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Abstract. We describe a cryptanalytical technique for distinguishing
some stream ciphers from a truly random process. Roughly, the ciphers
to which this method applies consist of a “non-linear process” (say, akin
to a round function in block ciphers), and a “linear process” such as an
LFSR (or even fixed tables). The output of the cipher can be the linear
sum of both processes. To attack such ciphers, we look for any property
of the “non-linear process” that can be distinguished from random. In
addition, we look for a linear combination of the linear process that
vanishes. We then consider the same linear combination applied to the
cipher’s output, and try to find traces of the distinguishing property.
In this report we analyze two specific “distinguishing properties”. One is
a linear approximation of the non-linear process, which we demonstrate
on the stream cipher SNOW. This attack needs roughly 295 words of
output, with work-load of about 2100. The other is a “low-diffusion”
attack, that we apply to the cipher Scream-0. The latter attack needs
only about 243 bytes of output, using roughly 250 space and 280 time.

Key words: Hypothesis testing, Linear cryptanalysis, Linear masking, Low-
Diffusion attacks, Stream ciphers.

1 Introduction

A stream cipher (or pseudorandom generator) is an algorithm that takes a short
random string, and expands it into a much longer string, that still “looks ran-
dom” to adversaries with limited resources. The short input string is called the
seed (or key) of the cipher, and the long output string is called the output stream
(or key-stream). Although one could get a pseudorandom generator simply by
iterating a block cipher (say, in counter mode), it is believed that one could get
higher speeds by using a “special purpose” stream cipher.

One approach for designing such fast ciphers, is to use some “non-linear
process” that may resemble block cipher design, and to hide this process using
linear masking. A plausible rationale behind this design, is that the non-linear
process behaves roughly like a block cipher, so we expect its state at two “far
away” points in time to be essentially uncorrelated. For close points, on the
other hand, it can be argued they are masked by independent parts of the linear
process, and so again they should not be correlated.

Some examples of ciphers that use this approach include SEAL [?] and
Scream [?], where the non-linear process is very much like a block cipher, and
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the output from each step is obtained by adding together the current state of the
non-linear process and some entries from fixed (or slowly modified) secret tables.
Other examples are PANAMA [?] and MUGI [?], where the linear process (called
buffer) is an LFSR (Linear Feedback Shift Register), which is used as input to
the non-linear process, rather than to hide the output. Yet another example is
SNOW [?], where the linear LFSR is used both as input to the non-linear finite
state machine, and also to hide its output.

In this work we describe a technique that can be used to distinguish such
ciphers from random. The basic idea is very simple. We first concentrate on the
non-linear process, looking for a characteristic that can be distinguished from
random. For example, a linear approximation that has noticeable bias. We then
look at the linear process, and find some linear combination of it that vanishes.
If we now take the same linear combination of the output stream, then the linear
process would vanish, and we are left with a sum of linear approximations, which
is itself a linear approximation. As we show below, this technique is not limited
to linear approximations. In some sense, it can be used with “any distinguishing
characteristic” of the non-linear process. In this report we analyze in details two
types of “distinguishing characteristics”, and show some examples of its use for
specific ciphers.

Perhaps the most obvious use of this technique, is to devise linear attacks (and
indeed, many such attacks are known in the literature). This is also the easiest
case to analyze. In Section ?? we characterize the statistical distance between
the cipher and random as a function of the bias of the original approximation
of the non-linear process, and the weight distribution of a linear code related to
the linear process of the cipher.

Another type of attacks uses the low diffusion in the non-linear process.
Namely, some input/output bits of this process depend only on very few other
input/output bits. For this type of attacks, we again analyze the statistical
distance, as a function of the number of bits in the low-diffusion characteristic.
This analysis is harder than for the linear attacks. Indeed, here we do not have a
complete characterization of the possible attacks of this sort, but only an analysis
for the most basic such attack.

We demonstrate the usefulness of our technique by analyzing two specific
ciphers. One is the cipher SNOW [?], for which we demonstrate a linear attack,
and the other is the variant Scream-0 of the stream cipher Scream [?], for which
we demonstrate a low-diffusion attack.

1.1 Relation to prior work

Linear analyses of various types are the most common tool for cryptanalyzing
stream ciphers. Much work was done on LFSR-based ciphers, trying to discover
the state of the LFSRs using correlation attacks (starting from Meier and Staffel-
bach [?], see also, e.g., [?,?]). Golić [?,?] devised linear models (quite similar to
our model of linear attacks) that can be applied in principle to any stream cipher.
He then used them to analyze many types of ciphers (including, for example,
a linear distinguisher for RC4 [?]). Some examples of linear distinguishers for
LFSR based ciphers, very similar to our analysis of SNOW, are [?,?], among
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others. Few works used also different cryptanalytical tools. Among them are the
distinguishers for SEAL [?,?] and for RC4 [?].

The main contribution of the current work is in presenting a simple frame-
work for distinguishing attacks. This framework can be applied to many ciphers,
and for those ciphers it incorporates linear analysis as a special case, but can be
used to devise many other attacks, such as our “low-diffusion attacks”. (Also, the
attacks on SEAL due to [?] and [?] can be viewed as special cases of this frame-
work.) For linear attacks, we believe that our explicit characterization of the
statistical distance (Theorem ??) is new and useful. In addition to the cryptan-
alytical technique, the explicit formulation of attacks on stream ciphers, as done
in Section ??, is a further contribution of this work.

Organization. In Section ?? we briefly review some background material on
statistical distance and hypothesis testing. In Section ?? we formally define the
framework in which our techniques apply. In Section ?? we describe how these
techniques apply to linear attacks, and in Section ?? we show how they apply
to low-diffusion attacks.

2 Elements of statistical hypothesis testing

If D is a distribution over some finite domain X and x is an element of X, then by
D(x) we denote probability mass of x according to D. For notational convenience,
we sometimes denote the same probability mass by PrD[x]. Similarly, if S ⊆ X
then D(S) = PrD[S] =

∑

x∈S D(x).

Definition 1 (Statistical distance). Let D1,D2 be two distributions over some
finite domain X. The statistical distance between D1,D2, is defined as

|D1 −D2| def
=

∑

x∈X

|D1(x)−D2(x)| = 2 ·max
S⊆X

D1(S)−D2(S)

(We note that the statistical distance is always between 0 and 2.) Below are two
useful facts about this measure:

• Denote by DN the distribution which is obtained by picking independently N
elements x1, ..., xn ∈ X according to D. If |D1−D2| = ε, then to get |DN

1 −DN
2 | =

1, the numberN needs to be between Ω(1/ε) and O(1/ε2). (A proof can be found,
for example, in [?, Lemma 3.1.15].) In this work we sometimes make the heuristic
assumption that the distributions that we consider are “smooth enough”, so that
we really need to set N ≈ 1/ε2.

• If D1, ...,DN are distributions over n-bit strings, we denote by
∑Di the distri-

bution over the sum (exclusive-or),
∑N

i=1 xi, where each xi is chosen according
to Di, independently of all the other xj ’s. Denote by U the uniform distribution
over {0, 1}n. If for all i, |U − Di| = εi, then |U −

∑

Di| ≤
∏

i εi. (We include
a proof of this simple “xor lemma” in the long version of this report [?].) In
the analysis in this paper, we sometimes assume that the distributions Di are
“smooth enough”, so that we can use the approximation |U −

∑

Di| ≈
∏

i εi.
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Hypothesis testing. We provide a brief overview of (binary) hypothesis test-
ing. This material is covered in many statistics and engineering textbooks (e.g.,
[?, Ch.5]). In a binary hypothesis testing problem, there are two distributions
D1,D2, defined over the same domain X. We are given an element x ∈ X,
which was drawn according to either D1 or D2, and we need to guess which
is the case. A decision rule for such hypothesis testing problem is a func-
tion DR : X → {1, 2}, that tells us what should be our guess for each ele-
ment x ∈ X. Perhaps the simplest notion of success for a decision rule DR,
is the statistical advantage that it gives (over a random coin-toss), in the case
that the distributions D1,D2 are equally likely a-priori. Namely, adv(DR) =
1
2 (PrD1

[DR(x) = 1] + PrD2
[DR(x) = 2])− 1

2 .

Proposition 1. For any hypothesis-testing problem 〈D1,D2〉, the decision rule
with the largest advantage is the maximum-likelihood rule, ML(x) = 1 if D1(x) >
D2(x), and 2 otherwise. The advantage of the ML decision rule equals a quarter
of the statistical distance, adv(ML) = 1

4 |D1 −D2|.

3 Formal framework

We consider ciphers that are built around two repeating functions (processes).
One is a non-linear function NF (x) and the other is a linear function LF (w).
The non-linear function NF is usually a permutation on n-bit blocks (typically,
n ≈ 100). The linear function LF is either an LFSR, or just fixed tables of
size between a few hundred and a few thousand bits. The state of such a cipher
consists of the “non-linear state” x and the “linear state” w. In each step, we
apply the function NF to x and the function LF to w, and we may also “mix”
these states by xor-ing some bits of w into x and vice versa. The output of the
current state is also computed as an xor of bits from x and w. To simplify the
presentation of this report, we concentrate on a special case, similar to Scream.1

In each step i we do the following:

1. Set wi := LF (wi−1)
2. Set yi := L1(wi), zi = L2(wi) // L1, L2 are some linear functions
3. Set xi := NF (xi−1 + yi) + zi // ‘+’ denotes exclusive-or
4. Output xi

3.1 The linear process

The only property of the linear process that we care about, is that the string
y1z1y2z2 . . . can be modeled as a random element in some known linear subspace
of {0, 1}?. Perhaps the most popular linear process is to view the “linear state”
w as the contents of an LFSR. The linear modification function LF clocks the
LFSR some fixed number of times (e.g., 32 times), and the functions L1, L2 just
pick some bits from the LFSR. If we denote the LFSR polynomial by p, then
the relevant linear subspace is the subspace orthogonal to p · Z2[x].

1 We show how our techniques can handle other variants when we describe the at-
tack on SNOW, but we do not attempt to characterize all the variants where such
techniques apply.
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A different approach is taken in Scream. There, the “linear state” resides
in some tables, that are “almost fixed”. In particular, in Scream, each entry in
these tables is used 16 times before it is modified (via the non-linear function
NF ). For our purposes, we model this scheme by assuming that whenever an
entry is modified, it is actually being replaced by a new random value. The
masking scheme in Scream can be thought of as a “two-dimensional” scheme,
where there are two tables, which are used in lexicographical order.2 Namely, we
have a “row table” R[·] and a “column table” C[·], each with 16 entries of 2n-bit
string. The steps of the cipher are partitioned into batches of 256 steps each. At
the beginning of a batch, all the entries in the tables are “chosen at random”.
Then, in step i = j + 16k in a batch, we set (yi|zi) := R[j] + C[k].

3.2 Attacks on stream ciphers

We consider an attacker that just watches the output stream and tries to distin-
guish it from a truly random stream. The relevant parameters in an attack are
the amount of text that the attacker must see before it can reliably distinguish
the cipher from random, and the time and space complexity of the distinguish-
ing procedure. The attacks that we analyze in this report exploit the fact that
for a (small) subset of the bits of x and NF (x), the joint distribution of these
bits differs from the uniform distribution by some noticeable amount. Intuitively,
such attacks never try to exploit correlations between “far away” points in time.
The only correlations that are considered, are the ones between the input and
output of a single application of the non-linear function.3

Formally, we view the non-linear process not as one continuous process, but
rather as a sequence of uncorrelated steps. That is, for the purpose of the attack,
one can view the non-linear state x at the beginning of each step as a new
random value, independent of anything else. Under this view, the attacker sees
a collection of pairs 〈xj + yj , NF (xj) + zj〉, where the xj ’s are chosen uniformly
at random and independently of each other, and the yj , zj ’s are taken from the
linear process.

One example of attacks that fits in this model are linear attacks. In linear
cryptanalysis, the attacker exploits the fact that a one-bit linear combination of
〈x,NF (x)〉 is more likely to be zero than one (or vice versa). In these attack, it
is always assumed that the bias in one step is independent of the bias in all the
other steps. Somewhat surprisingly, differential cryptanalysis too fits into this
framework (under our attack model). Since the attacker in our model is not given
chosen-input capabilities, it exploits differential properties of the round function
by waiting for the difference xi+xj = ∆ to happen “by chance”, and then using
the fact that NF (xi)+NF (xj) = ∆′ is more likely than you would expect from
a random process. It is clear that this attack too is just as effective against pairs
of uncorrelated steps, as when given the output from the real cipher.

2 The scheme in Scream is actually slightly different than the one described here, but
this difference does not effect the analysis in any significant way.

3 When only a part of x is used as output, we may be forced to look at a few consecutive
applications of NF . This is the case in SNOW, for example.
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We are now ready to define formally what we mean by “an attack on the
cipher”. The attacks that we consider, observe some (linear combinations of)
input and output bits from each step of the cipher, and try to decide if these
indeed come from the cipher, or from a random source. This can be framed as a
hypothesis testing problem. According to one hypothesis (Random), the observed
bits in each step are random and independent. According to the other (Cipher),
they are generated by the cipher.

Definition 2 (Attacks on stream ciphers with linear masking). An at-
tack is specified by a linear function `, and by a decision rule for the following
hypothesis-testing problem: The two distributions that we want to distinguish are

Cipher. The Cipher distribution is Dc = 〈` (xj + yj , NF (xj) + zj)〉j=1,2,..., where
the yjzj’s are chosen at random from the appropriate linear subspace (defined
by the linear process of the cipher), and the xj’s are random and independent.

Random. Using the same notations, the “random process” distribution is Dr
def
=

〈

`(xj , x
′
j)
〉

j=1,2,...
, where the xj’s and x′j’s are random and independent.

We call the function `, the distinguishing characteristic used by attack.

The amount of text needed for the attack is the smallest number of steps
for which the decision rule has a constant advantage (e.g., advantage of 1/4) in
distinguishing the cipher from random. Other relevant parameters of the attack
are the time and space complexity of the decision rule. An obvious lower bound
on the amount of text is provided by the statistical distance between the Cipher
and Random distributions after N steps.

4 Linear attacks

A linear attack [?] exploits the fact that some linear combination of the input and
output bits of the non-linear function is more likely to be zero than one (or vice
versa). Namely, we have a (non-trivial) linear function ` : {0, 1}2n → {0, 1}, such
that for a randomly selected n bit string x, Pr[`(x,NF (x)) = 0] = (1+ε)/2. The
function ` is called a linear approximation (or characteristic) of the non-linear
function, and the quantity ε is called the bias of the approximation.

When trying to exploit one such linear approximation, the attacker observes
for each step j of the cipher, a bit σj = `(xj + yj , NF (xj) + zj). Note that
σj by itself is likely to be unbiased, but the σ’s are correlated. In particular,
since the y, z’s come from a linear subspace, it is possible to find some linear
combination of steps for which they vanish. Let J be a set of steps such that
∑

j∈J yj =
∑

j∈J zj = 0. Then we have

∑

j∈J

σj =
∑

j∈J

`(xj , NF (xj)) +
∑

j∈J

`(yj , zj) =
∑

j∈J

`(xj , NF (xj))

(where the equalities follow since ` is linear). Therefore, the bit ξJ =
∑

j∈J σj

has bias of ε|J|. If the attacker can observe “sufficiently many” such sets J , it
can reliably distinguish the cipher from random.
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This section is organized as follows: We first bound the effectiveness of linear
attacks in terms of the bias ε and the weight distribution of some linear subspace.
As we explain below, this bound suggests that looking at sets of steps as above
is essentially “the only way to exploit linear correlations”. Then we show how
to devise a linear attack on SNOW, and analyze its effectiveness.

4.1 The statistical distance

Recall that we model an attack in which the attacker observes a single bit per
step, namely σj = `(xj + yj , NF (xj)+ zj). Below we denote τj = `(xj , NF (xj))
and ρj = `(yj , zj). We can re-write the Cipher and Random distributions as

Cipher. Dc
def
= 〈τj + ρj〉j=1,2,..., where the τj ’s are independent but biased,

Pr[τj = 0] = (1 + ε)/2, and the string ρ1ρ2 . . . is chosen at random from
the appropriate linear subspace (i.e., the image under ` of the linear sub-
space of the yjzj ’s).

Random. Dr
def
= 〈σj〉j=1,2,..., where the σj ’s are independent and unbiased.

Below we analyze the statistical distance between the Cipher and Random dis-
tributions, after observing N bits σ1 . . . σN . Denote the linear subspace of the
ρ’s by L ⊆ {0, 1}N , and let L⊥ ⊆ {0, 1}N be the orthogonal subspace. The
weight distribution of the space L⊥ plays an important role in our analysis. For
r ∈ {0, 1, . . . , N}, let AN (r) be the set of strings χ ∈ L⊥ of Hamming weight r,
and let AN (r) denote the cardinality of AN (r). We prove the following theorem:

Theorem 1. The statistical distance between the Cipher and Random distribu-

tions from above, is bounded by
√

∑N
r=1 AN (r)ε2r .

Proof. Included in the long version [?].

Remark. Heuristically, this bound is nearly tight. In the proof we analyzed the
random variable ∆ and used the bound E[|∆ − E[∆]|] ≤

√

VAR[∆]. One can
argue heuristically that as long as the statistical distance is sufficiently small,
“∆ should behave much like a Gaussian random variable”. If it were a Gaussian,
we would have E[|∆|] =

√

VAR[∆] ·
√

2/π. Thus, we expect the bound from

Theorem ?? to be tight up to a constant factor
√

2/π ≈ 0.8.

4.2 Interpretations of Theorem ??

There are a few ways to view Theorem ??. The obvious way is to use it in order
to argue that a certain cipher is resilient to linear attacks. For example, in [?]
we use Theorem ?? to deduce a lower-bound on the amount of text needed for
any linear attack on Scream-0.

Also, one could notice that the form of Theorem ?? exactly matches the
common practice (and intuition) of devising linear attacks. Namely, we always
look at sets where the linear process vanishes, and view each such set J as
providing “statistical evidence of weight ε2|J|” for distinguishing the cipher from
random. Linear attacks work by collecting enough of these sets, until the weights
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sum up of to one. One can therefore view Theorem ?? as asserting that this is
indeed the best you can do.

Finally, we could think of devising linear attacks, using the heuristic argument
about this bound being tight. However, the way Theorem ?? is stated above, it
usually does not imply efficient attacks. For example, when the linear space L
has relatively small dimension (as is usually the case with LFSR-based ciphers,
where the dimension of L is at most a few hundreds), the statistical distance is
likely to approach one for relatively small N . But it is likely that most of the
“mass” in the bound of Theorem ?? comes from terms with a large power of ε
(and therefore very small “weight”). Therefore, if we want to use a small N , we
would need to collect very many samples, and this attack is likely to be more
expensive than an exhaustive search for the key.

Alternatively, one can try and use an efficient sub-optimal decision rule. For a
given bound on the work-load W and the amount of text N , we only consider the
first few terms in the power series. That is, we observe the N bits σ = σ1 . . . σN ,
but only consider the W smallest sets J for which χ(J) ∈ L⊥. For each such set
J , the sum of steps

∑

j∈J σj has bias ε|J|, and these can be used to distinguish
the cipher from random. If we take all the sets of size at most R, we expect the

advantage of such a decision rule to be roughly 1
4

√

∑R
r=1 AN (r)ε2r . The simplest

form of this attack (which is almost always the most useful), is to consider only
the minimum-weight terms. If the minimum-weight of L⊥ is r0, then we need to
make N big enough so that 1

4

√

AN (r0) = ε−r0 .

4.3 The attack on SNOW

The stream cipher SNOW was submitted to NESSIE in 2000, by Ekdahl and
Johansson. A detailed description of SNOW is available from [?]. Here we outline
a linear attack on SNOW along the lines above, that can reliably distinguish it
from random after observing roughly 295 steps of the cipher, with work-load of
roughly 2100.

SNOW consists of a non-linear process (called there a Finite-State Machine,
or FSM), and a linear process which is implemented by an LFSR. The LFSR
of SNOW consists of sixteen 32-bit words, and the LFSR polynomial, defined
over GF (232), is p(z) = z16 + z13 + z7 + α, where α is a primitive element
of GF (232). (The orthogonal subspace L⊥ is therefore the space of (bitwise
reversal of) polynomials over Z2 of degree ≤ N , which are divisible by the LFSR
polynomial p.) At a given step j, we denote the content of the LFSR by Lj [0..15],
so we have Lj+1[i] = Lj [i−1] for i > 0 and Lj+1[0] = α ·(Lj [15]+Lj [12]+Lj [6]).

The “FSM state” of SNOW in step j consists of only two 32-bit words,
denoted R1j , R2j . The FSM update function modifies these two values, using
one word from the LFSR, and also outputs one word. The output word is then
added to another word from the LFSR, to form the step output. We denote
the “input word” from the LFSR to the FSM update function by fj , and the
“output word” from the FSM by Fj . The FSM uses a “32×32 S-box” S[·] (which
is built internally as an SP-network, from four identical 8×8 boxes and some bit
permutation). A complete step of SNOW is described in Figure ??. In this figure,
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we deviate from the notations in the rest of the paper, and denote exclusive-or
by ⊕ and integer addition mod 232 by +. We also denote 32-bit cyclic rotation
to the left by ¿<.

1. fj := Lj [0]
2. Fj := (fj +R1j)⊕R2j

3. output Fj ⊕ Lj [15]
4. R1j+1 := R1j ⊕ ((R2j + Fj)¿< 7)
5. R2j+1 := S[R1j ]
6. update the LFSR

Fig. 1. One step of SNOW: ⊕ is xor and + is addition mod 232.

To devise an attack we need to find a good linear approximation of the non-
linear FSM process, and low-weight combinations of steps where the Lj [·] values
vanish (i.e., low-weight polynomials which are divisible by the LFSR polynomial
p). The best linear approximation that we found for the FSM process, uses six
bits from two consecutive inputs and outputs, fj , fj+1, Fj , Fj+1. Specifically, for
each step j, the bit

σj
def
= (fj)15 + (fj)16 + (fj+1)22 + (fj+1)23 + (Fj)15 + (Fj+1)23

is biased. (Of these six bits, the bits (fj)15, (Fj)15 and (Fj+1)22 are meant to
approximate carry bits.) We measured the bias experimentally, and it appears
to be at least 2−8.3.

At first glance, one may hope to find weight-4 polynomials that are divisible
by the LFSR polynomial p. After all, p itself has only four non-zero terms.
Unfortunately, one of these terms is the element α ∈ GF (232), whereas we need
a low-weight polynomial with 0-1 coefficients. What we can show, however, is
the existence of 0-1 polynomials of weight-six that are divisible by p.

Proposition 2. The polynomial q(z) = z16×232−7+z13×232−7+z7×232−7+z9+
z6 + 1 is divisible by the LFSR polynomial p(z) = z16 + z13 + z7 + α.

Proof. Included in the long version [?].

Corollary 1. For all m,n, the polynomial qm,n(z)
def
= q(z)2

m · zn is divisible by
p(z).

If we take, say,m = 0, 1, . . . 58 and n = 0, 1, . . . 294, we get about 2100 different
0-1 polynomials, all with weight 6 and degree less than N = 295, and all divisible
by p(z). Each such polynomial yields a sequence of six steps, Jm,n, such that
the sum of the Lj [·] values in these steps vanishes. Therefore, if we denote the
output word of SNOW at step j by Sj , then for all m,n we have,

τm,n
def
=

∑

j∈Jm,n

(Sj)15 + (Sj+1)23 =
∑

j∈Jm,n

σj
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and therefore each τm,n has bias of 2−8.3×6 = 2−49.8. Since we have roughly 2100

of them, we can reliably distinguish them from random.

5 Low-diffusion attacks
In low-diffusion attacks, the attacker looks for a small set of (linear combinations
of) input and output bits of the non-linear function NF , whose values completely
determine the values of some other (linear combinations of) input and output
bits. The attacker tries to guess the first set of bits, computes the values of the
other bits, and uses the computed value to verify the guess against the cipher’s
output. The complexity of such attacks is exponential in the number of bits that
the attacker needs to guess.

We introduce some notations in order to put such attacks in the context of
our framework. To simplify the notations, we assume that the guessed bits are
always input bits, and the determined bits are always output bits. (Eliminating
this assumption is usually quite straightforward.) As usual, let NF : {0, 1}n →
{0, 1}n be the non-linear function. The attack exploits the fact that some input
bits `in(x) are related to some output bits `out(NF (x)) via a known deterministic
function f . That is, we have `out(NF (x)) = f(`in(x)). Here, `in, `out are linear
functions, and f is an arbitrary function, all known to the attacker. We denote
the output size of `in, `out by m,m′, respectively. That is, `in : {0, 1}n → {0, 1}m,
`out : {0, 1}n → {0, 1}m

′

, and f : {0, 1}m → {0, 1}m′ .
In each step j, the attacker observes the bits `in(xj+yj) and `out(NF (xj)+zj)

(where yj , zj are from the linear process, as in Section ??). Below we denote
uj = `in(xj), u

′
j = `out(NF (xj)), vj = `in(yj), v

′
j = `out(zj), and wj = uj + vj ,

w′j = u′j + v′j . We can re-write the Cipher and Random distributions as

Cipher. Dc
def
=
〈

(wj = uj + vj , w′j = u′j + v′j)
〉

j=1,2,...
, where the uj ’s are uni-

form and independent, u′j = f(uj), and the string v1v
′
1v2v

′
2 . . . is chosen at

random from the appropriate linear subspace (i.e., the image under `in, `out

of the linear subspace of the y, z’s).

Random. Dr
def
=
〈

(wj , w
′
j)
〉

j=1,2,...
, all uniform and independent.

It is not hard to see that there may be enough information there to distinguish
these two distributions after only a moderate number of steps of the cipher.
Suppose that the dimension of the linear subspace of the vj ’s and v′j ’s is a, and
the attacker observes N steps such that m′N > a. Then, the attacker can (in
principle) go over all the 2a possibilities for the vj ’s and v′j ’s. For each guess, the
attacker can compute the uj ’s and u′j ’s, and verify the guess by checking that
u′j = f(uj) for all j. This way, the attacker guesses a bits and gets m′N bits of
consistency checks. Since m′N > a we expect only the “right guess” to pass the
consistency checks.

This attack, however, is clearly not efficient. To devise an efficient attack, we
can again concentrate on sets of steps where the linear process vanishes: Suppose
that we have a set of steps J , such that

∑

j∈J [vj , v
′
j ] = [0, 0]. Then we get

∑

j∈J

(wj , w
′
j) =

∑

j∈J

(uj , u
′
j) =

∑

j∈J

(uj , f(uj))
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and the distribution over such pairs may differ from the uniform distribution by
a noticeable amount. The distance between this distribution and the uniform
one, depends on the specific function f , and on the cardinality of the set J .
Below we analyze in details perhaps the simplest cases, where f is a random
function. Later we explain how this analysis can be extended for other settings,
and in particular for the case of the functions in Scream.

5.1 Analysis for random functions

For a given function, f : {0, 1}m → {0, 1}m′ , and an integer n, we denote

Dn
f

def
=

〈

d =
∑n

j=1 uj , d′ =
∑n

j=1 f(uj)
〉

, where the uj ’s are uniform in {0, 1}m
and independent. We assume that the attacker knows f , and it sees many in-
stances of 〈d, d′〉. The attacker needs to decide if these instances come from Dn

f

or from the uniform distribution on {0, 1}m+m′ . Below we denote the uniform
distribution by R. If the function f “does not have any clear structure”, it makes
sense to analyze it as if it was a random function. Here we prove the following:

Theorem 2. Let n,m,m′ be integers with n2 ¿ 2m. 4 For a uniformly selected

function f : {0, 1}m → {0, 1}m′ , Ef [|Dn
f −R|] ≤ c(n) · 2m′−(n−1)m

2 , where

c(n) =







√

(2n)! / (n! 2n) if n is odd

(1 + o(1))

√

(2n)!
n! 2n −

(

n!
(n/2)! 2n/2

)2

if n is even

Proof. Included in the long version [?]. We note that the term 2
m′−(n−1)m

2 is
due to the fact that the attacker guesses (n − 1)m bits and gets m′ bits of
consistency check, and the term c(n) is due to the symmetries in the guessed
bits. (For example, the vector u = u1 . . . un is equivalent to any permutation of
u.)

How tight is this bound? Here too we can argue heuristically that the random
variables in the proof “should behave like Gaussian random variables”, and again
we expect the ratio between E[|X −E[X]|] and

√

VAR[X] to be roughly
√

2/π.

Therefore, we expect the constant c(n) to be replaced by
√

2/π · c(n) ≈ 0.8c(n).
Indeed we ran some experiments to measure the statistical distance |Dn

f − R|,
for random functions with n = 4 and a few values of m,m′. (Note that c(4) =
(1+ o(1))

√
96 ≈ 9.8 and

√

2/π · c(4) ≈ 7.8). These experiments are described in
the long version of this report [?]. The results confirm that the distance between
these distributions is just under 7.8 · 2(m′−3m)/2.

5.2 Variations and extensions

Here we briefly discuss a few possible extensions to the analysis from above.
Using different f ’s for different steps. Instead of using the same f everywhere, we
may have different f ’s for different steps. I.e., in step j we have `out(NF (xj)) =

4 It can be shown that the same bounds hold also for larger n’s, but assuming n2 ¿ 2m

makes some proofs a bit easier.
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fj(`in(xj)), and we assume that the fj ’s are random and independent. The dis-
tribution that we want to analyze is therefore 〈d =

∑

uj , d
′ =

∑

fj(uj)〉. The
analysis from above still works for the most part (as long as `in, `out are the
same in all the steps). The main difference is that the factor c(n) is replaced by
a smaller one (call it c′(n)).

For example, if we use n independent functions, we get c′(n) = 1, since all the
symmetries in the proof of Theorem ?? disappear. Another example (which is
used in the attack on Scream-0) is when we have just two independent functions,
f1 = f3 = · · · and f2 = f4 = · · ·. In this case (and when n is divisible by four),

we get c′(n) = (1 + o(1))

√

(

n!
(n/2)! 2n/2

)2

−
(

(n/2)!
(n/4)! 2n/4

)4

.

When f is a sum of a few functions. An important special case, is when f is a
sum of a few functions. For example, in the functions that are used in the attack
on Scream-0, the m-bit input to f can be broken into three disjoint parts,
each with m/3 bits, so that f(x) = f 1(x1) + f2(x2) + f3(x3). (Here we have
|x1| = |x2| = |x3| = m/3 and x = x1x2x3.) If f1, f2, f3 themselves do not have
any clear structure, then we can apply the analysis from above to each of them.

That analysis tells us that each of the distributions Di def
= (

∑

j u
i
j ,
∑

j f
i(ui

j)) is

likely to be roughly c(n) · 2(m′−(n−1)m/3)/2 away from the uniform distribution.

It is not hard to see that the distribution Dn
f that we want to analyze can

be cast as D1 + D2 + D3, so we expect to get |Dn
f − R| ≈

∏ |Di − R| ≈
(

c(n) · 2(m′−(n−1)m/3)/2
)3

= c(n)32(3m′−(n−1)m)/2. More generally, suppose we

can write f as a sum of r functions over disjoint arguments of the same length.
Namely, f(x) =

∑r
i=1 f i(xi), where |x1| = ... = |xr| = m/r and x = x1...xr.

Repeating the argument from above, we get that the expected distance |Dn
f −R|

is about c(n)r2(rm′−(n−1)m)/2 (assuming that this is still smaller than one). As
before, one could use the “Gaussian heuristics” to argue that for the “actual
distance” we should replace c(n)r by (c(n) ·

√

2/π)r. (And if we have different

functions for different steps, as above, then we would get (c′(n) ·
√

2/π)r.)

Linear masking over different groups. Another variation is when we do linear
masking over different groups. For example, instead of xor-ing the masks, we add
them modulo some prime q, or modulo a power of two. Again, the analysis stays
more or less the same, but the constants change. If we work modulo a prime
q > n, we get a constant of c′(n) =

√
n!, since the only symmetry that is left

is between all the orderings of {u1, . . . , un}. When we work modulo a power of
two, the constant will be somewhere between c′(n) and c(n), probably closer to
the former.

5.3 Efficiency considerations

The analysis from above says nothing about the computational cost of distin-
guishing between Dn

f and R. It should be noted that in a “real life” attack, the
attacker may have access to many different relations (with different values of
m,m′), all for the same non-linear function NF . To minimize the amount of
needed text, the attacker may choose to work with the relation for which the
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quantity (n − 1)m − m′ is minimized. However, the choice of relations is lim-
ited by the attacker’s computational resources. Indeed, for large values of m,m′,
computing the maximum-likelihood decision rule may be prohibitively expensive
in terms of space and time. Below we review some strategies for computing the
maximum-likelihood decision rule.
Using one big table. Perhaps the simplest strategy, is for the attacker to prepare
off-line a table of all possible pairs 〈d, d′〉 with d ∈ {0, 1}m, d′ ∈ {0, 1}m′ . For each
pair 〈d, d′〉 the table contains the probability of this pair under the distribution
Dn

f (or perhaps just one bit that says whether this probability is more than

2−m−m′).
Given such a table, the on-line part of the attack is trivial: for each set

of steps J , compute (d, d′) =
∑

j∈J(wj , w
′
j), and look into the table to see if

this pair is more likely to come from Dn
f or from R. After observing roughly

2(n−1)m−m′/c(n)2 such sets J , a simple majority vote can be used to determine
if this is the cipher or a random process. Thus, the on-line phase is linear in the
amount of text that has to be observed, and the space requirement is 2m+m′ .

As for the off-line part (in which the table is computed), the naive way is to go
over all possible values of u1 . . . un ∈ {0, 1}m, for each value computing d =

∑

ui

and d′ =
∑

f(ui) and increasing the corresponding entry 〈d, d′〉 by one. This
takes 2mn time. However, in the (typical) case where m′ ¿ (n − 1)m, one can
use a much better strategy, whose running time is only O(log n(m+m′)2m+m′).

First, we represent the function f by a 2m × 2m′ table, with F [x, y] = 1 if
f(x) = y, and F [x, y] = 0 otherwise. Then, we compute the convolution of F

with itself, E
def
= F ? F , 5

E[s, t] =
∑

x+x′=s

∑

y+y′=t

F [x, y] · F [x′, y′] = |{x : f(x) + f(x+ s) = t}|

(Note that E represents the distribution D2
f .) One can use the Walsh-Hadamard

transform to perform this step in time O((m+m′)2m+m′) (see, e.g., [?]). Then,
we again use the Walsh-Hadamard transform to compute the convolution of E
with itself,

D[d, d′]
def
= (E ? E)[d, d′] =

∑

s+s′=d

∑

t+t′=d′

E(s, t) · E(s′, t′)

= |{〈x, s, z〉 : f(x) + f(x+ s) + f(z) + f(z + s+ d) = d′}|
= |{〈x, y, z〉 : f(x) + f(y) + f(z) + f(x+ y + z + d) = d′}|

thus getting the distribution D4
f , etc. After log n such steps, we get the distri-

bution of Dn
f .

When f is a sum of functions. We can get additional flexibility when f is
a sum of functions on disjoint arguments, f(x) = f 1(x1) + · · · + fr(xr) (with

5 Recall that the convolution operator is defined on one-dimensional vectors, not on
matrices. Indeed, in this expression we view the table F as a one-dimensional vector,
whose indexes are m+m′-bits long.
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x = x1 . . . xr). In this case, one can use the procedure from above to compute the
tablesDi[d, d′] for the individual f i’s. If all the xi’s are of the same size, then each
of the Di’s takes up 2m′+(m/r) space, and can be computed in time O(log n(m′+
(m/r))2m′+(m/r)). Then, the “global” D table can again be computed using
convolutions. Specifically, for any fixed d = d1...dr, the 2m′ -vector of entries
D[d, ·] can be computed as the convolutions of the 2m′-vectors D1[d1, ·], D2[d2, ·],
..., Dr[dr, ·],

D[d, ·] = D1[d1, ·] ? D2[d2, ·] ? · · · ? Dr[dr, ·]
At first glance, this does not seem to help much: Computing each convolution
takes time O(r ·m′2m′), and we need to repeat this for each d ∈ {0, 1}m, so the
total time is O(rm′2m+m′). However, we can do much better than that.

Instead of storing the vectors Di[di, ·] themselves, we store their image un-

der the Walsh-Hadamard transform, ∆i[di, ·] def
= H(Di[di, ·]). Then, to compute

the vector D[
〈

d1...dr
〉

, ·], all we need is to multiply (point-wise) the correspond-
ing ∆i[di, ·]’s, and then apply the inverse Walsh-Hadamard transform to the
result. Thus, once we have the tables Di[·, ·], we need to compute r · 2m/r

“forward transforms” (one for each vector Di[di, ·]), and 2m inverse transforms
(one for each

〈

d1...dr
〉

. Computing each transform (or inverse) takes O(m′2m′)
time. Hence, the total time (including the initial computation of the Di’s) is

O
(

log n(rm′ +m)2m′+(m/r) +m′2m+m′
)

, and the total space that is needed is

O(2m+m′).
If the amount of text that is needed is less than 2m, then we can optimize

even further. In this case the attacker need not store the entire table D in
memory. Instead, it is possible to store only the Di tables (or rather, the ∆i[·, ·]
vectors), and compute the entries of D during the on-line part, as they are
needed. Using this method, the off-line phase takes O(log n(rm′+m)2m′+(m/r))
time and O(r2m′+m/r) space to compute and store the vectors ∆i[·, ·], and the
on-line phase takes O(m′2m′) time per sample. Thus the total time complexity
here is O(log n(rm′+m)2m′+(m/r)+Sm′2m′), where S is the number of samples
needed to distinguish D from R.
5.4 An attack on Scream-0

The stream cipher Scream (with its variants Scream-0 and Scream-F) was pro-
posed very recently by Coppersmith, Halevi and Jutla. A detailed description of
Scream is available in [?]. Below we only give a partial description of Scream-0,
which suffices for the purpose of our attack.

Scream-0 maintains a 128-bit “non-linear state” x, two 128-bit “column
masks” c1, c2 (which are modified every sixteen steps), and a table of sixteen
“row masks” R[0..15]. It uses a non-linear function NF , somewhat similar to a
round of Rijndael. Roughly speaking, the steps of Scream-0 are partitioned to
chunks of sixteen steps. A description of one such chunk is found in Figure ??.

Here we outline a low-diffusion attack on the variant Scream-0, along the
lines above, that can reliably distinguish it from random after observing merely
243 bytes of output, with memory requirement of about 250 and work-load of
about 280. This attack is described in more details in the long version of [?].
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1. for i = 0 to 15 do
2. x := NF (x+ c1) + c2
3. output x+R[i]
4. if i is even, rotate c1 by 64 bits
5. if i is odd, rotate c1 by some other amount
6. end-for
7. modify c1, c2, and one entry of R, using the function NF (·)

Fig. 2. sixteen steps of Scream-0.

As usual, we need to find a “distinguishing characteristic” of the non-linear
function (in this case, a low-diffusion characteristic), and a combination of steps
in which the linear process vanishes. The linear process consists of the ci’s and
the R[i]’s. Since each entry R[i] is used sixteen times before it is modified, we
can cancel it out by adding two steps were the same entry is used. Similarly,
we can cancel c2 by adding two steps within the same “chunk” of sixteen steps.
However, since c1 is rotated after each use, we need to look for two different
characteristics of the NF function, such that the pattern of input bits in one
characteristic is a rotated version of the pattern in the other.

The best such pair of “distinguishing characteristics” that we found for
Scream-0, uses a low-diffusion characteristic for NF in which the input bits
pattern is 2-periodic (and the fact that c1 is rotated every other step by 64
bits). Specifically, the four input bytes x0, x5, x8, x13, together with two bytes
of linear combinations of the output NF (x), yield the two input bytes x2, x10,
and two other bytes of linear combinations of the output NF (x). In terms of the
parameters that we used above, we have m = 48 input and output bits, which
completely determine m′ = 32 other input and output bits.

To use this relation, we can observe these ten bytes from each of four steps,
(i.e., j, j+1, j+16k, j+1+16k for even j and k < 16). We can then add them up
(with the proper rotation of the input bytes in steps j+1, j+17), to cancel both
the “row masks” R[i] and the “column masks” c1, c2. This gives us the following
distribution D = 〈u1 + u2 + u3 + u4, f1(u1) + f2(u2) + f1(u3) + f2(u4)〉, where
the ui’s are modeled as independent, uniformly selected, 48-bit strings, and f1, f2

are two known functions fj : {0, 1}48 → {0, 1}32. (The reason that we have two
different functions is that the order of the input bytes is different between the
even and odd steps.) Moreover, each of the two fj ’s can be written as a sum
of three functions over disjoint parts, fj(x) = f1

j (x
1) + f2

j (x
2) + f3

j (x
3) where

|x1| = |x2| = |x3| = 16.

This is one of the “extensions” that were discussed in Section ??. Here we
have n = 4, m = 48, m′ = 32, r = 3, and two different functions. Therefore, we
expect to get statistical distance of c′(n)3 · 2(3m′−(n−1)m)/2, with

c′(n) ≈
√

2/π ·

√

(

n!

(n/2)! 2n/2

)2

−
(

(n/2)!

(n/4)! 2n/4

)4
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Plugging in the parameters, we have c′(4) ≈
√

2/π ·
√
8, and the expected sta-

tistical distance is roughly (16/π)3/2 · 2−24 ≈ 2−20.5. We therefore expect to be
able to reliably distinguish D from random after about 241 samples. Roughly
speaking, we can get 8 ·

(

14
2

)

≈ 210 samples from 256 steps of Scream-0. (We
have 8 choices for an even step in a chunk of 16 steps, and we can choose two
such chunks from a collection of 14 in which the three row masks in use remain
unchanged.) So we need about 231 · 256 = 239 steps, or 243 bytes of output.

Also, in Section ?? we show how one could efficiently implement the maximum-
likelihood decision rule to distinguish D from R, using Walsh-Hadamard trans-
forms. Plugging the parameters of the attack on Scream-0 into the general tech-
niques that are described there, we have space complexity of O(r2m′+m/r), which
is about 250. The time complexity isO(log n(rm′+m)2m′+(m/r)+Sm′2m′), where
in our case S = 241, so we need roughly 280 time.

6 Conclusions

In this work we described a general cryptanalytical technique that can be used to
attack ciphers that employ a combination of a “non-linear” process and a “linear
process”. We analyze in details the effectiveness of this technique for two special
cases. One is when we exploit linear approximations of the non-linear process,
and the other is when we exploit the low diffusion of (one step of) the non-linear
process. We also show how these two special cases are useful in attacking the
ciphers SNOW [?] and Scream-0 [?].

It remains an interesting open problem to extend the analysis that we have
here to more general “distinguishing characteristics” of the non-linear process.
For example, extending the analysis of the low-diffusion attack from Section ??
to the case where the functions f is key-dependent (and thus not known to the
adversary) may yield an effective attack on Scream [?].

In addition to the cryptanalytical technique, we believe that another contri-
bution of this work is our formulation of attacks on stream ciphers. We believe
that explicitly formalizing an attack as considering sequence of uncorrelated
steps (as opposed to one continuous process) can be used to shed light on the
strength of many ciphers.
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