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Abstract. Thanks to a new upper bound, we study more precisely the
nonlinearities of Maiorana-McFarland’s resilient functions. We charac-
terize those functions with optimum nonlinearities and we give examples
of functions with high nonlinearities. But these functions have a pecu-
liarity which makes them potentially cryptographically weak. We study
a natural super-class of Maiorana-McFarland’s class whose elements do
not have the same drawback and we give examples of such functions
achieving high nonlinearities.
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1 Introduction

The Boolean functions used in stream ciphers are functions from F n2 to F2, where
n is a positive integer. In practice, n is often small (smaller than or equal to 10),
but even for small values of n, searching for the best cryptographic functions by
visiting all Boolean functions in n variables is computationally impossible since
their number 22

n

is too large (for instance, for n = 7, it would need billions of
times the age of the universe on a work-station). Thus, we need constructions of
Boolean functions satisfying all necessary cryptographic criteria. Before describ-
ing the known constructions, we recall what are these cryptographic criteria.
Any Boolean function f in n variables (i.e. any F2-valued function defined

on the set Fn2 of all binary vectors of length n) admits a unique algebraic normal
form (A.N.F.):

f(x1, . . . , xn) =
∑

I⊆{1,...,n}

aI
∏

i∈I

xi,

where the additions are computed in F2, i.e. modulo 2, and where the aI ’s are
in F2. We call algebraic degree of a Boolean function f and we denote by d

◦f
the degree of its algebraic normal form. The affine functions are those func-
tions of degrees at most 1. They are the simplest functions, from cryptographic
viewpoint. On the contrary, cryptographic functions must have high degrees (cf.
[?,?,?,?]).
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The Hamming weight wH(f) of a Boolean function f in n variables is the
size of its support {x ∈ F n2 ; f(x) = 1}. The Hamming distance dH(f, g) between
two Boolean functions f and g is the Hamming weight of their difference, i.e. of
f + g (this sum is computed modulo 2). The nonlinearity of f is its minimum
distance to all affine functions. We denote by Nf the nonlinearity of f . Func-
tions used in stream ciphers must have high nonlinearities to resist the known
attacks on these ciphers (correlation and linear attacks) [?]. A Boolean function
f is called bent if its nonlinearity equals 2n−1 − 2n/2−1, which is the maximum
possible value (obviously, n must be even). Then, its distance to every affine
function equals 2n−1 ± 2n/2−1. This property can also be stated in terms of
the Walsh (i.e., discrete Fourier, or Hadamard) transform of f defined on F n2
as f̂(u) =

∑
x∈Fn

2
f(x) (−1)x·u (where x · u denotes the usual inner product

x · u =
∑n
i=1 xi ui). But it is more easily stated in terms of the Walsh transform

of the “sign” function χf (x) = (−1)
f(x), equal to χ̂f (u) =

∑
x∈Fn

2
(−1)f(x)+x·u:

f is bent if and only if χ̂f (u) has constant magnitude 2
n/2 (cf. [?,?]). Indeed,

the Hamming distances between f and the affine functions u ·x and u ·x+1 are
equal to 2n−1 − 1

2 χ̂f (u) and 2
n−1 + 1

2 χ̂f (u). Thus:

Nf = 2
n−1 −

1

2
max
u∈Fn

2

|χ̂f (u)|. (1)

Bent functions have degrees upper bounded by n/2. They are characterized by
the fact that their derivatives Daf(x) = f(x)+ f(x+ a), a 6= 0, are all balanced,
i.e. have weight 2n−1. But cryptographic functions themselves must be balanced,
so that the systems using them resist statistical attacks [?]. Bent functions are
not balanced.
The last (but not least) criterion considered in this paper is resiliency. It

plays a central role in stream ciphers: in the standard model of these ciphers (cf.
[?]), the outputs of n linear feedback shift registers are the inputs of a Boolean
function, called combining function. The output of the function produces the
keystream, which is then bitwisely xored with the message to produce the cipher.
Some devide-and-conquer attacks exist on this method of encryption (cf. [?,?]).
To resist these attacks, the system must use a combining function whose output
distribution probability is unaltered when any m of the inputs are fixed [?], with
m as large as possible. This property, calledm-th order correlation-immunity [?],
is characterized by the set of zero values in the Walsh spectrum [?]: f is m-th

order correlation-immune if and only if χ̂f (u) = 0, i.e. f̂(u) = 0, for all u ∈ F
n
2

such that 1 ≤ wH(u) ≤ m, where wH(u) denotes the Hamming weight of the
n-bit vector u, (the number of its nonzero components). Balanced m-th order
correlation-immune functions are called m-resilient functions. They are charac-
terized by the fact that χ̂f (u) = 0 for all u ∈ F

n
2 such that 0 ≤ wH(u) ≤ m.

Siegenthaler’s inequality [?] states that any m-th order correlation immune func-
tion in n variables has degree at most n − m, that any m-resilient function
(0 ≤ m < n − 1) has algebraic degree smaller than or equal to n −m − 1 and
that any (n − 1)-resilient function has algebraic degree 1. Sarkar and Maitra
[?] have shown that the nonlinearity of any m-resilient function (m ≤ n − 2) is
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divisible by 2m+1 and is therefore upper bounded by 2n−1 − 2m+1. If a function
achieves this bound (independently obtained by Tarannikov [?] and Zheng and
Zhang [?]), then it also achieves Siegenthaler’s bound (cf. [?]) and the Fourier
spectrum of the function has then three values (such functions are often called
“plateaued” or “three-valued”; cf. [?]), these values are 0 and ±2m+2. More
precisely, it has been shown by Carlet and Sarkar [?,?] that if f is m-resilient

and has degree d, then its nonlinearity is divisible by 2m+1+bn−m−2
d c and can

therefore equal 2n−1 − 2m+1 only if d = n − m − 1. We shall say that an m-
resilient function achieves the best possible nonlinearity if its nonlinearity equals
2n−1 − 2m+1.
If 2n−1 − 2m+1 is greater than the best possible nonlinearity of all balanced
functions (and in particular if it is greater than the best possible nonlinearity of
all Boolean functions) then the Sarkar-Maitra-Tarannikov-Zheng-Zhang’s bound
can obviously be improved. In the case n is even, the best possible nonlinearity
of all Boolean functions being equal to 2n−1− 2n/2−1 and the best possible non-
linearity of all balanced functions being smaller than 2n−1 − 2n/2−1, Sarkar and
Maitra deduce from their divisibility result that Nf ≤ 2

n−1− 2n/2−1− 2m+1 for
every m-resilient function f with m ≤ n/2− 2. In the case n is odd, they state
that Nf is smaller than or equal to the highest multiple of 2

m+1 which is less
than or equal to the best possible nonlinearity of all Boolean functions, which is
smaller than 2n−1− 2n/2−1 (see [?] for more details). For m ≤ n/2− 2, a poten-
tially better upper bound can be given, whatever is the evenness of n: Sarkar-
Maitra’s divisibility bound shows that χ̂f (a) = ϕ(a) ·2m+2 where ϕ(a) is integer-

valued. But Parseval’s relation
∑
a∈Fn

2
χ̂f

2
(a) = 22n and the fact that χ̂f (a) is

null for every word a of weight ≤ m implies
∑
a; wH(a)>m ϕ

2(a) = 22n−2m−4

and thus maxa∈Fn
2
|ϕ(a)| ≥

√
22n−2m−4

2n−
∑m

i=0
(ni)

= 2n−m−2√
2n−

∑m

i=0
(ni)
. Thus we have

maxa∈Fn
2
|ϕ(a)| ≥

⌈
2n−m−2√

2n−
∑m

i=0
(ni)

⌉
(where dλe denotes the smallest integer

greater than or equal to λ)) and this impliesNf ≤ 2
n−1−2m+1

⌈
2n−m−2√

2n−
∑m

i=0
(ni)

⌉
.

We shall call “Sarkar et al.’s bounds” all these bounds, in the sequel.

High order resilient functions with high degrees and high nonlinearities are
needed for applications in stream ciphers, but designing constructions of Boolean
functions meeting these cryptographic criteria is still a crucial challenge nowa-
days in symmetric cryptography. We observe now some imbalance in the knowl-
edge on cryptographic functions for stream ciphers, after the results recently ob-
tained on the properties of resilient functions [?,?,?,?]. Examples of m-resilient
functions achieving the best possible nonlinearities have been obtained for small
values of n [?,?,?] and for every m ≥ 0.6 n [?] (n being then not limited).
But these examples give very limited numbers of functions (they are often de-
fined recursively or obtained after a computer search) and these functions often
have cryptographic weaknesses such as linear structures. Designing constructions
leading to large numbers of functions would permit to choose in applications
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cryptographic functions satisfying specific constraints. It would also make more
efficient those cryptosystems in which the cryptographic functions themselves
would be part of the secret keys.

The paper is organized as follows. At section ??, we study the known con-
structions of resilient functions and the nonlinearities of the functions they pro-
duce. We study the nonlinearities of Maiorana-McFarland’s functions more effi-
ciently than the previous papers on this subject could do, thanks to a new up-
per bound that we introduce. We characterize then those functions which reach
Sarkar et al.’s bound and we exhibit functions achieving high nonlinearities. At
section ??, we introduce a super-class of Maiorana-McFarland’s class. We study
the degrees, the nonlinearities and the resiliency orders of its elements and we
give examples of functions in this class having good cryptographic parameters.

2 The known constructions of reasonably large sets of
cryptographic functions, and their properties

Only one reasonably large class of Boolean functions is known, whose elements
can be cryptographically analyzed.

2.1 Maiorana-McFarland’s construction

In [?] is introduced a modification of Maiorana-McFarland’s construction of bent
functions (cf. [?]) whose elements, viewed as binary vectors of length 2n, are the
concatenations of affine functions1: let k and r be integers such that n ≥ r >
k ≥ 0; denote n− r by s; let g be any Boolean function on F s2 and φ a mapping
from F s2 to F

r
2 such that every element in φ(F

s
2 ) has Hamming weight strictly

greater than k. Then the function:

fφ,g(x, y) = x · φ(y) + g(y) =
r∑

i=1

xiφi(y) + g(y), x ∈ F
r
2 , y ∈ F

s
2 (2)

where φi(y) is the ith coordinate of φ(y), is m-resilient with m ≥ k. Indeed, for
every a ∈ F r2 and every b ∈ F

s
2 , we have

χ̂fφ,g (a, b) = 2
r

∑

y∈φ−1(a)

(−1)g(y)+b·y, (3)

since every (affine) function x 7→ fφ,g(x, y) + a · x+ b · y either is constant or is
balanced and contributes then for 0 in the sum

∑
x∈F r

2
,y∈F s

2
(−1)fφ,g(x,y)+x·a+y·b.

The degree of fφ,g is s + 1 = n − r + 1 if and only if φ has degree s (i.e. if
at least one of its coordinate functions has degree s), which is possible only if

1 As noted e.g. in [?], concatenations of m-resilient functions produce also, more gen-
erally, m-resilient functions. But this observation has not permitted until now to
produce larger classes of resilient functions.
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k ≤ r − 2, since if k = r − 1 then φ is constant. Otherwise, the degree of fφ,g is
at most s. Thus, if m = k then the degree of fφ,g reachs Siegenthaler’s bound
n −m − 1 if and only if either m = r − 2 and φ has degree s = n −m − 2 or
m = r − 1 and g has degree s = n −m − 1. There are cases where m > k (see
below).
The nonlinearity of Maiorana-McFarland’s functions could not be determined in
the literature in a precise and a general way: the lower bound Nfφ,g ≥ 2

n−1 −
2r−1maxa∈F r

2
|φ−1(a)| (where |φ−1(a)| denotes the size of φ−1(a)) obtained in

[?] is rather precise, but the upper bound Nfφ,g ≤ 2
n−1 − 2r−1 obtained in [?,?]

does not involve the size of φ−1(a). This upper bound is efficient when φ is
injective. Notice that in this case, fφ,g is then exactly k-resilient, where k+ 1 is
the minimum weight of φ(y), y ∈ F s2 and that g plays no role in the nonlinearity
of fφ,g or in its resiliency order. Thanks to these bounds, the nonlinearity of
fφ,g can also be precisely determined when g is null (as noted in [?,?]) and more
generally when g is affine, and also when maxa∈F r

2
|φ−1(a)| ≤ 2: according to

relation (??), Nfφ,g equals then 2
n−1 − 2r−1maxa∈F r

2
|φ−1(a)|. Notice that, φ

being chosen, the case g affine is unfortunately not the most interesting one
from nonlinearity viewpoint. Indeed, in relation (??), for a given a, the sum∑
y∈φ−1(a)(−1)

g(y)+b·y has maximum magnitude when g(y)+ b · y is constant on

φ−1(a) for some b.
In the next proposition, we improve upon the upper bound proved in [?,?] and

we deduce further information on the nonlinearities of Maiorana-McFarland’s
functions, which shows for instance why Sarkar and Maitra could not find 4-
resilient Maiorana McFarland’s functions in 10 variables with nonlinearity 480.

Proposition 1. Let fφ,g be defined by (??). Then the nonlinearity Nfφ,g of fφ,g
satisfies

2n−1 − 2r−1 max
a∈F r

2

|φ−1(a)| ≤ Nfφ,g ≤ 2
n−1 − 2r−1

⌈√
max
a∈F r

2

|φ−1(a)|

⌉
. (4)

Assume that every element in φ(F s2 ) has Hamming weight strictly greater than k

(fφ,g is then m-resilient with m ≥ k). Then Nfφ,g ≤ 2
n−1−2r−1




2s/2√∑r

i=k+1
(ri)



.

Under this hypothesis, if fφ,g achieves the best possible nonlinearity 2
n−1−2k+1,

then either r = k + 1 or r = k + 2.
If r = k + 1 then φ takes constant value (1, · · · , 1) and n ≤ k + 3. Either s = 1
and g(y) is then any function in one variable or s = 2 and g is then any function
of the form y1y2 + l(y) where l is affine (thus, f is quadratic, i.e. has degree at
most 2).
If r = k + 2, then φ is injective, n ≤ k + 2 + log2(k + 3), g is any function in
n− k − 2 variables and d◦fφ,g ≤ 1 + log2(k + 3).

Proof: The inequality Nfφ,g ≥ 2
n−1−2r−1maxa∈F r

2
|φ−1(a)| is a direct conse-

quence of relations (??) and (??). Let us prove now the upper bound. The sum
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∑
b∈F s

2

(∑
y∈φ−1(a)(−1)

g(y)+b·y
)2

=
∑
b∈F s

2

(∑
y,z∈φ−1(a)(−1)

g(y)+g(z)+b·(y+z)
)

equals: 2s|φ−1(a)| (indeed,
∑
b∈F s

2
(−1)b·(y+z) is null if y 6= z). The maximum

of a set of values being always greater than or equal to its mean, we deduce
maxb∈F s

2
|
∑
y∈φ−1(a)(−1)

g(y)+b·y| ≥
√
|φ−1(a)| and thus

max
a∈F r

2
;b∈F s

2

|χ̂fφ,g (a, b)| ≥ 2
r

⌈√
max
a∈F r

2

|φ−1(a)|

⌉
.

Hence, according to relation (??): Nfφ,g ≤ 2
n−1 − 2r−1

⌈√
maxa∈F r

2
|φ−1(a)|

⌉
.

If every element in φ(F s2 ) has Hamming weight strictly greater than k, we have

maxa∈F r
2
|φ−1(a)|

(∑r
i=k+1

(
r
i

))
≥ 2s and Nfφ,g ≤ 2

n−1 − 2r−1




2s/2√∑r

i=k+1
(ri)



.

If Nfφ,g = 2
n−1 − 2k+1, then according to (??), we have

√
maxa∈F r

2
|φ−1(a)| ≤

2k−r+2 and thus k + 1 ≤ r ≤ k + 2 since maxa∈F r
2
|φ−1(a)| ≥ 1. If r = k + 1,

then since every element in φ(F s2 ) has Hamming weight strictly greater than k,
φ must take constant value (1, · · · , 1) and maxa∈F r

2
|φ−1(a)| is then equal to 2s.

Since
√
maxa∈F r

2
|φ−1(a)| ≤ 2k−r+2, this implies s ≤ 2(k − r + 2) = 2. Thus,

fφ,g is quadratic and of the form f(x, y) =
∑r
i=1 xi+g(y). Its nonlinearity being

equal to 2n−1− 2k+1, we have maxb∈F s
2

∣∣∣
∑
y∈F s

2
(−1)g(y)+b·y

∣∣∣ = 2. Thus s ≥ 1. If
s = 1 then f(x, y1) =

∑r
i=1 xi+ g(y1) (if g is constant then f is (n− 2)-resilient

with null nonlinearity and if g is not constant, then f is (n − 1)-resilient with
null nonlinearity). If s = 2 then g must be bent, i.e. equal to y1y2 + l(y) where
l is affine. If r = k + 2, then maxa∈F r

2
|φ−1(a)| = 1 and φ is injective. Since

φ is injective and is valued in {a ∈ F r2 ; wH(a) ≥ k + 1 = r − 1} we deduce
2s ≤

(
r
r−1

)
+
(
r
r

)
= r + 1 and thus n− r ≤ log2(r + 1). Siegenthaler’s inequality

completes the proof. ¦

Examples of optimum functions We give now examples of resilient Maiorana-
McFarland’s functions with high nonlinearities. The existence of some of these
functions have been already shown in the literature. But this was often done
by random search while a deterministic construction is provided here. We shall
reduce our investigation to m-resilient functions with n even or with n odd and
m > n/2− 2, since in the case n is odd and m ≤ n/2− 2, we do not know what
is the precise bound.
- We first complete Proposition ?? when φ(y) = (1, · · · , 1), ∀y ∈ F s2 . Then
φ−1(a) is empty if a 6= (1, · · · , 1) and equals F s2 if a = (1, · · · , 1), and the function
fφ,g is (r−1)-resilient if g is not balanced and it is (r+k)-resilient if g is k-resilient.
Nfφ,g equals 2

rNg and is at most equal to 2
n−1−2r−1+s/2 = 2n−1−2n/2−1+r/2.

If g is not balanced, the functions fφ,g achieving Sarkar et al.’s bound have been
studied in Proposition ?? for m = r − 1 > n/2− 2. For m = r − 1 ≤ n/2− 2 (n
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even) the only possible cases for which we can obtain functions with nonlinearity
2n−1−2n/2−1−2r are clearly for r ≤ 2. For r = 1, we have Ng = 2

n−2−2n/2−2−1
which is possible for n = 4 only. For r = 2, the function fφ,g achieves Sarkar
et al.’s bound if and only if r = n/2 − 1, i.e. n = 6 and g is bent. If g is k-
resilient, then if r+k > n/2−2, fφ,g achieves Sarkar et al.’s bound if and only if
k > s/2−2 and if g does; and if r+k ≤ n/2−2 then fφ,g cannot achieve Sarkar
et al.’s bound (i.e. Ng cannot equal 2

s−1−2n/2−r−1−2k+1) unless, maybe, r = 1
and k = (s− 5)/2.
- We show now that for every even n ≤ 10, Sarkar et al.’s bound withm = n/2−2
can be acheived by Maiorana-McFarland’s functions. The nonlinearity the func-
tion fφ,g must reach is 2

n−1 − 2n/2 (this number is often called the quadratic
bound, see next paragraph). Take r = n/2 + 1 and s = n/2 − 1. For n ≤ 10,
we have 1 + r +

(
r
2

)
≥ 2s and we deduce that there exist injective mappings

φ : F s2 7→ {x ∈ F r2 ; wH(x) > r − 3 = m}. For every such φ and for every
g : F s2 7→ F2, the function fφ,g is (n/2 − 2)-resilient and its nonlinearity is
2n−1 − 2r−1 = 2n−1 − 2n/2.
- We describe now a general situation in which Maiorana-McFarland’s func-
tions can have high nonlinearities (but do not achieve in general Sarkar et al.’s
bound, which is not known to be tight in these ranges except for small val-
ues of n). Let r, k and s be three positive integers such that k ≤ r − 1 and∑r
i=k+1

(
r
i

)
≥ 2s. Set n = r + s. Let φ be any one-to-one mapping from F s2 to

the set {x ∈ F r2 ;wH(x) > k} (such mapping φ exists thanks to the inequality
above). Then for every Boolean function g on F s2 , the function fφ,g is a k-resilient
function on Fn2 and has nonlinearity 2

n−1 − 2r−1. Examples of such situation
are the following:
• For any k > 0, choose r = 2k + 1 and s = 2k; then the nonlinearity of fφ,g
equals 2n−1−22k = 2n−1−2

n−1
2 which is known as the best possible nonlinearity

of all Boolean functions on F n2 for odd n ≤ 7 and the best possible nonlinearity
of quadratic functions on F n2 for every odd n (it is often called the quadratic
bound). There exist only few known examples of functions on F n2 (n odd) with

nonlinearities strictly greater than 2n−1 − 2
n−1

2 (these examples are known for
odd n ≥ 15, cf. [?]) and of balanced such functions (cf. [?,?,?]); here we have an
example, for every n ≡ 1 mod 4, of n−1

4 -resilient functions on F
n
2 with nonlin-

earity equal to 2n−1−2
n−1

2 . This nonlinearity is the best known nonlinearity for
k-resilient functions; moreover, for k = 1, 2 (n = 5, 9) it achieves Sarkar et al.’s
bound (this does not imply, in the case n = 9, that fφ,g achieves Siegenthaler’s
bound because 2n−1− 22k > 2n−1− 2k+1; in fact, the maximum possible degree
of fφ,g is 2k + 1). For n = 9, this optimal function can be obtained by Sarkar
and Maitra’s algorithm A given in [?]. We have here its precise description.

Notice that it is impossible to obtain nonlinearity 2n−1− 2
n−1

2 with a quadratic
n−1

4 -resilient function (or even more generally with a partially-bent function):
recall that such function has this nonlinearity if and only if its kernel has di-
mension 1 (see [?]) and that it can then be n−1

4 -resilient only if there exists an
affine hyperplane with minimum weight strictly greater than n−1

4 . This is clearly
impossible for n ≥ 9.
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• For any s > 0, choose r ≥ 2s − 1 and set k = r − 2. The nonlinearity of fφ,g
equals then 2n−1 − 2r−1 = 2n−1 − 2k+1 and fφ,g achieves Sarkar et al.’s bound
and Siegenthaler’s bound.
• There exist other examples of r, k, s leading to good functions.

Improved resiliency orders The functions satisfying the hypothesis of Propo-
sition ?? are not the only ones in Maiorana-McFarland’s class which can achieve
Sarkar et al.’s bound. We describe below two other cases. The first one has also
been considered by Cusick in [?], but in a more complex way and without looking
for the best possible nonlinearity.

Proposition 2. Let fφ,g be defined by (??).
1. Assume that every element in φ(F s2 ) has Hamming weight strictly greater than
k and that, for every a ∈ F r2 of weight k + 1, either the set φ

−1(a) is empty or
it has an even size and the restriction of g to this set is balanced. Then fφ,g
is m-resilient with m ≥ k + 1. Under this hypothesis, if fφ,g achieves the best
possible nonlinearity 2n−1 − 2k+2, then r ≤ k + 2.
If r = k + 1 then either s = 2 and g and f are affine or s = 3 and g is balanced
and has nonlinearity 4.
If r = k + 2 then n ≤ k + 4 + log2(k + 3) and d

◦f ≤ 2 + log2(k + 3).
2. Assume in addition that:
a. for every a ∈ F r2 of weight k + 1 and every i ∈ {1, · · · , s}, denoting by Hi the
linear hyperplane of equation yi = 0 in F

s
2 , either the set φ

−1(a) ∩Hi is empty
or it has an even size and the restriction of g to this set is balanced;
b. for every a ∈ F r2 of weight k + 2, either the set φ

−1(a) is empty or it has
an even size and the restriction of g to this set is balanced. Then fφ,g is m-
resilient with m ≥ k+2. Under this hypothesis, if fφ,g achieves the best possible
nonlinearity 2n−1 − 2k+3, then r ≤ k + 3.
If r = k + 1, then 3 ≤ s ≤ 5 and φ takes constant value (1, · · · , 1). If s = 3
then g and f are affine. If s = 4, then g has nonlinearity 4. If s = 5 then g has
nonlinearity 12.
If r = k + 2 then n ≤ k + 6 + log2(k + 3) and d

◦f ≤ 3 + log2(k + 3).
If r = k+3 then n ≤ k+5+log2(

(
k+3
2

)
+k+3) and d◦f ≤ 2+log2(

(
k+3
2

)
+k+3).

The proof has to be omitted because of length constraints.

Other examples of optimum functions Choose again three positive inte-
gers r, k and s such that

∑r
i=k+1

(
r
i

)
≥ 2s and a one-to-one mapping φ from

F s2 to the set {x ∈ F r2 ;wH(x) > k}. Set s′ = s + 1 and modify φ into a two-
to-one mapping φ′ : F s

′

2 7→ {x ∈ F r2 ; wH(x) > k}. For any x ∈ F r2 such that
wH(x) > k, let g′ : F s

′

2 7→ F2 take each value 0 and 1 once on the pair φ
′−1(x).

Then, according to Proposition ??, the function fφ′,g′ is (k + 1)-resilient on

Fn
′

2 with n′ = s′ + r = n + 1 and its nonlinearity is twice that of fφ,g for
every g : F s2 7→ F2 (thus, fφ′,g′ achieves Sarkar et al.’s bound if fφ,g does).
Another way of modifying fφ,g into a function with the same number of vari-
ables and the same parameters as the function fφ′,g′ above would be to take
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f ′(x, xr+1, y) = fφ,g(x, y)+xr+1. But this kind of function having a linear term,
it is less suited for cryptographic use (for instance, it has a linear structure, i.e.
the derivative f ′(x, xr+1, y) + f

′(x, xr+1 + 1, y) is a constant).

Remark:
In the case that every non-empty set φ−1(a) is an affine set, then more can

be said: assume that φ−1(a) is either the empty set or a flat for every a, that
it is empty for every word a of weight ≤ k, and that, for some positive integer
l, the restriction of g to every non-empty set φ−1(a) such that wH(a) = k + i,
i ≤ l, is (l − i)-resilient. Then according to relation ??, fφ,g is (k + l)-resilient.¦

A drawback of Maiorana-McFarland’s functions is that their restrictions ob-
tained by fixing y in their input are affine. Affine functions being cryptographi-
cally weak functions, there is a risk that this property be used in attacks. Also,
Maiorana-McFarland’s functions have high divisibilities of their Fourier spectra,
and there is also a risk that this property be used in attacks as it is used in [?] to
attack block ciphers. A purpose of this paper is to produce a construction hav-
ing not this drawback and leading to a larger class of cryptographic functions.
Before that, we study the other known constructions.

2.2 Dillon’s construction

In [?] is used an idea of Dillon (cf. [?]) to obtain a construction of resilient
functions. Similar observations as for Maiorana-McFarland’s construction can
be made on the ability of these functions to have nonlinearities near Sarkar et
al.’s bound. But this class has few elements.

2.3 Dobbertin’s construction

In [?], Hans Dobbertin studies an interesting method for modifying bent func-
tions into balanced functions with high nonlinearities. Unfortunately:

Proposition 3. Dobbertin’s construction cannot produce m-resilient functions
with m > 0.

3 Maiorana-McFarland’s super-class

The functions of the super-class of Maiorana-McFarland’s class that we introduce
now are concatenations of quadratic functions (i.e. functions of degrees at most
2).

3.1 Quadratic functions

It is shown in [?] that any quadratic function f(x) is linearly equivalent to a
function of the form

x1x2 + · · ·+ x2i−1x2i + · · ·+ x2t−1x2t + l(x) (5)
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where 2t is smaller than or equal to the number of variables and where l is affine.
The functions we shall concatenate below are not general quadratic functions,
because the parameters of the functions could then not be evaluated, but they
have a slightly more general form than (??). They are defined on F 2t

2 and have
the form

f(x) =

t∑

i=1

uix2i−1x2i + l(x) =

t∑

i=1

uix2i−1x2i +

2t∑

j=1

vixi + c, (6)

where u = (u1, · · · , ut) is an element of F
t
2 , v = (v1, · · · , v2t) is an element of

F 2t
2 and c is an element of F2. We shall need in the sequel to compute sums∑
x∈F 2t

2
(−1)f(x). We know (and it is a simple matter to check) that if there

exists i = 1, · · · , t such that ui is null and v2i−1 or v2i is not null, then f
is balanced and thus

∑
x∈F 2t

2
(−1)f(x) = 0. We consider now the case where

such an i does not exist. Then we have f(x) =
∑t
i=1 ui(x2i−1 + v2i)(x2i +

v2i−1) +
∑t
i=1 v2i−1v2i + c. Changing x2i−1 into x2i−1 + v2i and x2i into x2i +

v2i−1 does not change the value of
∑
x∈F 2t

2
(−1)f(x). Hence:

∑
x∈F 2t

2
(−1)f(x) =

∑
x∈F 2t

2
(−1)

∑t

i=1
uix2i−1x2i+

∑t

i=1
v2i−1v2i+c. It is a simple matter to check that∑

x2i−1,x2i∈F2
(−1)uix2i−1x2i equals 4 if ui = 0 and equals 2 if ui = 1. Thus

∑
x∈F 2t

2
(−1)f(x) = 22t−wH(u)(−1)

∑t

i=1
v2i−1v2i+c. Applying this to the function

f(x) +
∑2t
j=1 ajxj , we deduce:

Proposition 4. Let u = (u1, · · · , ut) ∈ F
t
2 , v = (v1, · · · , v2t) ∈ F

2t
2 , c ∈ F2 and

set f(x) =
∑t
i=1 uix2i−1x2i+

∑2t
j=1 vjxj+c. Let a be any element of F

2t
2 . If there

exists i = 1, · · · , t such that ui = 0 and v2i−1 6= a2i−1 or v2i 6= a2i, then χ̂f (a) is

null. Otherwise, χ̂f (a) equals 2
2t−wH(u)(−1)

∑t

i=1
(v2i−1+a2i−1)(v2i+a2i)+c.

3.2 The Maiorana-McFarland’s super-class

Definition 1. Let n and r be positive integers such that r < n. Denote the
integer part

⌊
r
2

⌋
by t and n− r by s. Let ψ be a mapping from F s2 to F

t
2 and let

ψ1, · · · , ψt be its coordinate functions. Let φ be a mapping from F s2 to F
r
2 and let

φ1, · · · , φr be its coordinate functions. Let g be a Boolean function on F
s
2 . The

function fψ,φ,g is defined on F
n
2 = F r2 × F

s
2 as

fψ,φ,g(x, y) =

t∑

i=1

x2i−1x2iψi(y) + x · φ(y) + g(y) =

t∑

i=1

x2i−1x2iψi(y) +
r∑

j=1

xi φi(y) + g(y); x ∈ F
r
2 , y ∈ F

s
2 .

The restrictions of fψ,φ,g obtained by fixing y in its input are quadratic func-
tions of the form (??) or their extensions with one linear variable (r odd), and
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fψ,φ,g(x, y), viewed as a binary vector of length 2
n, equals the concatenation

of quadratic functions. Maiorana-McFarland’s functions correspond to the case
where ψ is the null mapping. As a direct consequence of Proposition ??, we have:

Theorem 1. Let fψ,φ,g be defined as in Definition ??. Then for every a ∈ F
r
2

and every b ∈ F s2 we have

̂χfψ,φ,g (a, b) =
∑

y∈Ea

2r−wH(ψ(y))(−1)
∑t

i=1
(φ2i−1(y)+a2i−1)(φ2i(y)+a2i)+g(y)+y·b,

where Ea is the superset of φ
−1(a) equal if r is even to

{y ∈ F s2 / ∀i ≤ t, ψi(y) = 0⇒ (φ2i−1(y) = a2i−1 and φ2i(y) = a2i)} ,

and if r is odd to

{
y ∈ F s2 /

{
∀i ≤ t, ψi(y) = 0⇒ (φ2i−1(y) = a2i−1 and φ2i(y) = a2i)
φr(y) = ar

}
.

Remark: let y be an element of F s2 . Denote the weight of ψ(y) by l. Then y
belongs to 4l sets Ea. One of them is Eφ(y). The others correspond to the vectors
a 6= φ(y) such that a2i−1 = φ2i−1(y) and a2i = φ2i(y) for every index i outside
the support of the vector ψ(y).

4 Cryptographic properties of the constructed functions

4.1 Algebraic degree

Let fψ,φ,g be defined as in Definition ??. The degree of fψ,φ,g clearly equals
max(2+ d◦ψ1, · · · , 2+ d

◦ψt, 1+ d
◦φ1, · · · , 1+ d

◦φr, d
◦g). It is upper bounded by

2 + s.

4.2 Nonlinearity

Theorem 2. Let fψ,φ,g be defined as in Definition ??. Denote by M the max-
imum weight of ψ(y) for y ∈ F s2 , and by M

′ its minimum weight. Then the
nonlinearity Nfψ,φ,g of fψ,φ,g satisfies

2n−1−2r−M
′−1 max

a∈F r
2

|Ea| ≤ 2
n−1−max

a∈F r
2

∑

y∈Ea

2r−wH(ψ(y))−1 ≤ Nfψ,φ,g ≤

2n−1−max
a∈F r

2

√∑

y∈Ea

22r−2wH(ψ(y))−2 ≤ 2n−1−2r−M−1 max
a∈F r

2

√
|Ea|

where |Ea| denotes the size of the set Ea defined in Theorem ??.
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The proof is similar to that of Proposition ?? and is omitted because of length
constraints.

We have seen above that the nonlinearity of a Maiorana-McFarland’s func-
tion fφ,g can be more easily determined when φ is injective. The function is
then “three-valued”. The nonlinearity of fψ,φ,g can similarly be more precisely
determined when all the sets Ea have size at most 1, i.e. when the quadratic
functions whose concatenation is fψ,φ,g have disjoint spectra.

Proposition 5. Let fψ,φ,g be defined as in Definition ??. Every set Ea has at
most one element if and only if, for every two distinct elements y and y′ of F s2 ,
denoting by Jy the set of indices equal to {j ≤ 2t/ ψd j2e

(y) = 0} if r is even and

to {j ≤ 2t/ ψd j2e
(y) = 0} ∪ {r} if r is odd, there exists i ∈ Jy ∩ Jy′ such that

φj(y) 6= φj(y
′).

Notice that, even in this case, fψ,φ,g is not necessarily three-valued: the magni-

tude of ̂χfψ,φ,g being bounded between 2r−M and 2r−M
′

where M (resp. M ′) is
the maximum (resp. minimum) weight of ψ(y), y ∈ F s2 , the function fψ,φ,g is
three-valued if M ′ =M . We study below a situation in which the hypothesis of
Proposition ?? is satisfied.

Corollary 1. Let fψ,φ,g be defined as in Definition ?? and let M be the maxi-
mum weight of ψ(y), y ∈ F s2 . Suppose that φ is injective and that for every two
distinct elements y and y′ of F s2 , the set {i ≤ t; φ2i−1(y) 6= φ2i−1(y

′) or φ2i(y) 6=
φ2i(y

′)} has size strictly greater than 2M (this condition is satisfied in par-
ticular if the set φ(F s2 ) has minimum Hamming distance strictly greater than
4M). Then, every set Ea has size at most 1, and Nfψ,φ,g = 2

n−1 − 2j where
r −M − 1 ≤ j ≤ r −M ′ − 1.

Proof. For every two elements y 6= y′ of F s2 , since ψ(y) and ψ(y
′) have weights

smaller than or equal to M , at most 2M indices i ≤ t satisfy ψi(y) = 1 or
ψi(y

′) = 1. The condition satisfied by φ implies that there exists i ≤ t such
that ψi(y) = ψi(y

′) = 0 and φ2i−1(y) 6= φ2i−1(y
′) or φ2i(y) 6= φ2i(y

′), and the
hypothesis of Proposition ?? is satisfied. Thus every set Ea contains at most one
element. Theorem ?? completes the proof. ¦

4.3 Balancedness and resiliency

Theorem 3. Let fψ,φ,g be defined as in Definition ?? and let k be non-negative.
For every y ∈ F s2 , denote by Iy the set of indices equal to {j ≤ 2t/ ψd j2e

(y) =

0 and φj(y) = 1} if r is even or if r is odd and φr(y) = 0, and to {j ≤
2t/ ψd j2e

(y) = 0 and φj(y) = 1} ∪ {r} if r is odd and φr(y) = 1. Assume that

for every y ∈ F s2 , Iy has size strictly greater than k. Then fψ,φ,g is m-resilient
with m ≥ k.
In particular, if for every y ∈ F s2 , the set Iy is not empty, then fψ,φ,g is balanced.
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Proof: Let a ∈ F r2 and b ∈ F s2 . Assume that (a, b) has weight smaller than or
equal to k. Then a has weight smaller than or equal to k. Let y be an element of
the set Ea (defined in Theorem ??), then for every index j in Iy, we must have
aj = 1. According to the hypothesis on Iy, the word a must then have weight
strictly greater than k, a contradiction. We deduce that the set Ea is empty and,
thus, that χ̂f (a, b) = 0. ¦

In the case of Maiorana-McFarland’s functions, the condition of Theorem ??

reduces to the fact that every element in φ(F s2 ) has Hamming weight strictly
greater than k, since all coordinate functions of ψ are null. Let us translate the
condition similarly in the general case.

Corollary 2. Let fψ,φ,g be defined as in Definition ?? and let k be a non-
negative integer. Consider the mapping Φ from F s2 to F

r
2 whose jth coordinate

function for j ≤ 2t equals the product of the Boolean functions φj and 1 + ψd j2e
and whose rth coordinate function equals φr if r is odd. If the image of every
element in F s2 by Φ has Hamming weight strictly greater than k, then fψ,φ,g is
m-resilient with m ≥ k.
In particular, if the image of every element in F s2 by Φ is nonzero, then fψ,φ,g
is balanced.

Proof: For every y ∈ F s2 , the set Iy introduced in Theorem ?? equals the support
of Φ(y). Thus, it has size strictly greater than k if and only if Φ(y) has Hamming
weight strictly greater than k. Theorem ?? completes the proof. ¦

Remark:
- If the mapping φ satisfies wH(φ(y)) > k for every y ∈ F s2 , then the mapping Φ
satisfies wH(Φ(y)) > k − 2M for every y, since the vectors φ(y) and Φ(y) lie at
distance at most 2M from each other.
- The results of Theorem ?? and Corollary ?? can be refined the same way as
in Proposition ??.

Constructions of highly nonlinear resilient functions from the super-

class - Let n be even and φ : F
n/2
2 7→ F

n/2
2 \{0} be chosen such that every vector

different from (1, · · · , 1) has one reverse image by φ and (1, · · · , 1) has two reverse

images by φ. For every g : F
n/2
2 7→ F2, the function fφ,g is then balanced, since

φ does not take the zero value; but it has nonlinearity 2n−1 − 2r = 2n−1 − 2n/2

only. We shall increase this nonlinearity by considering, instead of fφ,g, a function
fψ,φ,g where ψ is chosen such that fψ,φ,g is still balanced. Choose ψ(y) equal
to the zero vector, except at one element u of φ−1(1, · · · , 1). If n/2 is odd or
if it is even and if we choose as value of ψ(u) a vector of F t2 different from

(1, · · · , 1), then for every g : F
n/2
2 7→ F2, the function fψ,φ,g is balanced since

E(0,···,0) = ∅. According to Theorem ??, its nonlinearity equals 2n−1 − 2n/2−1 −

2n/2−wH(ψ(u))−1. So let us choose for ψ(u) a vector of highest possible weight:⌈
n
4

⌉
−1. Then fψ,φ,g has nonlinearity 2

n−1−2n/2−1−2n/2−d
n
4 e = 2n−1−2n/2−1−
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2b
n
4 c. If n/2 is odd, then fψ,φ,g has nonlinearity 2

n−1 − 2n/2−1 − 2(n/2−1)/2,
which is the best known nonlinearity for balanced functions if n ≤ 26 (this same
nonlinearity can be also reached with Dobbertin’s method; the other methods
do not work here: it can be checked that extending Patterson-Wiedemann’s
functions [?] or their modifications by Maitra-Sarkar [?] to even numbers of
variables gives worse nonlinearities). Notice that this nonlinearity is impossible
to exceed with a Maiorana-McFarland’s function with φ : F n−r2 7→ F r2 \ {0}.
Indeed, if r ≥ n/2 then fφ,g has nonlinearity at most 2

n−1 − 2n/2 (since φ
cannot be injective if r = n/2) and if r < n/2 then there exists a ∈ F r2 such

that |φ−1(a)| ≥ 2n−r

2r−1 and thus, according to Proposition ??, Nfφ,g ≤ 2
n−1 −

2r−1
⌈√

2n−r

2r−1

⌉
= 2n−1 − 2r−1

⌈
2n/2−r

√
2r

2r−1

⌉
. We have

√
2r

2r−1 > 1 + 2−r−1.

Thus Nfφ,g ≤ 2
n−1 − 2n/2−1 − 2r−1

⌈
2n/2−2r−1 + ε

⌉
where ε > 0. We checked

that Nfφ,g cannot then exceed 2
n−1 − 2n/2−1 − 2(n/2−1)/2. It seems impossible

that Nfφ,g equals 2
n−1 − 2n/2−1 − 2(n/2−1)/2, but we could not prove it.

- Let n be even and and let k be an integer such that
∑k
i=0

(
n/2−2
i

)
≤ 2n/2−2

5 .

Then we have 2n/2−2−
∑n/2−2
i=k+1

(
n/2−2
i

)
≤ 1

52
n/2−2, thus 2n/2 ≤ 5

∑n/2−2
i=k+1

(
n/2−2
i

)

and there can exist φ : F
n/2
2 7→ {x ∈ F

n/2
2 ; wH(x3, · · · , xn/2) > k} such that for

every u ∈ F
n/2−2
2 , at most one element of F 2

2 ×{u} has two reverse images by φ

and the three others have at most one reverse image. For every element a ∈ F
n/2
2

which has two reverse images, choose y ∈ φ−1(a) and take ψ(y) = (1, 0, · · · , 0).
Take ψ(y) = (0, · · · , 0) for every other element. Then fψ,φ,g is at least k-resilient
and has nonlinearity 2n−1−2n/2−1−2n/2−2, while fφ,g is also at least k-resilient
but has nonlinearity 2n−1 − 2n/2.

- A general method: Let φ : F s2 7→ F r2 be injective and such that φ
−1(a) = ∅

for every a of Hamming weight at most k (fφ,g is then k-resilient for every g; we
have seen that such functions can achieve high nonlinearities). Choose a subset I
of {1, · · · , t}, where t =

⌊
r
2

⌋
and denote its size byM . In our choice of the values

taken by ψ, some of the vectors in ψ(F t2) will have I as support and the others
will be null. To ensure that fψ,φ,g is k-resilient, we need that for every y ∈ F

s
2

such that ψ(y) 6= 0, the word obtained from φ(y) by erasing all its coordinates
of indices j ≤ 2t such that

⌈
j
2

⌉
∈ I has weight strictly greater than k. So we

choose a subset U of F r−2M
2 of minimum weight at least k + 1, we denote by Ũ

the set of all y ∈ F s2 such that the word φ̃(y) obtained from φ(y) by erasing all
these coordinates belongs to U , and we set ψ such that ψi(y) = 1 if y ∈ Ũ and
i ∈ I and ψi(y) = 0 otherwise. Assume that every non-empty set Ea is a flat
and that, for every a such that φ−1(a) ∈ Ũ , the restriction of g to Ea is bent.
Then the upper bound of Theorem ?? is achieved. We have Ea = ∅ for every a
of Hamming weight at most k, |Ea| = 1 for every a such that wH(a) > k and
φ−1(a) 6∈ Ũ and |Ea| = 2

2M for every a such that. wH(a) > k and φ−1(a) ∈ Ũ .
Then fψ,φ,g has same resiliency order and nonlinearity as fφ,g.

Acknowledgement: the author thanks one of the anonymous referees for
his (her) useful observations.
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