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Abstract. We present a general treatment of all non-cryptographic (i.e.,
information-theoretically secure) linear verifiable-secret-sharing (VSS)
and distributed-commitment (DC) schemes, based on an underlying se-
cret sharing scheme, pairwise checks between players, complaints, and
accusations of the dealer. VSS and DC are main building blocks for un-
conditional secure multi-party computation protocols. This general ap-
proach covers all known linear VSS and DC schemes. The main theorem
states that the security of a scheme is equivalent to a pure linear-algebra
condition on the linear mappings (e.g. described as matrices and vec-
tors) describing the scheme. The security of all known schemes follows
as corollaries whose proofs are pure linear-algebra arguments, in con-
trast to some hybrid arguments used in the literature. Our approach is
demonstrated for the CDM DC scheme, which we generalize to be se-
cure against mixed adversary settings (some curious and some dishonest
players), and for the classical BGW VSS scheme, for which we show that
some of the checks between players are superfluous, i.e., the scheme is
not optimal. More generally, our approach, establishing the minimal con-
ditions for security (and hence the common denominator of the known
schemes), can lead to the design of more efficient VSS and DC schemes
for general adversary structures.

1 Introduction

The concept of secret sharing was introduced by Shamir [12] as a means to
protect a secret simultaneously from exposure and from being lost. It allows
a so called dealer to share the secret among a set of entities, usually called
players, in such a way that only certain specified subsets of the players are able
to reconstruct the secret (if needed) while smaller subsets have no information
about it. While secret sharing only guarantees security against curious players
that try to gather information they are not supposed to obtain but otherwise
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behave honestly, its stronger version verifiable secret sharing (VSS), introduced
in [4], is secure in the following sense against dishonest players (which are of
course also curious) and a dishonest dealer that behave in an arbitrary manner.

Privacy: If the dealer is honest, then the curious players learn nothing about
the secret k.

Correctness: After the secret is shared, there exists a unique value k′ that
can be reconstructed by the players (no matter how the dishonest players
behave), and for an honest dealer k′ is equal to the shared secret k.

Reconstruction must work even if the dealer does not cooperate in the recon-
struction. If an efficient reconstruction of the secret requires the cooperation of
the dealer, then such a scheme is called a distributed commitment (DC) scheme.
In such a scheme a dishonest dealer can prevent the reconstruction by refusing
to cooperate, but he cannot achieve that a different secret is reconstructed, not
even with the help of the dishonest players. A DC scheme is almost a VSS, except
for the efficiency of the reconstruction, since the players could try all possible
behaviors of the dealer in the reconstruction.
Linear VSS and DC schemes are a main building block for general secure

multi-party protocols. Linearity implies that any linear function on shared values
can be computed without interaction by each player (locally) computing the
linear function on the corresponding individual shares.

The goal of this paper is a unified treatment of (linear) VSS and DC schemes.
We present a very natural and general sharing protocol which converts an arbi-
trary given linear secret sharing scheme into a DC (or VSS) scheme, provided
of course that this is possible at all, by enforcing pairwise consistency among
the shares of the (honest) players. Namely, by pairwise checking, complaining
and accusing, it ensures that pairwise linear dependences among the shares that
should hold do hold. This seems to be not only a very natural but the only pos-
sible approach for the construction of secure DC and VSS schemes in our model
(i.e. unconditionally secure and zero error probability), and indeed, all known
schemes can be seen as concrete instances of this general approach. Then we
state the condition under which such a scheme is a secure DC (or VSS) scheme.
This characterization is a predicate in the language of pure linear algebra, de-
pending only on the parameters of the underlying secret sharing scheme and of
the sharing protocol.

As a consequence, the security of all known schemes (and possibly even all
future ones) follow as corollaries whose proofs are linear-algebra arguments, in
contrast to some hybrid arguments used in the literature. This is demonstrated
for two schemes, for the CDM DC scheme of [5] and for the classical BGW VSS
scheme of [1]. We show how the security of the CDMDC scheme can be proven by
a simple linear-algebra argument – even with respect to a mixed adversary which
strictly generalizes the results of [5] – and characterize the general-adversary
condition under which a secure VSS scheme exists. For the BGW VSS scheme,
we show that some of the checks between players are superfluous, i.e., the scheme
is not optimal. This also shows that arguing about the security of such schemes
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becomes conceptually simpler. Finally, our approach, establishing the minimal
conditions for security, can lead to the design of linear VSS or DC schemes for
general adversary structures which are more efficient than the schemes resulting
from generic constructions as for instance that of [5].

The outline of the paper is as follows. In the next section, we introduce
the notation we use throughout the paper, describe the communication and
adversary model and define VSS and DC schemes. In Section 3, we consider
general, i.e. not necessarily linear, secret sharing schemes and investigate what
is needed to achieve a unique reconstruction as required by the above correctness
property, while in Section 4 we then show how this is reduced to a linear-algebraic
property in case of linear schemes. In Section 5 and 6 we then discuss the already
mentioned applications to the existing schemes of [5] and [1], and in Section 7
we draw some final conclusions.

2 Preliminaries

2.1 Notation

Throughout the paper, P stands for the player set P = {p1, . . . , pn}, and for
simplicity we set pi = i. We call a subsetΠ of the power set 2P of P a (monotone)
structure of P if it is closed under taking subsets, i.e., if P ∈ Π and P ′ ⊆ P
implies P ′ ∈ Π. We call it a (monotone) anti-structure if it is closed under taking
supersets, i.e., if the complement Πc := {P ∈ 2P | P 6∈ Π} is a structure. Given
two structures Π1 and Π2, Π1 t Π2 denotes the element-wise union, i.e., the
structure

Π1 tΠ2 := {P1 ∪ P2 | P1 ∈ Π1, P2 ∈ Π2}.

Consider a finite set K (the set of secrets), n finite sets S1, . . . ,Sn, where Si
is the set of possible shares for player pi, and let S be the Cartesian product
S = S1 × · · · × Sn. Elements of S will sometimes be called a sharing.

For two sharings s = (s1, . . . , sn) and s̃ = (s̃1, . . . , s̃n), the set δ(s, s̃) ⊆ P is
defined as

δ(s, s̃) := {i ∈ P | si 6= s̃i}.

Note that δ can be treated similar to a metric, as for all s, s′, s′′ ∈ S we have
δ(s, s) = ∅, δ(s, s′) = δ(s′, s) and δ(s, s′′) ⊆ δ(s, s′) ∪ δ(s′, s′′).

For a subset Q = {i1, . . . , i`} ⊆ P, a sharing s ∈ S and a subset U ⊆ S
of sharings, prQ denotes the projection prQ : S → Si1 × · · · × Si` , and sQ and
UQ stand for sQ = prQ(s) and UQ = {prQ(u) | u ∈ U}, respectively. Finally,
if S1, . . . ,Sn and hence S are in fact vector spaces, which will be the case in
Section 4, then, for a sharing s ∈ S, the support supp(s) denotes the smallest
set Q ⊆ P with prP\Q(s) = (0, . . . , 0), in other words supp(s) = δ(s, 0), and, for
Q ⊆ P and U ⊆ S, U |Q denotes the subset U |Q = {u ∈ U | supp(u) ⊆ Q}.
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2.2 Model

We consider the secure-channels model, as introduced in [1, 3], where the set
of players (including the dealer) is connected by bilateral synchronous reliable
secure channels. Broadcast channels are not assumed to be available, though can
be implemented for the cases we consider [2, 8] and thus will be treated as given
primitives.

Like in previous literature on VSS and secure multi-party computation, we
consider a central adversary who can corrupt players, subject to certain con-
straints, for example an upper bound on the total number of corrupted players.
The selection of which player to corrupt can be adaptive, depending on the
course of the protocol. The dealer is one of the players that can potentially also
be corrupted.

Passive corruption of a player means that the adversary learns the player’s
entire information, but the player performs the protocol correctly. This models
what is often also called “honest but curious” players. Active corruption of a
player means that the adversary takes full control and can make the player
deviate from the protocol in an arbitrary manner. Such a player is also called
dishonest, or simply a cheater. Active corruption is hence strictly stronger than
passive corruption. The adversary is characterized by a privacy structure ∆ ⊆ P
and an adversary structure A ⊆ ∆ with the intended meaning that the adversary
can be tolerated to corrupt any players passively or actively (one variant being
the upgrading of a passive corruption to an active corruption), as long as the
total set D of corrupted players satisfies D ∈ ∆ and the subset A of them being
actively corrupted satisfies A ∈ A. In other words, all players in D\A are honest
but curious. The complement H = Ac is sometimes called the honest-players
structure.

Finally, we assume that the adversary has unbounded computing power, and
we achieve zero error probability.

2.3 Definition of VSS and DC

Let K be a finite set (as described in Section 2.1), let ∆ be a privacy structure,
and let A ⊆ ∆ be an adversary structure (as described in Section 2.2).

Definition 1. A (∆,A)-secure verifiable secret sharing (VSS) scheme is a pair
(Share,Rec) of protocols (phases), the sharing phase, where the dealer shares a
secret k ∈ K, and the reconstruction phase, where the players try to reconstruct
k, such that the following two properties hold, even if the players of a set A ∈ A
are dishonest and behave in an arbitrary manner:

Privacy: If the dealer remains honest, then the players of any set D ∈ ∆ with
A ⊆ D learn nothing about the secret k as a result of the sharing phase.

Correctness: After the secret is shared, there exists a unique value k′ that can
be reconstructed by the players, and for an honest dealer this value k′ is equal
to the shared secret k.
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Reconstruction must work even if the dealer does not cooperate in the recon-
struction. If an efficient reconstruction of the secret requires the cooperation of
the dealer, then such a scheme is called a distributed commitment (DC) scheme.

In a DC scheme, a dishonest dealer can prevent the (efficient) reconstruction
by refusing to cooperate correctly, but he cannot achieve that a different secret
is reconstructed, not even with the help of the dishonest players. Note that if
one would define a default value for the case the dealer refuses to reconstruct,
then a cheating dealer would not be committed because he could open a sharing
in two different ways: as the real or as the default value.

A VSS or DC scheme is called linear if the list of shares, i.e., the information
given to the players during the sharing phase, is a linear function of the secret
and randomly chosen values.

3 General Schemes

Even though our goal is a general treatment of linear schemes, we first consider
arbitrary, not necessarily linear secret sharing schemes and discuss facts that
are independent of the linearity of the scheme. More precisely, we present a
sufficient condition on the (possibly not correctly) distributed shares in order to
have uniqueness of the shared secret as required by the correctness property of
VSS and DC schemes. And then, in the next section, we show how this can be
achieved using linear schemes.

Most of the arguments of this section have been used – implicitly or explicitly
– in the literature, but typically with respect to some restricted model. This
unification not only generalizes arguments that have been used before (to non-
linear schemes and to a mixed adversary), it also leads to a better understanding
of the security of (linear and general) VSS and DC schemes.

Let K and S = S1 × · · · × Sn be defined as defined in Section 2.1.

Definition 2. A secret sharing scheme is given by a joint conditional probability
distribution PS|K : S × K −→ [0, 1]. The privacy structure ∆ is defined as the
structure

∆ = {D ⊆ P | PSD|K( · , k) = PSD|K( · , k′) for all k, k′ ∈ K}1,

and the access structure Γ is defined as the anti-structure 2

Γ = {Q ⊆ P | PS|K(s, k), PS|K(s′, k′) > 0 ∧ sQ = s′Q =⇒ k = k′ } .

A sharing s ∈ S is called correct of a secret k if PS|K(s, k) > 0, and, by defining
the relation corr := {(s, k) |PS|K(s, k) > 0} ⊂ S ×K, is denoted by (s, k) ∈ corr.

1 PSD|K( · , k) is naturally defined by PSD|K(sD, k) =
∑

s′∈S:s′D=sD
PS|K(s

′, k).
2 Note that even though Γ is an anti-structure, it is called access structure (and not
access anti-structure).
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Typically, a secret sharing scheme PS|K is given in terms of an (efficiently
computable) function f : K × R → S, where R is some finite set, such that
PS|K(·, k) is the distribution of f(k, r) for a uniformly random chosen r ∈ R.
This is often directly used as the definition of a secret sharing scheme. Note
that we do not require, as is usually the case in the literature, that the privacy
structure ∆ be the complement Γ c of the access structure Γ , but for linear
schemes this is the case.

By the definition of ∆ and Γ , the following properties are guaranteed.

Privacy: For any secret k and for s = (s1, . . . , sn) chosen according to the
distribution PS|K( · , k)3 the shares si1 , . . . , sik corresponding to a set D =
{i1, . . . , ik} ∈ ∆ give no information about the secret k.

Correctness: For any (s, k) ∈ corr, the shares sj1 , . . . , sj`
corresponding to a

set Q = {j1, . . . , j`} ∈ Γ uniquely define k (and hence k can – at least in
principle – be computed from sj1 , . . . , sj`

).

Hence, the correctness property guarantees that the secret is uniquely defined
by the set of shares even if some are missing, i.e., in this sense the scheme is
robust against lost shares. We now investigate what it means to be robust against
incorrect shares.

Let A ⊆ ∆ be an adversary structure.

Proposition 1. The following robustness property is fulfilled if and only if
P 6∈ Γ c t A tA.

Robustness: For any (s, k) ∈ corr, any sharing s̃ with δ(s, s̃) ∈ A uniquely
defines k, in the sense that for any s̃ ∈ S

(s, k), (s′, k′) ∈ corr ∧ δ(s, s̃), δ(s′, s̃) ∈ A =⇒ k = k′ . (1)

Namely, by the definition of Γ , (1) holds if and only if for every pair A1, A2 ∈
A the set Q = P \ (A1 ∪A2) is in Γ , which is equivalent to P 6∈ Γ c t A tA.

Note that in the literature A typically coincides with ∆ and, as already men-
tioned, ∆ with Γ c, in which case P 6∈ Γ ctAtA coincides with the Q3 property
of [10] which states that no three sets in A cover P, which itself generalizes the
classical bound t < n/3. However, we consider this more general case because it
gives deeper insight but also because it makes perfect sense to separate the pri-
vacy from the adversary structure, i.e., to consider curious as well as dishonest
players as argued in Section 2, and in fact will generalize in Section 5 the DC
scheme from [5] to such mixed adversaries.

Robustness guarantees that the secret is uniquely defined by the set of shares
even if some might be incorrect. If, as usual, the secret k is shared by a so-called
dealer by choosing s according to PS|K( · , k) and distributing the shares among
the players in P, then this allows the correct reconstruction of the secret even
if the players of a set A ∈ A are dishonest and do not provide correct shares.
However, this is only guaranteed to hold if the dealer is honest and indeed

3 e.g. computed as s = f(k, r) for a random r ∈ R



572 S. Fehr and U. Maurer

distributes a correct sharing s of k. Hence, it seems that to achieve security
against a possibly dishonest dealer, in the sense that a unique secret is defined,
the dealer has to be forced to distribute a correct sharing s. We will now show in
the remainder of this section that this is actually overkill and a weaker condition
already suffices.

Definition 3. A function ρ : Γ × S 3 (Q, s) 7→ ρQ(s) ∈ K is called a recon-
struction function for a secret sharing scheme PS|K if, for every Q ∈ Γ , ρQ(s)
only depends on sQ, i.e., ρ

Q : S → K can be seen as a function ρQ : SQ → K,
and ρQ(sQ) = k for every correct sharing s ∈ S of a secret k ∈ K.
A (not necessarily correct) sharing s ∈ S is called a consistent sharing of a se-
cret k (with respect to ρ) if ρQ(sQ) = k for every Q ∈ Γ , and is denoted by
(s, k) ∈ consρ. And, similarly, sH with H ∈ Γ is called a consistent sharing of a
secret k for the players in H (with respect to ρ) if ρQ(sQ) = k for every Q ∈ Γ
with Q ⊆ H, and is denoted by (sH , k) ∈ consHρ .

4

It is easy to verify that the access structure Γ coincides with

Γρ = {Q ⊆ P | (s, k), (s′, k′) ∈ consρ ∧ sQ = s′Q =⇒ k = k′ }

Indeed, if Q ∈ Γρ and (s, k), (s′, k′) ∈ corr with sQ = s′Q, then (s, k), (s′, k′) ∈
consρ and hence k = k′, and therefore Q ∈ Γ . On the other hand, if Q ∈ Γ and
(s, k), (s′, k′) ∈ consρ with sQ = s′Q, then, by the properties of ρ, k = ρQ(sQ) =

ρQ(s′Q) = k′, and therefore Q ∈ Γρ.

Hence, arguing as before, we have

Proposition 2. The following strong robustness property is fulfilled for an ar-
bitrary reconstruction function ρ if and only if P 6∈ Γ c t A tA.

Strong robustness: For any (s, k) ∈ consρ, any sharing s̃ with δ(s, s̃) ∈ A
uniquely defines k, in the sense that for any s̃ ∈ S

(s, k), (s′, k′) ∈ consρ ∧ δ(s, s̃), δ(s′, s̃) ∈ A =⇒ k = k′ . (2)

Hence, if indeed P 6∈ Γ c t A t A, as long as the dealer is partially honest
and hands out a consistent (but not necessarily correct) sharing s, there is a
unique secret k defined, assuming that the shares sH of an honest-players set
H ∈ H = Ac remain unchanged. We finally show that this even holds as long as
the dealer hands out a consistent sharing sH for the players in H.

Proposition 3. The following very strong robustness property is fulfilled for an
arbitrary reconstruction function ρ if and only if P 6∈ Γ c t A tA.

4 Clearly, if s is a consistent sharing then, for any H ∈ Γ , sH is a consistent sharing
for the players in H; however, if sH is a consistent sharing for the players in H for
some H then, in general, sH cannot be completed to a consistent sharing s.
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Very strong robustness: For any honest-players set H ∈ H and (sH , k) ∈
consHρ , any sharing s̃ with sH = s̃H uniquely defines k, in the sense that for
any s̃ ∈ S

H ∈ H ∧ (sH , k) ∈ consHρ ∧ sH = s̃H
∧ H ′ ∈ H ∧ (s′H′ , k′) ∈ consH

′

ρ ∧ s′H′ = s̃H′

}

=⇒ k = k′ . (3)

Indeed, (3) holds if and only if H∩H ′ ∈ Γ for all H,H ′ ∈ H, which is equivalent
to P \ (A1 ∪ A2) ∈ Γ for all A1, A2 ∈ A, which, as already noticed earlier, is
equivalent to P 6∈ Γ c t A tA.

4 Linear Schemes

We have seen in the above Section 3 that the uniqueness of the shared secret
(that is required by the correctness property of VSS or DC) is guaranteed if (and
only if) P 6∈ Γ c t A tA and if the dealer is at least partially honest and hands
out a consistent sharing to the honest players, or if he can be forced to behave
this way. In this section we now concentrate on linear schemes, and we present a
very natural sharing protocol which enforces some kind of consistency. Namely,
by pairwise checking, complaining and accusing, it ensures pairwise consistency
among the shares (of the honest players). All known DC and VSS schemes can
be seen as concrete instances of this general approach. Finally, we give a charac-
terization in the language of linear algebra of when the sharing protocol results
in a secure DC (or VSS) scheme. As a consequence, the security of all known
schemes follow as corollaries whose proofs are linear-algebra arguments, and,
more generally, it becomes conceptually very simple to argue about the security
of such schemes, as it involves only pure linear algebra.

¿From now on, K is a field, and S1, . . . ,Sn are vector spaces over K with
inner products 〈·, ·〉S1

, . . . , 〈·, ·〉Sn
, respectively, which naturally induce an inner

product 〈·, ·〉S for the vector space S = S1 × · · · × Sn by 〈s, s′〉S =
∑

i〈si, s
′
i〉Si

.
As usual in linear algebra, for a subset U ⊆ S, span(U) denotes the subspace

consisting of all linear combinations of vectors in U and the orthogonal comple-
ment U⊥S is the subspace defined by U⊥S := {s ∈ S | 〈s, u〉S = 0 ∀u ∈ U}. We
also write s ⊥S U instead of s ∈ U⊥S .

4.1 Secret Sharing

A linear secret sharing scheme is given by a pair (M, ε), consisting of a linear
map

M : V −→ S = S1 × · · · × Sn

and a vector ε ∈ V, where V is a vector space over the field K with inner product
〈·, ·〉V and S is as described above. A secret k ∈ K is shared by choosing a random
x ∈ V such that 〈ε, x〉V = k and computing s as s = Mx.

Consider the special case where V = Ke for some e and Si = Kdi for some
d1, . . . , dn, where every inner product is the respective standard inner product,
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and where M is a matrix multiplication M : Ke → KΣdi = Kd1 × . . . × Kdn ,
x 7→M ·x.5 In this case, (M, ε) is called a monotone span program [11]. Clearly,
by fixing orthogonal bases of V and S1, . . . ,Sn, respectively, one can always have
this simplified and more familiar view. However, as this simplification might (and
indeed would in Section 5.1) destroy the naturalness of additional structures in
V or S, we keep this more general view. Nevertheless, because of this reduction,
it follows from [11] that the access structure Γ and the privacy structure ∆ of a
linear secret sharing scheme (M, ε) are given by

Γ = {Q ⊆ P | ∃λ ∈ S : supp(λ) ⊆ Q,M∗λ = ε}

and ∆ = Γ c, respectively, where M∗ : S → V is the conjugate of M (i.e.
such that 〈λ,Mx〉S = 〈M∗λ, x〉V for all λ ∈ S and x ∈ V, and, in the simplified
monotone span program view, M∗ = MT , the transposed matrix). Furthermore,
any subset Λ of

Λmax = {λ ∈ S |M∗λ = ε}

which is complete in the sense that for every Q ∈ Γ there exists λ ∈ Λ|Q,
naturally induces a reconstruction function ρ : Γ × S → K by

ρQ(s) =

{

〈λ, s〉S if 〈λ, s〉S is the same for every λ ∈ Λ|Q
0 otherwise

Note that λ ∈ Λmax fulfills 〈λ, s〉S = 〈λ,Mx〉S = 〈M∗λ, x〉V = 〈ε, x〉V = k for
any correct sharing s of a secret k.

4.2 Verifiable Secret Sharing and Distributed Commitments

Consider a linear secret sharing scheme, given by M : V → S = S1 × · · · × Sn
and ε ∈ V, with an access structure Γ . According to Section 3, in order to turn
this scheme into a DC scheme or a VSS, secure against the privacy structure
∆ = Γ c and the adversary structure A ⊆ ∆, it is necessary that P 6∈ ∆tAtA,
and additionally, as part of the sharing procedure, it has to be checked that the
dealer behaves partially honest and hands out a consistent sharing with respect
to some reconstruction function ρ to the honest players. However, it seems to
be impossible to directly check this kind of consistency, i.e. to verify something
like 〈λ, s〉 = 〈λ′, s〉 for λ 6= λ′, without violating privacy. The only thing that can
be checked without violating privacy is pairwise consistency, i.e. whether (some)
pairwise linear dependences 〈γ, s〉 = 0 with supp(γ) = {i, j} that should hold
indeed do hold; namely by comparing in private the respective contributions
〈γi, si〉 and 〈γj , sj〉 (which, up to the sign, are supposed to be equal) of the two
involved players. A player complains in case of a pairwise inconsistency, but this
may be due to the dealer’s or another player’s misbehavior, and he accuses (the
dealer) if he knows that the dealer misbehaved. In any case, the dealer has to

5 We slightly abuse notation and use the same symbol,M , for the matrixM ∈ K
Σdi×e

as well as the corresponding linear map M : Ke → K
Σdi = Kd1 × . . .×Kdn .
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publicly clarify the situation, such that finally the shares of all honest players
are pairwise consistent and privacy is satisfied. This is described in full detail in
the protocol Share below. Finally, a simple linear algebra condition is given that
is sufficient (and also necessary) in order for the pairwise consistency to imply
consistency with respect to a given reconstruction function, and hence in order
for the scheme to result in a secure DC respectively VSS.

Consider the set

Checks(M) := {γ ∈ kerM∗ | |supp(γ)| ≤ 2} ⊆ S

of all possible (pairwise) checking vectors, where kerM ∗ denotes the kernel
kerM∗ = {ξ ∈ S | M∗ξ = 0} of M∗. Clearly, for any γ ∈ Checks(M) and
any correct sharing s = Mx, we have

〈γ, s〉S = 〈γ,Mx〉S = 〈M∗γ, x〉V = 〈0, x〉V = 0.

For an arbitrary but fixed subset C ∈ Checks(M), the following sharing pro-
tocol enforces pairwise consistency with respect to the checking vectors γ ∈ C
among the players that remain honest during the execution, without revealing
any information about the shared secret. The concrete choice of the protocol is
somewhat arbitrary, in that it can be modified in different ways without loosing
its functionality and without nullifying the upcoming results. For instance, tech-
niques from [9] can be applied to improve the round complexity (at the cost of
an increased communication complexity), and some secret sharing schemes M
allow “early stopping”.

Protocol Share(M,ε),C(k)

1. The dealer chooses a random x ∈ V such that 〈ε, x〉 = k, computes s = Mx
and sends to every player pi ∈ P the corresponding share si.

2. For every checking vector γ ∈ C, it is as follows checked whether 〈γ, s〉S = 0:
If supp(γ) = {pi}, then player pi verifies whether 〈γi, si〉Si

= 0, and he
broadcasts an “accusation” against the dealer if it does not hold.
If supp(γ) = {pi, pj} with pi < pj , then then player pi sends cij = 〈γi, si〉Si

to pj who verifies whether cij + 〈γj , sj〉Sj
= 0 and broadcasts a “complaint”

if it does not hold. The dealer answers such a complaint by broadcasting
cij = 〈γi, si〉, and if this value does not coincide with pi’s cij respectively if
it does not fulfill cij+〈γj , sj〉Sj

= 0, then player pi respectively pj broadcasts
an “accusation” against the dealer.

3. The following is repeated until there is no further “accusation” or the dealer
is declared faulty (which requires at most n rounds). For every “accusation”
from a player pi, the dealer answers by broadcasting pi’s share si, and pi
replaces his share by this si. If this share contradicts the share of some
player pj , in the sense that 〈γi, si〉Si

+ 〈γj , sj〉Sj
6= 0 for some γ ∈ C with

supp(γ) = {pi, pj}, then pj broadcasts an “accusation” (if he has not yet
done so in an earlier step). If this share si contradicts itself, in the sense that
〈γi, si〉 6= 0 for some γ ∈ C with supp(γ) = {pi}, or it contradicts a share sj
that has already been broadcast, then the dealer is publicly declared to be
faulty.
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It is easy to see that if the dealer remains honest, then no matter what the
dishonest players do, nobody learns anything beyond his share, and hence the
players of any set D ∈ ∆ learn nothing about the shared secret. Furthermore, in-
dependent of the behavior of the dishonest players, ifH denotes the set of players
that remain honest during the protocol execution (though some might become
curious) then the protocol achieves pairwise consistency among the players in
H, i.e., 〈γ, s〉S = 0 for every γ ∈ C|H , or, in other words,

s ⊥S C|H .

In order for the protocol to achieve consistency with respect to a reconstruction
function ρ, it must be guaranteed for a complete subset of reconstruction vectors
Λ ⊆ Λmax that 〈λ, s〉 = 〈λ′, s〉 for all λ, λ′ ∈ Λ|H , or, in other words, that

s ⊥S {λ− λ′ | λ, λ′ ∈ Λ|H} .

This implies

Proposition 4. Let ρ : Γ × S → K be a reconstruction function induced by a
complete subset of reconstruction vectors Λ ⊆ Λmax (as defined Section 4.1).
Then, the sharing protocol Share(M,ε),C is guaranteed to produce a consistent
sharing for the honest players with respect to ρ if and only if

{λ− λ′ | λ, λ′ ∈ Λ|H} ⊆ span(C|H) for every H ∈ H. (4)

Combing this with Proposition 3 leads to

Theorem 1. Let (M, ε) be a linear secret sharing scheme with privacy structure
∆, C ⊆ Checks(M) a subset of checking vectors and A ⊆ ∆ an adversary
structure. Then the protocol Share(M,ε),C can be completed to a (∆,A)-secure
DC scheme (Share(M,ε),C ,Rec(M,ε),C) if (and only if) P 6∈ ∆ t A t A and if (4)
holds for some complete subset Λ ⊆ Λmax of reconstruction vectors.
If additionally C{i,j} ⊆ span(C|{i}∪Q∪C|{j}∪Q) for all i, j and every Q 6∈ ∆, then
Share(M,ε),C can be completed to a (∆,A)-secure VSS scheme.

Proof. With respect to a not necessarily efficient reconstruction procedure, the
claim follows from Proposition 4 and 3 (even without the additional requirement
for the VSS case). It remains to show the existence of efficient reconstruction
procedures: In the DC reconstruction, the dealer publishes the vector x used in
Step 1 of the sharing protocol and every player pi publishes his share si, and
then the players take k = 〈ε, x〉V as the reconstructed secret if δ(Mx, s) ∈ A
and reject the reconstruction otherwise (as if the dealer had refused to take part
at all). In the VSS reconstruction, every player pi publishes his share si, then
any share si that is pairwise inconsistent (with respect to the checking vectors
in C) with the shares of a set A 6∈ A is rejected, and the secret is reconstructed
from the accepted shares by applying the reconstruction function ρ induced by
Λ. Note that the additional requirement for C implies that all accepted shares
are pairwise consistent and hence consistent with respect to ρ. ut
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To our knowledge, the condition P 6∈ ∆tAtA for VSS to be possible has not
been stated previously in the literature, although the condition for secure multi-
party computation has been given in [7]. In the threshold case, this confirms
Lemma 1 of [6]: If the total number of (passively) corrupted players is t and if
w of them can even be actively corrupted, then VSS is possible if and only if
t+ 2w < n.

The following lemma will be helpful in the next section.

Lemma 1. Predicate (4) is fulfilled if every pair λ, λ′ ∈ Λ fulfills

λ− λ′ ∈ span(C|supp(λ)∪supp(λ′)) .

Proof. Let H ∈ H be arbitrary but fixed. Then, for λ, λ′ ∈ Λ|H ⊆ Λ, we have
by assumption λ− λ′ ∈ span(C|supp(λ)∪supp(λ′)), which is of course contained in
span(C|H). ut

5 Application I: Proving the Security of the CDM Scheme

We now demonstrate the power of Theorem 1 and prove the security of the CDM
DC scheme [5] by proving a pure linear-algebra statement. We only have to show
that {λ−λ′ |λ, λ′ ∈ Λ|H} ⊆ span(C|H) for every H ∈ H, or, and that is what we
are going to do, that λ − λ′ ∈ span(C|supp(λ)∪supp(λ′)) for every pair λ, λ′ ∈ Λ.
As a by-product, because of our general treatment in Section 3, we generalize
the CDM DC scheme to a mixed adversary.

5.1 The CDM Scheme

In [5], a generic construction was presented to convert any linear secret sharing
scheme, described by a monotone span program, into a linear DC scheme. As
mentioned in Section 4, a monotone span program is given by a matrix M◦ ∈
KΣdi×e and a vector ε◦ ∈ K

e. The CDM DC scheme works as follows, assuming
for simplification that ε◦ = (1, 0, . . . , 0)T and d1 = . . . = dn = 1. To share (or
commit to) a secret k, the dealer chooses a random symmetric matrix X ∈ Ke×e

with k in the upper left corner and sends the share si = M◦i · X to player pi,
where M◦i denotes the i-th row of M◦. Now, every pair pi, pj of players verifies
whether M◦i · s

T
j = M◦j · s

T
i and, in case it does not hold, start complaining and

accusing as in the protocol from the above section.
It is not hard to see that this scheme is a concrete instance of the class of

schemes described in the previous section. Indeed, it coincides with Share(M,ε),C

for M , ε and C as described in the following. M is the linear map

M : V → S = Kn×e = Ke × · · · × Ke

X 7→ s = M◦ ·X

where V is the vector space consisting of all symmetric e × e-matrices over K
and 〈·, ·〉V is given by

〈a, b〉V =
∑

1≤i,j≤e

a[i, j]b[i, j]
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for matrices a and b in V with entries a[i, j] and b[i, j]. Furthermore, ε ∈ V is
the matrix with a 1 in the upper left corner and zeros otherwise, and the set C
is given by

C = {γij = µij − µji | 1 ≤ i < j ≤ n} ⊆ Checks(M)

where µij ∈ S has M◦j as i-th row and zero-entries otherwise. In this example
the checking vectors γ ∈ C are in fact matrices.

Note that S = S1 × · · · × Sn with Si = Ke (and 〈·, ·〉Si
the standard inner

product) is interpreted as S = Kn×e. Hence, for any matrix s ∈ S, si is the
i-th row of s, and therefore if s = M◦ · X then si = M◦i · X. Furthermore,
〈ε,X〉V = k if and only if the upper left corner of X is k and for a check vector
γij ∈ C we have 〈γij , s〉S = 〈M◦j , si〉Si

−〈M◦i, sj〉Sj
= M◦j ·s

T
i −M◦i ·s

T
j . Hence,

Share(M,ε),C indeed coincides with the CDM protocol [5].
Finally, note that (as it is also shown in [5]) the access structure Γ of the

secret sharing scheme (M, ε) coincides with the access structure Γ◦ of the original
scheme (M◦, ε◦).

5.2 The Security Proof

If λ◦ is a reconstruction vector for the original secret sharing scheme (M◦, ε◦), i.e.
〈λ◦,M◦x〉Kn = k for x ∈ Ke with k as first entry (such that 〈ε◦, x〉Ke = k), then
the matrix λ = [λ◦| 0 ] ∈ S with λ◦ as first column and zero-entries otherwise
is a reconstruction vector for M , i.e. 〈λ,M◦X〉S = k for X ∈ V with k in the
upper left corner (such that 〈ε,X〉V = k). Since Γ = Γ◦, the subset Λ ⊂ Λmax

consisting of such reconstruction vectors λ = [λ◦| 0 ] is complete. Furthermore,
we will show the following linear-algebraic fact.

Lemma 2. For every pair λ, λ′ ∈ Λ,

λ− λ′ ∈ span(C|supp(λ)∪supp(λ′)) .

The following corollary now follows directly from Theorem 1 and Lemma 1,
generalizing the results of [5] to a mixed adversary.

Corollary 1. The CDM DC scheme based on a linear secret sharing scheme
with access structure Γ and corresponding privacy structure ∆ = Γ c is secure
with respect to an adversary structure A ⊆ ∆ if and only if P 6∈ ∆ t A tA.

Proof of Lemma 2: Let λ = [λ◦| 0 ] and λ′ = [λ′
◦
| 0 ] be reconstruction vectors

from C. We have
∑

i λ◦[i]M◦i = λ◦
T ·M◦ = ε◦

T = (1, 0, . . . , 0) and hence

∑

i

λ◦[i]µ
ji =

∑

i

λ◦[i]









0
M◦i

0









=









0
1 0 · · · 0

0
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where the non-zero row is at the j-th position, and hence λ′ can be written as

λ′ = [λ′
◦
| 0 ] =

∑

j

λ′
◦
[j]









0
1 0 · · · 0

0









=
∑

j

λ′
◦
[j]

(

∑

i

λ◦[i]µ
ji

)

=
∑

ij

λ◦[i]λ
′
◦
[j]µji .

Similarly λ =
∑

ij λ◦[i]λ
′
◦
[j]µij and therefore

λ− λ′ =
∑

ij

λ◦[i]λ
′
◦
[j]
(

µij − µji
)

=
∑

ij

λ◦[i]λ
′
◦
[j]γij ∈ span(C|supp(λ)∪supp(λ′)) ,

which proves the claim. ut

6 Application II: Reducing the Number of Checks in the

BGW Scheme

Theorem 1 tells us that as long as the set {λ − λ′ | λ, λ′ ∈ Λ|H} is contained
in the subspace span(C|H) ⊆ S, where H ∈ H collects the honest players, the
corresponding scheme is secure. By this it is obvious that if the vectors in C|H are
not linearly independent, then C|H contains more vectors than actually needed.
We will now use this simple observation to reduce the number of checks in the
(symmetric version of the) BGW VSS scheme [1].

The variation of the scheme of [1] where a symmetric bivariate polynomial is
used instead of an arbitrary one can be seen as a special case of the CDM scheme,
where the matrix M◦ is a Van-der-Monde matrix, i.e., M◦i = [1, αi, α

2
i , . . . , α

t
i]

for disjoint α1, . . . , αn 6= 0. We have the following fact.

Lemma 3. Let Q∗ ∈ Γ = {Q ⊆ P | |Q| ≥ t+ 1} and H ⊇ Q∗. Then

span({γij ∈ C|H | i ∈ Q∗ or j ∈ Q∗}) = span(C|H).

As the proof is purely technical and does not give any new insight, it is
moved to the appendix. Similarly, it can be shown using linear algebra that
C{i,j} ⊆ span(C|{i}∪Q ∪ C|{j}∪Q) for all i, j and every Q with |Q| ≥ t + 1. The
following corollary follows now from Theorem 1, showing that (the symmetric
version of) the classical VSS scheme of [1] is not optimal with respect to the
number of required pairwise checks.

Corollary 2. The symmetric version of the BGW VSS scheme with threshold
privacy structure ∆ = {D ⊆ P | |D| ≤ t} is secure with respect to a threshold
adversary structure A = {A ⊆ P | |A| ≤ w} with w ≤ t if and only if n > t+2w,
even if C is replaced by

C̄ = {γij ∈ C | j > w} .

Proof. Let H be the set of honest players, hence |H| ≥ n−w > t+w. Clearly, the
set Q∗ = {i ∈ H | i > w} is in Γ and hence C̄|H = {γij ∈ C|H | i ∈ Q∗ or j ∈ Q∗}
fulfills span(C̄|H) = span(C|H). ut

Alternatively, this shows that the classical BGW VSS scheme allows “early
stopping”, as it is also used in the 4-round VSS of [9].
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7 Conclusions

We presented a general treatment of all linear VSS and DC schemes based on an
underlying linear secret sharing scheme, pairwise checks, complaints and accusa-
tions (against the dealer), and we analysed the security of this class of schemes.
This class covers all currently known linear schemes, and possibly even all future
ones. We reduced the security of these schemes to a pure linear-algebra predi-
cate and showed with two concrete examples that this makes arguing about the
security of such schemes conceptually very simple, as no cryptographic reason-
ing is needed anymore but just pure linear algebra. Furthermore, given a fixed
adversary structure (e.g. described by a monotone span program) this might al-
low the construction of secure schemes which are more efficient than the generic
construction of [5].
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A Proof of Lemma 3

Recall that the checking vectors γij ∈ C (which are actually matrices) are of the
following form: The i-th row is M◦j , the j-th row is −M◦i, and all remaining

entries are zero, i.e., γiji = M◦j and γijj = −M◦i and γijl = 0 for l 6= i, j.

Proof of Lemma 3: We assume without loss of generality thatQ∗ = {pn−t, . . . , pn}.
Consider an arbitrary but fixed checking vector γi0j0 with i0, j0 ∈ H and
i0 < j0 < n − t, i.e. i0, j0 6∈ Q∗ (otherwise, nothing needs to be shown). We
have to show that γi0j0 is contained in span({γij ∈ C|H | i ∈ Q∗ or j ∈ Q∗}.
This will be done by the following claim.

Claim: There exists a sequence δn−t−1, . . . , δn ∈ span({γij ∈ C|H | i ∈
Q∗ or j ∈ Q∗}) such that for every n− t− 1 ≤ i ≤ n

δik =

{

γi0j0k if k ≤ i
∑n

k 6=l=i+1(λ
i0
k λ

j0
l − λi0l λ

j0
k )M◦l otherwise

where for 1 ≤ i ≤ n and n−t ≤ l ≤ n we let λil 6= 0 be such that
∑n

l=n−t λ
i
lM◦l =

M◦i.
Truly, we can set

δn−t−1 =

n
∑

l=n−t

(λj0l γi0l − λi0l γ
j0l) ∈ span({γij ∈ C|H | i ∈ Q∗ or j ∈ Q∗})

Then for k ≤ n− t− 1 we indeed have δn−t−1
k = γi0j0k , namely

δn−t−1
i0

=
∑

l

λj0l M◦l = M◦j0 = γi0j0i0

δn−t−1
j0

= −
∑

l

λi0l M◦l = −M◦i0 = γi0j0j0
and

δn−t−1
k = 0 = γi0j0k if k 6= i0, j0

while for k > n− t− 1 we have

δn−t−1
k = −λj0k M◦i0 + λi0k M◦j0 = −λj0k (

n
∑

l=n−t

λi0l M◦l) + λi0k (
n
∑

l=n−t

λj0l M◦l)

=

n
∑

l=n−t

(λi0k λ
j0
l − λi0l λ

j0
k )M◦l =

n
∑

l=n−t
l6=k

(λi0k λ
j0
l − λi0l λ

j0
k )M◦l
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And inductively for i = n− t− 1, . . . , n− 1, given δi as demanded, we can set

δi+1 = δi−
n
∑

l=i+2

(λi0i+1λ
j0
l −λi0l λ

j0
i+1)γ

i+1,l ∈ span({γij ∈ C|H |i ∈ Q∗ or j ∈ Q∗})

Then, clearly, for k < i+ 1 we have δi+1
k = δik = γi0j0k . Furthermore, we have

δi+1
i+1 = δii+1 −

n
∑

l=i+2

(λi0i+1λ
j0
l − λi0l λ

j0
i+1)M◦l = 0 = γi0j0i+1

while for k > i+ 1

δi+1
k = δik + (λi0i+1λ

j0
k − λi0k λ

j0
i+1)M◦i+1 =

n
∑

l=i+2
l6=k

(λi0k λ
j0
l − λi0l λ

j0
k )M◦l

as required. ut


