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Abstract. We consider a certain generalization of the hidden number
problem introduced by Boneh and Venkatesan in 1996. Considering the
XTR variation of Diffie-Hellman, we apply our results to show security
of the log1/2 p most significant bits of the secret, in analogy to the results
known for the classical Diffie-Hellman scheme. Our method is based on
bounds of exponential sums which were introduced by Deligne in 1977.
We proceed to show that the results are also applicable to the LUC
scheme. Here, assuming the LUC function is one-way, we can in addition
show that each single bit of the argument is a hard-core bit.

1 Introduction

When a new cryptosystem is proposed, some maturity period is normally needed
before we see practical deployment. This is natural since some amount of public
scrutiny is needed before we feel confident that there are no (serious) attacks
possible. We can for instance see this in the case of elliptic curve cryptography
where it is not until now, almost twenty years after the introduction by Koblitz
and Miller [18, 31], that we start to see commercial use. For this reason, a formal
proof of security for a brand new scheme speeds up acceptance.

In 1994, Smith and Skinner [47] proposed a public key scheme, LUC, based
on Lucas sequences modulo p. One reason for introducing LUC was a hope that
there would not be any sub-exponential attacks on it. Although, this hope has
failed, see [2] and the discussion below, LUC still seems to have both better
speed and higher security than the classical Diffie-Hellman scheme [20].

While Lucas sequences have a rich mathematical theory, and have seen ap-
plications in computer science, for example, primality testing, there has been
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no formal proof of security relative to for example, discrete logarithms. Indeed,
shortly after publication, Bleichenbacher et al. showed in [2] that the very pa-
rameter settings that made LUC so efficient, also made it possible to reduce
the security to discrete logarithms in IFp2 , implying sub-exponential attacks. A
natural question turns up: does LUC have other (worse) defects, not present in
standard discrete logarithm based schemes?

One of the most recently proposed schemes is XTR, invented in 2000 by
Lenstra and Verheul [23]. XTR can be thought of as a generalization of LUC to
an extension field of degree six rather than two, and is based on initial ideas by
Brouwer et al. [6]. The idea is to get a security against attackers corresponding to
discrete logarithms in IFp6 while the actual computation and messages exchanged
are in IFp2 . For XTR, a proof of security exists; breaking XTR is computationally
equivalent to computing discrete logarithms in IFp6 , see also [23].

Still, even if completely breaking the respective schemes (LUC, XTR) re-
quires finite field discrete logarithm computation, it is not clear what other
security properties these schemes have. For instance, one can ask the natural
question on “partial breaking”, for example, in terms of computing certain bits
of the XTR/LUC-secrets (the “logarithms”).

The perhaps most interesting application of XTR (and LUC) is the Diffie-
Hellman (DH) analogues; the exchanged messages are small, and, according to
the recent evaluation [20, 22] of the relative performance of various cryptosys-
tems, XTR and LUC are the fastest non-elliptic curve schemes. Hence, it would
be important to establish bit-security results for the DH version; given the ex-
changed DH messages, can certain parts or bits of the DH secret key be com-
puted? For the conventional DH scheme over IFp, such results were shown by
Boneh and Venkatesan [4], as consequences of a generalization of the hidden
number problem introduced in the same paper [4]: given polynomially many ti
and approximations to tiα (mod p), recover α. Their results roughly state that

if one can compute all of the dlog1/2 pe most significant bits of the DH secret
without errors, then the remaining bits can be found as well.

In fact, the original security proof of the Diffie-Hellman bits in [4] contained
a slight gap, corrected in a later work by Shparlinski and González-Vasco [11].
That paper [11] is based on using bounds on certain exponential sums to establish
approximate uniformity for some distributions over IFp.

For XTR, Shparlinski [45] has recently extended the techniques to show se-
curity also for the XTR Diffie-Hellman secret. We here improve these results
and also extend the techniques to LUC Diffie-Hellman. Our results follow from
bounds on exponential sums, established using algebraic-geometric means.

For prime fields IFp, or cyclic multiplicative groups of prime order, the secu-
rity of all individual bits (except possibly the the least significant bits, depending
on group order) of the discrete logarithms follows from the works [3, 13, 29, 38,
42], showing that computing any single bit with non-negligible advantage (over
the trivial 1/2) implies polynomial time discrete logarithm computations. In
this paper we show that the results can be carried over to LUC in a natural
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way. Further, when the generator has even order, the predictability for the least
significant bits also applies.

2 Preliminaries

2.1 Notation

Let p be a prime. To ease notation, we write IF for the prime field IFp, and IK
for a degree m extension IFpm of IF. As usual we assume that IF is represented
by {0, . . . , p− 1}. For integers s and r ≥ 1 denote by bscr the remainder of s on
division by r. We also use log z to denote the binary logarithm of z > 0. Let

Tr(z) = TrIK/IF(z) = z + zp + . . .+ zp
m−1

be the trace of z ∈ IK in IF, see [28] for basics of the theory of finite fields.
For a prime p and k ≥ 0 we denote by MSBk,p(x) any integer u such that

∣∣∣bxcp − u
∣∣∣ ≤ p/2k+1. (1)

Roughly speaking MSBk,p(x) gives k most significant bits of x, however this
definition is more flexible and suits better our purposes. In particular, in (1),
k need not be integer. Also, the notion of most significant bits is tailored to
modular residues and does not match the usual definition for integers.

Throughout the paper the implied constants in symbols ‘O’ depend on m
and occasionally, where obvious, may depend on the small positive parameter δ;
they all are effective and can be explicitly evaluated.

We now give a short introduction to the XTR and LUC cryptosystem, as
well as to the hidden number problem and its use of lattices. The reader familiar
with these can proceed directly to Sect. 3.

2.2 The XTR and LUC Cryptosystems

Below, we concentrate only on the details relevant to this work.
Letm = 2 so that IK = IFp2 and let TrIK/IF(u) = Tr(u) as above. Let g ∈ IK be

a root of an irreducible quadratic polynomial f(X) = X2−PX+1 ∈ IFp[X], thus
P 2 − 4 is a quadratic non-residue of IFp. It is easy to show that such elements
exist. For example, for any root ϑ ∈ IK of an arbitrary irreducible quadratic
polynomial over IF, g = ϑp−1 is such an element. Note also that f above is
the characteristic polynomial of the recurrence Vn(P ) ≡ PVn−1(P ) − Vn−2(P )
(mod p), V0 = 2, V1 = P , and that Vn(P ) = Tr(gn).

In the LUC variant of Diffie–Hellman (known as LUCDIF) the communicat-
ing parties exchange Tr (gx) and Tr (gy) (that is, Vx(P ) and Vy(P )), then, using
Vxy(P ) = Vx(Vy(P )) = Vy(Vx(P )), compute the common secret Tr (gxy). For
details refer to [2, 47].

XTR can be thought of as a generalization of LUC and has been introduced
by Lenstra and Verheul, see [6, 23–25, 43, 48] for basic properties and ideas behind
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XTR. Let m = 6 so that IK = IFp6 . We also consider the field IL = IFp2 , thus we
have a tower of extensions IF ⊆ IL ⊆ IK. Accordingly, we denote by TrIK/IL(u)
and TrIL/IF(v) the trace of u ∈ IK in IL and the trace of v ∈ IL in IF. In particular,

TrIL/IF
(
TrIK/IL(u)

)
= Tr(u) for u ∈ IK.

The idea of XTR is based on the observation that for some specially selected
element g ∈ IK∗, the XTR generator, of prime order l > 3 such that l|p2− p+1,
one can also here efficiently compute TrIK/IL (gxy) from the values of x and
TrIK/IL (gy) (alternatively from y and TrIK/IL (gx)). This reduces the size of the
Diffie-Hellman messages to exchange (namely, TrIK/IL (gx) and TrIK/IL (gy) rather
than gx and gy) to create a common key TrIK/IL (gxy).

2.3 The Hidden Number Problem

We shall be interested in a variant of the hidden number problem introduced by
Boneh and Venkatesan [4, 5]. The problem can be stated as follows: recover an
unknown α ∈ IF, given approximations to bαtcp for polynomially many known
random t ∈ IF.

Let G be a subgroup of the multiplicative group IK∗. Motivated by the ap-
plication of bit security for XTR and LUC, we consider the following question:
recover α ∈ IK, given approximations of Tr(αt) for polynomially many known
random t ∈ G. Then we apply our results to obtain a statement about the bit
security of the XTR and LUC cryptosystems.

For the general hidden number problem, it has turned out that for many
applications (as we shall see, including the one at hand) the condition that t
is selected uniformly at random is too restrictive. Examples include the earlier
bit security results for the Diffie-Hellman, Shamir, and several other cryptosys-
tems [11, 12] and rigorous results on attacks (following the heuristic arguments
of [14, 32]) on the DSA(-like) signature schemes [9, 33, 34].

The aforementioned papers [9, 11, 12, 33, 34] have exploited that the method
of [4] can be adjusted to the case when t is selected from a sequence which has
some uniformity of distribution property. Thus, a central ingredient is bounds
on exponential sums; a natural tool to establish such properties.

2.4 Bounds on Exponential Sums

The case when t is selected from a small subgroup of IF∗ was studied in [11] to
generalize (and correct) the results of [4] on the bit security of the Diffie-Hellman
key in IFp. The results of [11] are based on bounds of exponential sums with
elements of subgroups of IF∗, namely on Theorems 3.4, 5.5 of [19].

Unfortunately, analogues of the bounds of exponential sums of Theorems 3.4,
5.5 of [19] are not known for non-prime fields. However, in [45] an alternative
method of [44] has been used, which applies to very small subgroups G and is
based on bounds of [7, 10] for the number of solutions of certain equations in
finite fields. Unfortunately it produces much weaker results.

It is remarked in [45] that for subgroups G of cardinality |G| ≥ pm/2+δ,
with any fixed δ > 0, the bound of exponential sums given by Theorem 8.78
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in [28] combined with Theorem 8.24 of the same work (see also (3.15) in [19])
can be used. These bounds would provide analogues of the results [4, 11] but,
unfortunately, the subgroups G associated with XTR and LUC fall below this
square-root threshold.

Nevertheless, thanks to the special property of these subgroup, we show in
Sect. 3 how one can use an approach from [8], developed in [26, 27], to apply
the exponential sum technique to studying the subgroups related to XTR and
LUC. We get a substantial improvement to the results of [45] on the bit-security

for XTR (from αn bits for a constant 0 < α < 1, to log1/2 n bits), and a new
equally strong result for LUC.

2.5 Lattices

As in [4, 5], our results related to the hidden number problem rely on round-
ing techniques in lattices. We review a few related results and definitions. Let
{b1, . . . ,bs} be a set of linearly independent vectors in IRs. The set

L = {z : z = c1b1 + . . .+ csbs, c1, . . . , cs ∈ ZZ}

is called an s-dimensional full rank lattice with basis {b1, . . . ,bs}. For a vector
u, let ‖u‖ denote its Euclidean norm.

It has been remarked in [30], and then in [35, 36] that the following statement
holds, which is somewhat stronger than that usually used in the literature. It
follows from the lattice basis reduction algorithm of [21] and results of [41, 15].

Lemma 1. There exists a deterministic polynomial time algorithm which, for a

given s-dimensional full rank lattice L and r ∈ IRs, finds v ∈ L with

‖v − r‖ ≤ exp

(
O

(
s log2 log s

log s

))
min {‖z− r‖, z ∈ L} .

3 Distribution of Trace

First, we need the following result which, as mentioned, is essentially Theo-
rem 8.78 of [28] (combined with Theorem 8.24 of the same work) or the
bound (3.15) of [19]. Let G be a subgroup of IK = IFpm .

Lemma 2. For any γ ∈ IK∗, we have

∣∣∣∣∣
∑

t∈G

exp (2πiTr (γt) /p)

∣∣∣∣∣ ≤ pm/2.

Lemma 2 is nontrivial when |G| ≥ pm/2+δ. Much less is known when G has size
less than pm/2. For prime finite fields, m = 1, Theorems 3.4, 5.5 of [19] provide
a nontrivial upper bound for |G| ≥ p1/3+δ for all primes p and for |G| ≥ pδ

for almost all primes p, respectively, which underlies the result of [11]. However
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these results have not been extended to composite fields (and it seems that such
extensions will require some substantially new ideas).

Nevertheless, applying the results of [8, 26, 27] for some special subgroups we
obtain non-trivial estimates beyond the pm/2-threshold.

For a divisor s|m let Ns be the set of z ∈ IK with Nms(z) = 1, where

Nms(z) = z1+pm/s+...+pm−m/s

is the norm of z ∈ IK = IFpm in IFpm/s ⊆ IK. Thus |Ns| = (pm − 1)/(pm/s − 1).
Our results depend on the following estimate conjectured by Deligne in [8]

(and proved in the case of the trivial character χ = χ0). In the full generality
it has been proved by Katz [17] (to be precise Theorem 4.1.1 of [17] and some
standard transformations). For the cases relevant to XTR and LUC, we may
also refer to the simpler and more explicit statements of [26, 27].

Lemma 3. For any divisor s|m, any γ ∈ IK∗, and any multiplicative character

χ of IK, we have

∣∣∣∣∣
∑

t∈Ns

χ(t) exp (2πiTr (γt) /p)

∣∣∣∣∣ ≤ sp(m−m/s)/2.

To proceed, recall the following property of the group of characters of an abelian
group.

Lemma 4. Let H be an abelian group and let Ĥ = Hom(H,C∗) be its dual
group. Then for any character χ of H,

1

|H|

∑

h∈H

χ(h) =

{
1, if χ = χ0,

0, if χ 6= χ0,

where χ0 ∈ Ĥ is the trivial character.

Lemma 5. For any divisor s|m, any subgroup G of Ns and any γ ∈ IK∗,

∣∣∣∣∣
∑

t∈G

exp (2πiTr (γt) /p)

∣∣∣∣∣ ≤ sp(m−m/s)/2.

Proof. Let ΩG be the set of all multiplicative characters of Ns, trivial on G.
Using Lemma 4, we write

∑

t∈G

exp (2πiTr (γt) /p) =
1

|ΩG |

∑

t∈Ns

exp (2πiTr (γt) /p)
∑

χ∈ΩG

χ(t)

=
1

|ΩG |

∑

χ∈ΩG

∑

t∈Ns

χ(t) exp (2πiTr (γt) /p) .

Applying the inequality of Lemma 3, we obtain the desired estimate. ut
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For γ ∈ IK and integers r and h, denote by Nγ(G, r, h) the number of solutions
of the congruence

Tr(γt) ≡ r + y (mod p), t ∈ G, y = 0, . . . , h− 1.

Using standard relations between the uniformity of distribution and bounds
of exponential sums, for example, see Corollary 3.11 of [37], from Lemma 2
and Lemma 5 one immediately derives the following asymptotic formulas for
Nγ(G, r, h).

Lemma 6. For any γ ∈ IK∗ and any subgroup G ⊆ IK∗, we have

Nγ(G, r, h) =
h

p
|G|+O(pm/2 log p).

Lemma 7. For any divisor s|m, any subgroup G ⊆ Ns, and any γ ∈ IK∗,

Nγ(G, r, h) =
h

p
|G|+O(p(m−m/s)/2 log p).

These bounds can be turned into statements on the form of the shortest
vector in certain lattices. Let ω1, . . . , ωm be a fixed basis of IK over IF. For an
integer k ≥ 0 and d(≥ 1) elements t1, . . . , td ∈ IK, let Lk (t1, . . . , td) be the
d+m-dimensional lattice generated by the rows of the (d+m)× (d+m)-matrix:




p . . . 0 0 . . . 0
0 . . . 0 0 . . . 0
...

. . .
...

...
0 . . . p 0 . . . 0
Tr(ω1t1) . . . Tr(ω1td) 1/2k+1 . . . 0
...

...
...

. . .
...

Tr(ωmt1) . . . Tr(ωmtd) 0 . . . 1/2k+1




. (2)

Lemma 8. Let p be a sufficiently large prime number and let G be a subgroup
of IK∗ with |G| ≥ pm/2+δ for some fixed δ > 0. Then for

η =
⌈
log1/2 p

⌉
and d =

⌈
m+ 1

η − 3
log p

⌉
,

the following holds. Let α = a1ω1+. . .+amωm, a1, . . . , am ∈ IF, be a fixed element
of IK. Assume that t1, . . . , td ∈ G are chosen uniformly and independently at
random. Then with probability exceeding 1−p−1 for any s = (s1, . . . , sd, 0, . . . , 0)
with (

d∑

i=1

(Tr(αti)− si)
2

)1/2

≤ 2−ηp,
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all vectors v = (v1, . . . , vd, vd+1, . . . , vd+m) ∈ Lk (t1, . . . , td) satisfying

(
d∑

i=1

(vi − si)
2

)1/2

≤ 2−ηp,

are of the form

v =





m∑

j=1

bjTr (ωjt1)


p

, . . . ,


m∑

j=1

bjTr (ωjtd)


p

,
b1

2k+1
, . . . ,

bm
2k+1




with some integers bj ≡ aj (mod p), j = 1, . . . ,m.

Proof. As in [4] we define the modular distance between two integers r and l as

dist p(r, l) = min
b∈ZZ

|r − l − bp| = min
{
br − lcp , p− br − lcp

}
.

We see from Lemma 6 that for any β ∈ IK with β 6= α the probability P (β) that

dist p (Tr(αt),Tr(βt)) ≤ 2−η+1p

for t ∈ G selected uniformly at random is

P (β) ≤ 2−η+2 +O(pm/2|G|−1 log p) ≤ 2−η+2 +O(p−δ log p) ≤ 2−η+3,

for large enough p. Therefore, with d = d(m+ 1)/(η − 3)e, for any β ∈ IK,

Pr
[
∀i ∈ [1, d] | dist p (Tr(αti),Tr(βti)) ≤ 2−η+1p

]
= P (β)d ≤ p−m−1,

where the probability is taken over t1, . . . , td ∈ G chosen uniformly and indepen-
dently at random. From here, we derive

Pr
[
∀β ∈ IK\{α}, ∀i ∈ [1, d] | dist p (Tr(αti),Tr(βti)) ≤ 2−η+1p

]
≤ p−1.

The rest of the proof is identical to the proof of Theorem 5 of [4]. Indeed, we fix
some t1, . . . , td ∈ G with

min
β∈IK\{α}

max
i∈[1,d]

dist p (Tr(αti),Tr(βti)) > 2−η+1p. (3)

Let v ∈ Lk (t1, . . . , td) be a lattice point satisfying

(
d∑

i=1

(vi − si)
2

)1/2

≤ 2−ηp.

Since v ∈ Lk (t1, . . . , td), there are integers b1, . . . , bm, z1, . . . , zd such that

v =




m∑

j=1

bjTr (ωjt1)− z1p, . . . ,

m∑

j=1

bjTr (ωjtd)− zdp,
b1

2k+1
, . . . ,

bm
2k+1


 .
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If bj ≡ aj (mod p), j = 1, . . . ,m, then for all i = 1, . . . , d we have

m∑

j=1

bjTr (ωjti)− zip =


m∑

j=1

bjTr (ωjti)


p

= Tr(αti),

since otherwise there would be i ∈ {1, . . . , d} such that |vi − si| > 2−ηp.
Now suppose that bj 6≡ aj (mod p) for some j = 1, . . . ,m. Put β = b1ω1 +

. . .+ bmωm. In this case we have

(
d∑

i=1

(vi − si)
2

)1/2

≥ max
i∈[1,d]

dist p




m∑

j=1

bjTr (ωjti) , si




≥ max
i∈[1,d]


 dist p


Tr(αti),

m∑

j=1

bjTr (ωjti)


− dist p (si,Tr(αti))




≥ max
i∈[1,d]

( dist p (Tr(αti),Tr (βti))− dist p (si,Tr(αti)))

> 2−η+1p− 2−ηp = 2−ηp

that contradicts our assumption. As we have seen, the condition (3) holds with
probability exceeding 1− p−1 and the result follows. ut

Accordingly, using Lemma 7 instead of Lemma 6 we obtain:

Lemma 9. Let p be a sufficiently large prime number and let s be a divisor of
m. Let G be a subgroup of Ns with |G| ≥ |Ns|

1/2pδ for some fixed δ > 0. Then
for

η =
⌈
log1/2 p

⌉
and d =

⌈
m+ 1

η − 3
log p

⌉
,

the following holds. Let α = a1ω1+. . .+amωm, a1, . . . , am ∈ IF, be a fixed element
of IK. Assume that t1, . . . , td ∈ G are chosen uniformly and independently at
random. Then with probability exceeding 1−p−1 for any s = (s1, . . . , sd, 0, . . . , 0)
with (

d∑

i=1

(Tr(αti)− si)
2

)1/2

≤ 2−ηp,

all vectors v = (v1, . . . , vd, vd+1, . . . , vd+m) ∈ Lk (t1, . . . , td) satisfying

(
d∑

i=1

(vi − si)
2

)1/2

≤ 2−ηp,

are of the form

v =





m∑

j=1

bjTr (ωjt1)


p

, . . . ,


m∑

j=1

bjTr (ωjtd)


p

,
b1

2k+1
, . . . ,

bm
2k+1




with some integers bj ≡ aj (mod p), j = 1, . . . ,m.
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4 Hidden Number Problem for the Trace

Using Lemma 8 in the same way as Theorem 5 of [4] was used in the proof of
Theorem 1 of that paper, we obtain

Theorem 1. Let p be a sufficiently large prime number and let G be a subgroup
of IK∗ with |G| ≥ pm/2+δ for some fixed δ > 0. Then for k = d2 log1/2 pe, d =

d4(m+ 1) log1/2 pe, the following holds. There exists a deterministic polynomial
time algorithm A such that for any α ∈ IK given 2d values ti ∈ G and si =
MSBk,p (Tr(αti)), i = 1, . . . , d, its output satisfies

Pr
t1,...,td∈G

[A (t1, . . . , td; s1, . . . , sd) = α] ≥ 1− p−1

if t1, . . . , td are chosen uniformly and independently at random from G.

Proof. We follow the arguments in the proof of Theorem 1 in [4], here briefly
outlined for completeness. We refer to the first d vectors in the matrix (2) as
p-vectors and the remaining m vectors as trace-vectors. Write

α =

m∑

j=1

ajωj ∈ IK, a1, . . . , am ∈ IF.

We consider the vector s = (s1, . . . , sd, sd+1, . . . , sd+m) where sd+j = 0, for
j = 1, . . . ,m. Multiplying the jth trace-vector of the matrix (2) by aj and
subtracting a certain multiple of the jth p-vector for j = 1, . . . ,m, we obtain a
lattice point

uα = (u1, . . . , ud, a1/2
k+1, . . . , am/2

k+1) ∈ Lk (t1, . . . , td)

such that |ui − si| ≤ p2−k−1, i = 1, . . . , d + m, where ud+j = aj/2
k+1 for

j = 1, . . . ,m. Therefore,

‖uα − s‖ ≤ (d+m)1/22−k−1p.

Let η = dlog1/2 pe. By Lemma 1 (with a slightly rougher constant 2(d+m)/4) in
polynomial time we find v = (v1, . . . , vd, vd+1, . . . , vd+m) ∈ Lk (t1, . . . , td) such
that

‖v − s‖ ≤ 2o(d+m) min {‖z− s‖, z ∈ Lk (t1, . . . , td)} ≤ 2−k+o(d)p ≤ 2−η−1p,

provided that p is large enough. We also have

(
d∑

i=1

(ui − si)
2

)1/2

≤ d1/22−k−1p ≤ 2−η−1p.

Therefore, (
d∑

i=1

(ui − vi)
2

)1/2

≤ 2−ηp.
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Applying Lemma 8, we see that v = uα with probability at least 1 − p−1,
and therefore the components a1, . . . , am of α can be recovered from the last m
components of v = uα. ut

Accordingly, Lemma 9 implies:

Theorem 2. Let p be a sufficiently large prime number and let s be a divisor of
m, s|m. Let G be a subgroup of of Ns with |G| ≥ |Ns|1/2pδ for some fixed δ > 0.

Then for k = d2 log1/2 pe, d = d4(m+1) log1/2 pe the following holds. There exists
a deterministic polynomial time algorithm A such that for any α ∈ IK given 2d
values ti ∈ G and si = MSBk,p (Tr(αti)), i = 1, . . . , d, its output satisfies

Pr
t1,...,td∈G

[A (t1, . . . , td; s1, . . . , sd) = α] ≥ 1− p−1

if t1, . . . , td are chosen uniformly and independently at random from G.

5 Bit Security of XTR

From Theorem 24 of [48] (see also [6, 23, 25]), any efficient algorithm to com-
pute TrIK/IL (gxy) from gx and gy can be used to construct an efficient algo-
rithm to compute gxy from the same information. In [43] the same result was
obtained with an algorithm which computes TrIK/IL (gxy) only for a positive
proportion of pairs gx, gy. Furthermore, the same results hold even for algo-
rithms which compute only Tr (gxy). Any v ∈ IL can be represented by a pair(
TrIL/IF(v),TrIL/IF(ϑv)

)
where ϑ is a root of an irreducible quadratic polynomial

over IF, so Tr (gxy) is a part of the representation of TrIK/IL (gxy). In fact the
same result holds for Tr (ωgxy) with any fixed ω ∈ IK∗.

Thus the above results suggest that breaking XTR is not easier than breaking
the classical Diffie–Hellman scheme. Here we obtain one more result of this kind.
We would like to show that an oracle computing a certain proportion of bits of
Tr (gxy) from TrIK/IL (gx) and TrIK/IL (gy) can be used to break classical Diffie–
Hellman. However, we instead prove that an oracle that computes a certain
proportion of bits of Tr (gxy) from gx, gy can be used to compute gxy from
gx, gy. This is stronger; the former oracle could be used to simulate the latter so
if the latter oracle cannot exist, neither can the former.

Thus, to really benefit from our results, one would need to use the trace over
IFp rather than IFp2 in XTR based systems. As Tr(z) = TrIK/IL(z) + TrIK/IL(z)

p

and as pth powers are “free” in XTR (due to the specific representation of IFp2)
this could easily be done.

For a positive integer k we denote by XT Rk the oracle such that for any
given values of gx and gy, it outputs MSBk,p (Tr (g

xy)).

Theorem 3. Let p be a sufficiently large n-bit prime number. Suppose the XTR
generator g has prime order l satisfying l|p2 − p + 1 and l ≥ p3/2+δ for some

fixed δ > 0. Then there exists a polynomial time algorithm which, given U = gu

and V = gv, for some u, v ∈ {0, . . . , l− 1}, makes O(log1/2 p) calls of the oracle

XT Rk with k = d2 log1/2 pe and computes guv correctly with probability at least
1− p−1.
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Proof. The case u = 0 is trivial. Now assume that 1 ≤ u ≤ l − 1. Then gu = gu

is an element of order l (because l is prime).
Select random r ∈ {0, . . . , l− 1}. Applying the oracle XT Rk to U and Vr =

gv+r = V gr we obtain MSBk,p
(
Tr
(
gu(v+r)

))
= MSBk,p (Tr (g

vut)) where t = gru.

For d = O(log1/2 p) independent, random r1, . . . , rd ∈ [0, l − 1], we can now
apply Theorem 2 with α = guv, m = 6, and the group G generated by gu (equal
to the group generated by g). Indeed, we see that

Nm2(g) = g1+p3 = g(p+1)(p2−p+1) = 1

thus G ∈ N2 and from Theorem 2 we obtain the desired result. ut

6 Bit Security of LUC

For a positive integer k we denote by LUCk an oracle that for any given val-
ues of gx, gy, outputs MSBk,p (Tr (g

xy)). In complete analogy with the proof of
Theorem 3 we establish the following.

Theorem 4. Let p be a sufficiently large n-bit prime number. Suppose the LUC
generator g has prime order l satisfying l|p + 1 and l ≥ p1/2+δ for some fixed

δ > 0. Then there exists a polynomial time algorithm which, given U = gu and
V = gv, for some u, v ∈ {0, . . . , l − 1}, makes O(log1/2 p) calls of the oracle

LUCk with k = d2 log1/2 pe and outputs guv with probability at least 1− p−δ/2.

7 Hard-core Bits of LUC

The security of LUC clearly depends on the hardness of inverting the function

x 7→ fg(x) = TrIFp2/IFp
(gx) = Tr(gx),

where, as above, g is the LUC generator of order l|p+1. That is, it is necessary
that this is a one-way function, otherwise the LUCDIF scheme would clearly
be insecure. Even if this is true, the function could still have other undesirable
properties in the form of “leakage”, for example, it may be possible to determine
individual bits of x. Note that Theorem 4 roughly says that, unless fg(x) can be

efficiently inverted, it cannot be the case that all of the log1/2 p most significant
bits of x can be simultaneously computed without errors from fg(x). Still, it
does not exclude the possibility of computing in polynomial time a single bit of
x, with probability, say, 1/2+ ε(log p) for a non-negligible function ε(n). (Recall
that ν(n) is negligible if for any c > 0, ν(n) = o(n−c).)

As usual let {0, 1}∗ denote the set of all finite binary strings and let Gn, G∗

be some subsets of {0, 1}n, {0, 1}∗, respectively. Suppose f : G∗ 7→ {0, 1}∗ and
b : G∗ 7→ {0, 1}. Then b is called a hard-core function for f if for all non-negligible
ε(n) and all probabilistic polynomial time algorithms, for sufficiently large n,

Pr[A(f(x)) = b(x)] ≤
1

2
+ ε(n),
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probability taken over x ∈ Gn and the random coin tosses required by A.
We are interested in the case that f(x) = Vx(P ) = Tr(gx) and b(x) = biti(x),

the ith bit of x (where bit0(x) = lsb(x) is the least significant bit). A problem
is that Vx(P ) is not uniquely invertible. Note however that Vx(P ) = Vz(P ),
precisely when z = l − x. To make “the ith bit of x” well-defined by Vx(P ), we
restrict the domain to {x | x < l/2}. (This hurts the group structure, but not
our proofs.) Hence, we also assume that the oracle’s advantage is averaged over
this smaller set.

In Sect. 6, we assumed the existence of an oracle that returned Tr(tgx), where
the oracle took care of selecting t (and computing the answer). Here we need
that we from Tr(gx) can ourselves efficiently compute values of form Tr(gwx+s)
for w, s of our own choice. Note that by the Diffie-Hellman-like properties of
LUC, the case s = 0 is easy. We thus start with a certain technical statement.
Why traces of this form is of interest will shortly be made clear.

Lemma 10. Given Tr(gx), for any set of N = (log p)O(1) triples (kj , rj , sj) ∈
ZZ
∗
l ×ZZl×ZZl, we can in polynomial time compute two sets Tν = {Tν,1, . . . Tν,N},

so that for at least one ν = 1, 2, Tν,j = Tr(gk
−1
j rjx+sj ) for j = 1, . . . , N .

Proof. As observed in [2], the conjugates of gx are the roots, H0, H1, of X
2 −

Tr(gx)X + 1, and they can be found in polynomial time. The conjugates h0, h1

of g are trivial to compute and Hi = hxπ(i) for some permutation π ∈ S2. Thus,

for any w = k−1r and s,

Tr(gwx+s) = hsπ(0)H
w
0 + hsπ(1)H

w
1 .

Now, we do not know π, but there are only two possibilities. We thus obtain two
candidates Tν , ν = 1, 2. ut

As noted, as with conventional discrete logarithm not all bits are secure.

Theorem 5. Suppose l = 2sr, s > 0, r odd. There is a polynomial time algo-
rithm to determine biti(x) from Vx(P ) for every i = 0, . . . , s− 1.

Proof. For the least significant bit, note that Vxl/2(P ) = (−1)lsb(x)V0(P ), a
condition that can be easily checked. Using Lemma 10, the rest follows from a
straight-forward generalization of the Pohlig-Hellman algorithm [39] to decide
x (mod 2s). ut

All other bits are, however, hard:

Theorem 6. Let c > 0 be a constant. Except with probability o(1) over random
choices of n-bit prime p = 2sr − 1, r odd, and g the LUC generator of order
l = p + 1, the following holds. If for some i, 0 ≤ i ≤ n − c log n there is an
algorithm that given Vx(P ) for random x, computes biti(x) with probability at
least 1/2 + ε(n), then there is a probabilistic algorithm that in time polynomial
in nε(n)−1 computes x with non-negligible probability.
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Proof. In [38, 13], reductions are given from discrete logarithms in IFp to comput-
ing biti(x) from gx, for any i. The reduction only uses operations transforming

y = gx into values of form yk
−1agb = gk

−1ax+b. By Lemma 10, the same trans-
formations can be applied to Tr(gx), for invertible k (as will be the case).

The only complication that arise is that we have here restricted the domain
of Vx(P ) = Tr(gx) to x < l/2. However, a closer look at [13] we see that in each
step of the reduction, a good approximation to the relative magnitude of each
k−1ax + b (modulo the order of g) is maintained. Using this information, we
simply discard all samples on k−1ax + b > l/2. As the samples are uniformly
distributed, this increases the complexity by a factor two. Taking into account
the two choices for the list of samples from Lemma 10, we loose another (non-
critical) factor of two, trying both possibilities. ut

For prime l, l|p+ 1, the same result follows for all i and all large p from [42].
We note that the k = O(log n) most significant bits of x can also be shown

to be hard by [13] and a security notion for biased functions from [46]. For such
k, from [3, 29] also follows hardness for the “related” function MSBk,p.

7.1 Hard-core Bits of XTR

Superficially, all details (for example, a generalization of Lemma 10) seem to go
through for XTR. However, problems are encountered by the fact that the XTR
function, TrIFp6/IFp2

(gx), is three-to-one, rather than two-to-one, and there seems

to be no obvious way to restrict the domain to a set on which: (a) XTR is 1–1,
(b) the set has non-negligible density, and, (c) the set is an interval, [a..b] ⊂ ZZl.
These properties seem necessary to apply the techniques of [13].

8 Summary and Open Problems

Establishing security of new cryptosystems is important. We have shown that
LUC and XTR share security properties with the more well-established discrete
logarithm based systems. The Diffie-Hellman variant enjoys security features as
of the original Diffie-Hellman key exchange. To this end, we have seen a new
application for exponential sums; we believe there are more such in store. This
paper is the most recent in a series studying variants of the hidden number
problem, using such exponential sums. One can ask if there is a “general” the-
orem to be sought, rather than treating each special case. Such generalization
seem difficult though: make the group a little smaller (for example, the proposed
XTR-extensions to IFp2·3·5) and everything breaks down.

For the LUC scheme, we also showed that no non-trivial information about
individual bits leak. Though likely to be true, the analogue for XTR is left open.
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