptography standards [18]. It is
therefore important to know how to use the NTRU cryptosystem properly.
The security of NTRU is based on the hardness of some lattice problems,

namely the shortest and closest vector problems (see for instance the survey [24]).
More precisely, it was first noticed by Coppersmith and Shamir [3] that ideal
lattice basis reduction algorithms could heuristically recover NTRU’s private
key from the public key. This does not necessarily imply that NTRU is insecure,
as currently known lattice basis reduction algorithms (such as LLL [20] or its
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improvements [28]) do not seem to perform sufficiently well in practice in very
high dimension, while NTRU is so far the only lattice-based cryptosystem that
can cope with high dimensions without sacrificing performances. Nor does it
mean that the security of NTRU is strictly equivalent to the hardness of lattice
problems, although the basic NTRU problem is equivalent to the lattice shortest
vector problem in a very particular class of lattices called modular convolution
lattices in [21].

The NTRU cryptosystem as originally described is easily seen to be seman-
tically insecure. At Crypto ’00 [19], Jaulmes and Joux further presented simple
chosen-ciphertext attacks that can recover the private key. This shows that the
NTRU cryptosystem as originally described should be viewed as a probabilistic
trapdoor one-way function rather than a probabilistic cryptosystem (see also
recent work by Micciancio on lattice-based cryptosystems [22]). NTRU Cryp-

tosystems therefore proposed three padding schemes (two in [16] and a third
one in [15]) to make NTRU secure against adaptive chosen-ciphertext attacks
in the random oracle model. No security proof was provided by NTRU Cryp-

tosystems (see [16, 15]). In this paper, we analyze the three NTRU schemes
obtained. It turns out that the first scheme is not even semantically secure (IND-
CPA). The second and third ones can be proven IND-CCA2–secure, in the random
oracle model, but under rather unusual assumptions. Indeed, a partial-domain
one-wayness of the NTRU one-way function is required, and that assumption is
likely to be stronger than the one-wayness of the NTRU one-way function, as
opposed to the situation of RSA (see [9]). Besides, the security proofs we obtain
for such paddings are not efficient enough to be meaningful for the parameters
recommended by NTRU Cryptosystems.

We therefore propose and compare new paddings to make NTRU IND-CCA2–
secure in the random oracle model under the basic NTRU assumption, and not
a stronger assumption: The new paddings give rise to better bounds for the
security proof, and their computational overhead appears to be negligible. It
should be stressed that no security proof in the standard model is known for
NTRU, and that the search for an efficient and secure NTRU padding scheme is
not a trivial matter. Although there now exist generic padding schemes (such as
REACT [25]) that can enhance the security (in the random oracle model) of any
cryptosystem, the case of NTRU differs from more usual cryptosystems such as
RSA or El Gamal because the cost of hashing is no longer negligible compared
to the cost of encryption and decryption, and because of special properties of
the NTRU trapdoor function.

The rest of the paper is organized as follows. In Section 2, we recall security
notions for public-key encryption schemes. In Section 3, we review the NTRU
primitive and related computational assumptions. In Section 4, we present and
analyze the various paddings proposed by NTRU. In Section 5, we consider
new paddings and compare several constructions which make NTRU IND-CCA2–
secure in the random oracle model.
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2 Public-Key Encryption

The goal of encryption schemes is to achieve confidentiality of communications.
In the public-key scenario, anyone knowing Alice’s public key pk can send Alice
a message that only she will be able to recover, thanks to her private key sk.

2.1 Definitions

A public-key encryption scheme Π over a message space SM is formally defined
by three algorithms:

– a key generation algorithm K(1k) (k being the security parameter), which
produces a pair (pk, sk) of public and private keys.

– an encryption algorithm Epk(m; r) which outputs a ciphertext c correspond-
ing to the plaintext m ∈ SM, using random coins r ∈ SR, according to the
public key pk.

– a decryption algorithm Dsk(c) which outputs the plaintext m associated to
the ciphertext c (or ⊥, if c is an invalid ciphertext), given the private key sk.

2.2 Security Notions

The simplest security notion is one-wayness: with public data only, an attacker
cannot recover the whole plaintext m of a given ciphertext c. More formally, the
success of any adversary A in inverting Epk without knowledge of the private key
should be negligible over the probability space SM×SR, and the internal random
coins of the adversary and the algorithms K and E :

Succow
Π (A) = Pr[(pk, sk)← K(1k), c = Epk(m; r) : A(pk, c) = m].

However, many applications require a higher security level, such as semantic se-
curity (a.k.a. indistinguishability of encryptions [11], denoted IND): if an attacker
has some information about the plaintext, the view of the ciphertext should not
leak any additional information. This security notion requires the computational
intractability of winning with probability significantly better than 1/2 the follow-
ing game: the adversary chooses two messages; the challenger selects at random
one of these two messages, encrypts it, and sends the ciphertext to the adver-
sary; the adversary guesses which one of the two messages has been encrypted. In
other words, an adversary is seen as a 2-stage Turing machine (A1, A2), and the
advantage Advind

Π (A) should be negligible for any adversary, where the advantage
is formally defined as:

2× Pr
r
R
←SR

[

(pk, sk)← K(1k), (m0,m1, s)← A1(pk),

b
R
← {0, 1}, c = Epk(mb; r) : A2(m0,m1, s, c) = b

]

− 1.

Another important security notion is non-malleability [5]. Here, we ask that an
adversary, given a ciphertext, should not be able to create a new ciphertext
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such that the two plaintexts are meaningfully related. This notion is, in general,
stronger than semantic security, but it was shown [1] to be equivalent in the
strongest scenario (see below).
On the other hand, an attacker can use many kinds of attacks, depending on

the information available to him. First, in the public-key setting, the adversary
can encrypt any plaintext of its choice with the public key: this basic scenario
is called chosen-plaintext attack, and denoted by CPA. Extended scenarios allow
the adversary restricted or unrestricted access to various oracles:

– a validity-checking oracle, which answers whether or not its input c is a valid
ciphertext. This leads to so-called reaction attacks [12].

– a plaintext-checking oracle, which given as input a pair (m, c) answers whe-
ther or not the ciphertext c is a ciphertext of the message m. This gives rise
to plaintext-checking attacks [25], which we denote by PCA.

– a decryption oracle, which returns the decryption of any ciphertext, with
the only restriction that it should be different from the challenge ciphertext.
When the oracle is available only before knowledge of the challenge cipher-
text, the attack is a non-adaptive chosen-ciphertext attack (a.k.a. lunchtime
attack [23]), which we denote by CCA1. When the adversary still has ac-
cess to the decryption oracle in the second stage, we talk about adaptive
chosen-ciphertext attacks [27], denoted by CCA2.

The article [1] provides a general study of all these security notions and attacks.
Its main result states that semantic security and non-malleability are equivalent
in the CCA2–scenario. This security level is now widely accepted as the standard
notion of security to be achieved by a public-key encryption scheme, and is
sometimes called chosen-ciphertext security.

3 The NTRU Primitive

3.1 Description and notation

In this section, we present the NTRU cryptosystem as originally described in [13]
by Hoffstein, Pipher and Silverman. As mentioned in the introduction, this
should be viewed as a primitive function rather than a cryptosystem. Several
modifications of NTRU have recently been proposed in [15]: we will present
those later.
Let k be the security parameter. The NTRU primitive works in the ring

P = Z[X]/(XN − 1) where N is a safe prime typically around a few hundreds,
whose value increases with k: NTRU Cryptosystems recommends specific
values of N , such as N = 251 or N = 503. The ring P is identified with the
set of integer polynomials of degree < N , and its multiplication is denoted by ∗.
Polynomials will be denoted by letters in the Sans Serif font, such as f.
Note that the function that maps any polynomial f ∈ P to the sum f(1) ∈ Z

of its coefficients is a ring homomorphism. NTRU uses two integer parameters:
a small power of 2, denoted by q, such as q = 128 or q = 256, and a small integer
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p < q co-prime with q, such as p = 3. The restriction of N to safe primes was
apparently made to guarantee that the multiplicative order of p modulo N is
sufficiently large. NTRU performs operations in P modulo p or q.

The private key sk consists of two polynomials f, g ∈ P randomly chosen with
very small coefficients such that f is invertible modulo both p and q: there exist
fp and fq in P such that: f∗ fp ≡ 1 (mod p) and f∗ fq ≡ 1 (mod q). In [13], f and g

only have coefficients in {0,±1} with a prescribed (publicly known) number of 1,
-1 and 0 such that f(1) = 1 and g(1) = 0. All the integer constraints (N , p, q, the
number of 1, -1, 0 in polynomials, etc.) are deduced from a security parameter k,
and this process is described in [13, 15]. Then, f and g are uniformly distributed
polynomials among the polynomials that satisfy the required constraints. The
public key pk is h = g ∗ fq (mod q). Therefore, (h, (f, g))← K(1

k).

The message space is SM = {−(p−1)/2 . . .+(p−1)/2}
N , whose elements are

viewed as elements of P. To encrypt a message m, one selects at random a sparse
polynomial r ∈ P with very small coefficients: In [13], r only has coefficients in
{0,±1} with a prescribed (publicly known) number of 1, -1 and 0 such that
r(1) = 0 (we denote the set of these specific polynomials by SR). The ciphertext
is:

Epk(m; r) = e = m+ pr ∗ h (mod q).

To decrypt, the following congruence is used:

e ∗ f ≡ m ∗ f+ pr ∗ g (mod q).

In the right-hand part of this congruence, we have two convolution products of
polynomials with very small coefficients and quite a few zeroes (except possibly
m). Therefore, if the above reduction is centered (one takes the smallest residue
in absolute value), the above congruence is likely1 to be an equality over Z[X].
By further reducing e ∗ f modulo p, one thus obtains m ∗ f (mod p), hence m

thanks to fp. Note that there is a potential probability of decryption failure, if
the above equality (mod q) does not hold in Z.

3.2 Efficiency

A multiplication in P requires O(N 2 log q) elementary operations. It follows that
the cost of encryption and decryption is O(N 2 log q). Since the key generation
process is such that q = O(N), the cost of both encryption and decryption is
almost quadratic in the security parameter. Note that in most of the required
convolution products, at least one of the polynomial is relatively sparse. And
since q is a small power of two, the above complexity is rather pessimistic in
practice.

1 We stress that no provable precise estimate on the probability of such an event
is known, and [13] only uses a heuristic estimate which seems to be validated by
practice.



Analysis and Improvements of NTRU Encryption Paddings 215

3.3 Optimizations

The authors of NTRU recently proposed several modifications in [15] to improve
the efficiency of the scheme:

– Choosing p as an appropriate polynomial p instead of a small number co-
prime with q (e.g. p = X + 2). The polynomial must be such that the ideal
spanned by the polynomial must be co-prime with the ideal 〈q〉 spanned by q
in P. The aim of this modification is to reduce the probability of decryption
failure. It also enables a simpler encoding of messages.

– Selecting f, g, and r with a special form instead of just a prescribed number
of 0, -1 and 1. For instance, r = r1r2 where r1 and r2 are sparse polynomials
with a prescribed number of 0, -1 and 1. In all the proposals of [15], the
values of f(1), g(1) and r(1) are always publicly known.

It is worth noting that such modifications may have an impact on the security
of NTRU, but at the moment, no specific attack is known.
Our results apply to the original NTRU scheme, as well as to most of these

optimizations of NTRU. However, to simplify the presentation, we will restrict
to the case of the original NTRU primitive Π = (K, E ,D), where p = 3, f(1) = 1
and g(1) = r(1) = 0.

3.4 Computational assumptions

To formally analyze the security of the NTRU cryptosystem, one needs clear and
well-defined computational assumptions. First, we consider the one-wayness of
the NTRU primitive:

Definition 1 (The NTRU Inversion Problem). For a given security pa-
rameter k, which specifies N , p, q and several other constraints, as well as
(h, (f, g))← K(1k) and e = m+ pr ∗ h, where m ∈ SM and r ∈ SR, find m.

For any adversaryA, we denote by Succow
ntru(A) its success for breaking the NTRU

Inversion Problem, where

Succow
ntru(A) = Pr

[

(h, (f, g))← K(1k),m ∈ SM, r ∈ SR,
e = m+ pr ∗ h : A(e, h) = m

]

.

The NTRU assumption says that the NTRU inversion problem is hard to solve
for any sufficiently large parameter.
Next, we consider the difficulty of only partially inverting this function, which

will be useful to study NTRU paddings:

Definition 2 (The NTRU λ-Partial-Domain Inversion Problem). For a
given security parameter k, which specifies N , p, q and several other constraints,
as well as (h, (f, g))← K(1k) and e = m+ pr ∗ h, where m ∈ SM and r ∈ SR, find

[m]λ, where [m]λ denotes the λ least significant coefficients of m.
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As above, for any adversary A, we denote by Succ
pd−owλ
ntru (A) its success for

breaking the NTRU λ-Partial-Domain Inversion Problem, where

Succ
pd−owλ
ntru (A) = Pr

[

(h, (f, g))← K(1k),m ∈ SM, r ∈ SR,
e = m+ pr ∗ h : A(e, h) = [m]λ

]

.

Note that the NTRU encryption primitive is malleable with respect to circular
shifts: Epk(X ∗ m;X ∗ r) = X ∗ Epk(m; r). This implies that any λ-consecutive-
coefficient search problem is equivalent to the above NTRU λ-Partial-Domain
Inversion Problem. Because of the specific encodings used by NTRU, it will also
be useful to consider the difficulty of obtaining some information bits of the
pre-image only:

Definition 3 (The NTRU `-Partial-Information Inversion Problem).
For a given security parameter k, which specifies N , p, q and several other con-
straints, as well as (h, (f, g)) ← K(1k) and e = m + pr ∗ h, where m ∈ SM and

r ∈ SR, find ` bits of information about m.

As above, we denote by Succ
pi−ow`
ntru (A) its success for breaking the NTRU `-

Partial-Information Inversion Problem, where

Succ
pi−ow`
ntru (A) = Pr

[

(h, (f, g))← K(1k),m ∈ SM, r ∈ SR,
e = m+ pr ∗ h, (f, y)← A(e, h) : y = f`(m)

]

.

In the above definition, the adversary A outputs a (computable) bijective func-
tion f : SM → {0, 1}mLen (where mLen denotes the bit-length of an optimal
encoding for polynomials in SM) and y ∈ {0, 1}

`. Furthermore, f` denotes the
truncation of f to its ` least significant bits.

More generally, we denote by Succow
ntru(t), Succ

pd−owλ
ntru (t) and Succ

pi−ow`
ntru (t), the

maximal success among all the adversaries with a running time bounded by t.

Relations among computational assumptions. The definition of our as-
sumptions implies that for all t and λ

Succow
ntru(t) ≤ Succ

pd−owλ
ntru (t) ≤ Succ

pi−ow`
ntru (t),

where ` is the bit-length of an optimal encoding for λ coefficients. And in the
specific case λ = N , all the inequalities become equalities:

Succow
ntru(t) = Succ

pd−owN
ntru (t) = Adv

pi−owmLen

ntru (t).

Remark that if Succ
pd−owλ
ntru (t) = 1 for some (t, λ), then Succow

ntru(dN/λet) = 1,
where dxe denotes the smallest integer larger than x. This is because the mal-
leability of the NTRU encryption primitive allows to reduce any instance of the
NTRU inversion problem to dN/λe instances of the NTRU λ-partial-domain
inversion problem, using appropriate shifts of e. Note however that the multi-
plication by X does not provide a random self-reduction: the previous reduc-

tion implies nothing on Succow
ntru(dN/λet) if Succ

pd−owλ
ntru (t) < 1. In fact, since
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no random self-reducibility property is known for NTRU, it is likely that if

Succ
pd−owλ
ntru (t) < 1, then the NTRU λ-partial-domain inversion problem is strictly

harder than the NTRU inversion problem. Besides, the lack of random self-
reducibility also suggests that the NTRU `-partial-information inversion problem
is strictly harder than the NTRU λ-partial-domain inversion problem.
In the following, we assume that all the above problems become intractable

for a sufficiently large security parameter k, and for sufficiently large enough `

and λ (since random guesses lead to Succ
pd−owλ
ntru (1) = 1/pλ and Succ

pi−ow`
ntru (1) =

1/2`).

3.5 The Security of the NTRU Primitive

The best attack known against NTRU is based on lattice reduction, but this
does not imply that lattice reduction is necessary to break NTRU. See [3, 13, 24]
for further information. Based on numerous experiments, the authors of NTRU
claimed in [13] that all known lattice-based attacks are exponential in N , and
therefore suggested relatively small values of N . The parameter N must be
prime, otherwise the lattice attacks can be improved due to non-trivial factors
of XN − 1 (see [10]). Because the key-size of NTRU is only O(N log q), one can
allow reasonably high lattice dimensions, while all other known knapsack-based
or lattice-based cryptosystems have a key-size which is at least quadratic in the
security parameter.
NTRU, like most public-key cryptosystems, should not be directly used as

originally described. For instance, NTRU is easily seen to be semantically inse-
cure, as e(1) ≡ m(1) (mod q) because r(1) = 0. This yields a significant bias for
any adversary to distinguish between two possible plaintexts which one has been
encrypted. In fact, although the NTRU cryptosystem is probabilistic, there is a
public plaintext-checking oracle: one can easily check whether a given message
m corresponds to a ciphertext e, which implies that any security level in the
CPA scenario holds in the PCA one as well. This is because the shape of r is
publicly verifiable and the public key h is “pseudo-invertible” modulo q with
overwhelming probability. More precisely, one can compute from h a polynomial
H ∈ P such that for any polynomial s ∈ P such that s(1) ≡ 0 (mod q):

h ∗ H ∗ s ≡ s (mod q).

Then, if e = m+pr∗h (mod q) is a ciphertext ofm, we have since r(1) ≡ 0 (mod q):

pr ≡ (e−m) ∗ H (mod q).

This allows to retrieve the random polynomial r modulo q, whose shape is pub-
licly verifiable. By injectivity of encryption, we thus obtain a public plaintext-
checking oracle.
We briefly explain this “pseudo-inversion” since we have not found any ref-

erence. Because N is an odd prime and q is a power of two, the ring Pq =
Zq[X]/(X

N − 1) is isomorphic to P1 × P2 where P1 = Zq[X]/(X − 1) and
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P2 = Zq[X]/(X
N−1 + XN−2 + · · · + 1). Denote by φ1 and φ2 respectively the

reduction modulo X − 1 and XN−1 +XN−2 + · · · + 1. Of course, φ1 is simply
the evaluation at 1. Since h(1) ≡ 0 (mod q), φ1(h) is not invertible in P1, and
therefore h is not invertible in Pq. However, φ2(h) is very likely to be invertible
in P2 (the proportion of invertible elements can be computed as in [14]). And
its inverse can easily be computed: for instance, by computing the inverse in
F2[X]/(X

N−1 +XN−2 + · · ·+ 1), and then lifting it modulo q. Eventually, one
can derive an appropriate polynomial H ∈ P from this inverse.
As previously mentioned, NTRU is also easily malleable using multiplications

by X: Epk(X ∗m;X ∗ r) = X ∗Epk(m; r). Jaulmes and Joux [19] further presented
simple chosen-ciphertext attacks that can recover the private key. Curiously,
one of these attacks could be applied to a specific padding proposed by NTRU

Cryptosystems to avoid reaction attacks [17]. This stressed the need of an
appropriate padding scheme to obtain high levels of security against a vast class
of attacks, assuming the NTRU one-way function Epk(m; r) is hard to invert
(which, by definition, is equivalent to asking that the NTRU inversion problem
is hard).

4 The NTRU Cryptosystems

For clarity, in the following, we consider the encryption scheme Π ′ = (K′, E ′,D′),
which is the same as Π = (K, E ,D), up to the two public encodings:

M : {0, 1}mLen −→ SM and R : {0, 1}
rLen −→ SR.

Π ′







K′(1k) = K(1k) = (pk = h, sk = (f, g)),
E ′pk(m; r) = Epk(M(m);R(r)) =M(m) + pR(r) ∗ h (mod q),

D′sk(e) =M
−1(Dsk(e)) =M−1((e ∗ f (mod p)) ∗ fp).

Because of the encodings, without any assumption, recovering the bit-string m is
as hard as recovering the polynomial m =M(m). However, recovering ` bits of
m only provides ` bits of information about the polynomial m =M(m), which
is why we introduced the NTRU `-partial-information inversion problem. From
these remarks:

Succ
ow−cpa
Π′ (t) = Succ

ow−pca
Π′ (t) = Succow

ntru(t).

4.1 NTRU Paddings

Following the publication of [19], NTRU proposed several padding schemes in [16,
15] to protect NTRU against adaptive chosen-ciphertext attacks. We note that
at the time of the writing of [16], several generic transformations were known to
make NTRU IND-CCA2–secure in the random oracle model [2, 7, 8, 26]. However,
a few complications arise as the NTRU one-way function cannot be assumed
IND-CPA.
All NTRU paddings require a hash function H : {0, 1}mLen → {0, 1}rLen, and

possibly F and G, whose output size will be made explicit later.
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Let M be the original plaintext represented by a k1-bit string. For each
encryption, one generates a random string R, whose bit-length k2 is between
40 and 80 according to [16, page 2]. However, k1 + k2 ≤ mLen. Let ‖ denote
bit-string concatenation. The paddings proposed by NTRU are as follows.

Padding I. The first padding is proposed in [16, page 3]. The ciphertext of M
with random R is:

E1
pk(M ;R) = E

′
pk(M ‖R;H(M ‖R)).

We denote by Π1 the corresponding encryption scheme.

Padding II. The second padding is proposed in [16, page 3]. The ciphertext is:

E2
pk(M ;R) = E

′
pk((F (R)⊕M) ‖R;H(M ‖R)),

where F is a hash function that maps {0, 1}k2 → {0, 1}k1 , and ⊕ denotes bitwise
exclusive or. We denote by Π2 the corresponding encryption scheme.

Padding III. The third padding is proposed in [15, page 3], and not in [16].
This is rather curious, as [15] actually suggests the reading of [16] for further
details. It is this padding and not the previous ones which is being considered
in the CEES standards [6].
This padding first applies an all-or-nothing transformation (OAEP [2]) on

the concatenation M ‖R. More precisely, it splits each of M and R into equal
size pieces M = M ‖M and R = R ‖R. It then uses two hash functions F and
G that map {0, 1}k1/2+k2/2 into itself, to compute:

m1 = (M ‖R)⊕ F (M ‖R) and m2 = (M ‖R)⊕G(m1).

The ciphertext is then:

E3
pk(M ;R) = E

′
pk(m1 ‖m2;H(M ‖R)).

We denote by Π3 the corresponding encryption scheme.

4.2 Security Analyses

First of all, one may note that because of the random polynomial r that is gen-
erated from H(M ‖R), nobody can generate a valid ciphertext without knowing
both the plaintext M and the random R, except with negligible probability. In-
deed, for a given ciphertext e, at most one r is acceptable. Without having asked
H(M ‖R), the probability for R(H(M ‖R)) to be equal to r is less than 1/2N .
As a consequence, any security notion satisfied in the CPA scenario is satisfied
in the CCA2-scenario. The latter scenario may increase the success probability
of an adversary by at most qD/2

N , where qD is the number of queries asked to
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the decryption oracle. With a proper bookkeeping, the cost of the simulation
increases by qHTE , at most, where qH is the number of queries asked to the
random oracle H, and TE the time required for one encryption: for i = 1, 2, 3,

Advind−cca2
Πi (t) ≤ Adv

ind−cpa

Πi (t+ qHTE) +
2qD
2N

.

Therefore, in the following, we focus on the chosen-plaintext attacks only.

Analysis of the First NTRU Padding. The first padding is exactly based
on the first Fujisaki-Okamoto conversion [8], which requires the primitive to be
IND-CPA, which is not the case of Π ′! However, the one-wayness OW-CPA of Π1

already relies on a stronger assumption than the hardness of the NTRU inversion
problem: the hardness of the NTRU k1-partial-information inversion problem.
More worryingly, contrarily to the claims of [16], the schemeΠ1 is not seman-

tically secure (IND-CPA): let us consider the following adversary which chooses
M0 = 0

k1 and M1 = 1
k1 . R is unknown, but whatever it is, if the encodingM

is such that R has an impact on at most k2 coefficients: M(M0 ‖R)(1) ≤ k2,
M(M1 ‖R)(1) ≥ k1. As already remarked, this value mod q is given by e(1),
which helps to distinguish which message has been encrypted, with advantage
1. Optimizations [15] (such as r(1) 6= 0 but still a public constant) may slightly
worsen the advantage, but the advantage is still significant (more than 1/2).

Analysis of the Second NTRU Padding. The second padding is more sur-
prising. Even if it provides one-wayness under the sole NTRU assumption, se-
mantic security still requires a stronger assumption: the hardness of the NTRU
k2-partial-information inversion problem.
First, to get any information about the bit b such that the message Mb is

encrypted, any adversary has to ask either F (R) or H(Mi ‖R). If one denotes

by Ask such an event, one obtains: Adv
ind−cpa

Π2 (t) ≤ 2Pr[Ask]. In the worst case,
by randomly picking one candidate, one can extract R, and thus k2 bits of
information about the polynomial m:

Adv
ind−cpa

Π2 (t) ≤ 2(qF + qH)× Succ
pi−owk2
ntru (t).

From a OW-adversaryA, which runs within a time bound t, one can get more,
whereas the simulations of F and H may be inconsistent. Indeed, the challenge
ciphertext e defines R uniquely, but M is a random variable later defined by
F (R),M = F (R)⊕M−1(m), and then H(M ‖R) = R−1(r). The latter may not
be correctly answered. If H(M ‖R) is not asked, the view of the adversary A is
perfect, and the output M gives m =M(ρ⊕M), where F (R) = ρ. But if F (R)
has not been asked, the success of the adversary is upper-bounded by 1/2k1 .
If H(M ‖R) has been asked, one guesses one pair (M ‖R) among the queries
asked to H, and performs the same as above. There are qF + qH possibilities for
R, in the first case, or qH possibilities for M ‖R in the second one. The good
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candidate can easily be checked. As a result, one gets

Succ
ow−cpa

Π2 (t) ≤
1

2k1

+ Succow
ntru(t+ (qF + 2qH)TE).

Analysis of the Third NTRU padding. The third padding makes an incor-
rect use of the All-Or Nothing Transform, and therefore, the achieved security
level is not as high as one might have expected.
Let us first consider an adversary A against semantic security, which tries to

guess between M0 and M1 which one has been encrypted, within a time bound
t. It is clear that without having asked H(Mi ‖R), F (M i ‖R), or G(m1) (which
events are denoted AskH, AskF and AskG respectively), the plaintext M and the
random R are totally impredictable. However, the probability to ask F (M i ‖R),
without having asked G(m1), is less than 2qF /2

k2/2. Similarly, the probability
to ask H(Mi ‖R), without having asked either G(m1) or F (M i ‖R), is less than
2qH/2

k2 . Therefore, m1 has been asked to G, except with a small probability:

Adv
ind−cpa

Π3 (A) ≤ 2Pr[AskF ∨ AskG ∨ AskH]

≤ 2Pr[AskG] + 2Pr[AskF | ¬AskG] + 2Pr[AskH | ¬AskG ∧ ¬AskF]

≤ 2Pr[AskG] +
4qF
2k2/2

+
4qH
2k2

= 2Pr[AskG] + 4×
2k2/2qF + qH

2k2

.

If the event AskG occurs, by correctly guessing the query asked to G, one gets
m1:

1

qG
Pr[AskG] ≤ Succ

pi−owmLen/2

ntru (t).

As a consequence,

Adv
ind−cpa

Π3 (t) ≤ 2qG × Succ
pi−owmLen/2

ntru (t) +
2k2/2qF + qH
2k2−2

.

From a OW-adversary A, which outputs the whole plaintext M , one can
get more: indeed, A has to ask F (M ‖R) and G(m1), or H(M ‖R) to know
M , otherwise M is totally impredictable: only m1 and m2 are determined by
e. But M ‖R is a random variable defined later by M ‖R = m2 ⊕ G(m1), and
M ‖R is a random variable defined by M ‖R = m1 ⊕ F (M ‖R). Furthermore,
the probability to ask H(M ‖R), without having asked F (M ‖R) and G(m1) is
very low, since half of the bits are still impredictable:

Succ
ow−cpa

Π3 (A) = Pr[M ← A(e) ∧ ((AskF ∧ AskG) ∨ AskH)]

+Pr[M ← A(e) ∧ ¬((AskF ∧ AskG) ∨ AskH)]

≤ Pr[M ← A(e) ∧ AskF ∧ AskG]

+Pr[AskH ∧ ¬(AskF ∧ AskG)] +
1

2k1

≤ Pr[M ← A(e) ∧ AskF ∧ AskG] +
qH

2k1/2+k2/2
+
1

2k1
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With the solution M = M ‖M , the query M ‖R and its answer by F , as well
as the query m1 and its answer by G, one gets m2, which is possible to check.
However, the adversary may detect the simulation, since some inconsistency in
the simulation of H may occur, if M ‖R is asked to H. But then one can fully
invert the problem, by trying all the candidates in the list of queries to H.
Finally, one first checks the qH possibilities for M ‖R, and then tries all the
possible combinations between m1 and M ‖R, to get m2:

Succ
ow−cpa

Π3 (t) ≤ Succow
ntru(t+ (qH + qF qG)TE) +

qH2
(k1−k2)/2 + 1

2k1

.

Discussion. One should remark that k2 is a crucial security parameter. With
too small of a value, some security results become meaningless, namely the se-
mantic security of the second and the third paddings. However, one can see
that splitting the k2-bit random value R in two parts R and R, which are used
independently, is a very bad idea: the provable security level of the third con-
struction is less than 1/2k2/2. The latter is thus at most 2−20, or 2−40, according
to [16, page 2]. Thus, the security proofs we obtain are rather inefficient for the
parameters suggested by [16]. Our proofs may however not be tight since we are
unaware of any attack achieving the previous security bounds. Nevertheless, the
lack of security proofs meaningful for the recommended parameters suggests to
look at different paddings.

5 Suggestions and Comparisons

We showed that none of the three suggested paddings provides the maximal secu-
rity level, that is, IND-CCA2 under the sole NTRU inversion problem. However,
some constructions do exist: a better OAEP-based construction or REACT [25],
which we will compare later.

5.1 Suggestions

An OAEP-based Scheme. The first suggestion is a variant of the third
padding, using two more hash functions

F : {0, 1}k1 → {0, 1}k2 and G : {0, 1}k2 → {0, 1}k1 .

One first computes s =M ⊕G(R) and t = R⊕ F (s). The ciphertext consists of
E ′pk(s ‖ t;H(M ‖R)). The OAEP construction provides semantic security, while
the H function strengthens it to chosen-ciphertext security. An usual argument
(see the full version of the paper) shows that:

Advind−cca2
oaep′ (t) ≤ 2Succow

ntru(t+ (qH + qF qG)TE) +
2qD
2N

+
4qH
2k1

+
2qG
2k2

.

However, one can thus see that, as in the original OAEP construction with
partial-domain one-way permutations [2, 9], the reduction is quadratic in the
number of queries to the hash functions F and G.
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NTRU-REACT. Thanks to the OW-PCA–security level of the NTRU primi-
tive, one can use the REACT construction. The straightforward application uses
two hash functions:

G : {0, 1}N → {0, 1}` and H : {0, 1}? → {0, 1}k2 .

On input a message M ∈ {0, 1}`, a random R ∈ {0, 1}mLen and another random
R′ ∈ {0, 1}N , one computes a = E ′pk(R;R

′), b =M⊕G(R) and c = H(a, b,M,R).
The ciphertext is the triplet (a, b, c).
The semantic security is clear, since the adversary has no advantage without

having asked G(R) or H(a, b,Mi, R). Therefore R, and thus m, can be recovered
from the queries asked to G or H:

Adv
ind−cpa
react (t) ≤ 2Succow

ntru(t+ (qG + qH)TE).

With chosen-ciphertext attacks, the adversary cannot produce a valid ciphertext
without having asked for H(a, b,M,R), except with probability 1/2k2 . With
proper bookkeeping, this does not increase the cost:

Advind−cca2
react (t) ≤ 2Succow

ntru(t+ (qG + qH)TE) +
2qD
2k2

.

Improved NTRU-REACT. Interestingly, the specific properties of NTRU
can be used to improve the above construction. Namely, one can reduce the size
and the number of random bits. It requires two hash functions:

G : {0, 1}mLen → {0, 1}` and H : {0, 1}? → {0, 1}N .

Like the original construction of REACT, it can use any symmetric encryption
scheme (E,D), with an `-bit key. On input a message M and a random element
R ∈ {0, 1}mLen, one computes K = G(R), b = EK(M) and R

′ = H(R, b). Then
a = E ′pk(R;R

′), and the ciphertext consists of the pair a ‖ b. One can prove that
with this improved scheme and the one-time pad:

Advind−cca2
react′ (t) ≤ 2Succow

ntru(t+ (qG + qH)TE) +
2qD
2N

.

A high rate can be achieved thanks to the hybrid construction. However, one
would need to compare the efficiency of the block cipher and the NTRU primi-
tive.

5.2 Comparison of NTRU Cryptosystems

We now compare the efficiency and the security level of all the above con-
structions. Contrarily to previous complexity analyses, we need to consider the
cost of the generation of random bits as well as the cost of hashings. Indeed, this
is the only difference between each scheme, since all of them just need to apply
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once the encryption and decryption primitives in the encryption and decryption
algorithms respectively. In the figure given below, mLen and rLen are the bit-
length of the message and random inputs for the NTRU primitive, and cLen is
the bit-length of the output; k is a security parameter. The columns #rand, Hin

and Hout indicate the number of required random bits, the number of bits as
input of hash functions and the number of output bits respectively.
With classical parameters, where N is the most crucial data, chosen among

167, 251, 347 and 503, mLen = N log p = d1.585Ne, rLen = N , cLen = 7N and
k is between 40 and 80.

Schemes |M | |C| IND-CCA2 #rand Hin Hout

Π1 mLen− k cLen NO k mLen rLen

Π2 mLen− k cLen PI-OW k mLen+ k rLen+mLen− k
Π3 mLen cLen PI-OW k 2mLen rLen+mLen

OAEP′ mLen− k cLen OW k 2mLen rLen+mLen

REACT′ mLen mLen+ cLen OW mLen 3mLen rLen+mLen
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